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So, yesterday we had introduced the concept of jointly distributed random variables. So, 

because many times we will be interested in recording the numerical characteristics of 

several phenomenain one randomexperiment;for example, for a new born child, we will 

be interested in recording its height, weight and pulse rate at birth.A doctor records 

several characteristics of the patient who visits him for certain disease;the performance 

of a student is in a semester during a course ismeasured in terms of it his marks in say 

homework assignments, hisperformance in mid semester examination, his performance 

in the end semester examination, etcetera. We have seen that the types of jointly 

distributed random variables;some of them may be discrete, some of them may be 

continuous, all maybe discrete, all maybe continuous, some maybe mixed, etcetera. 
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In particular, when we are consideringa jointly distributed random variable X, Y,we have 

considered 2 specific cases where both X, Y maybe discrete such as marks of the 



students or both maybe continuous. For example, height and weight of a child at birth. 

So, in the case, when both of them are discrete - we have a probability mass function and 

when both are continuous - we have a probability density function.We have seen the 

description of this andusing this we can calculate anyprobability statement regarding the 

joint distribution of Y and Y or marginal distribution of X and Y or conditional 

distribution of Xand Y. 

Next we discuss the concept of independence of random variables. (No audio from 02:20 

to 02:29) So, we say that random variables X and Y are independently distributed. If the 

joint cdf is equal to the product of marginal cdfsat all points. So, basically if we do not 

make use of the cdf, we shouldbe able to say like that. That if we are considering a set in 

the two-dimensional plane where B can be expressed as product of 2 sets A 1 and A 2 

where A 1 is in the space of x values and A 2 is in the space of y values. Then this should 

be equal to probability of X belonging to A 1and in to probability of Y belonging to A 2. 

If that happens for all combinations of this type of sets then they are independent. 

However, this condition is equivalent, if we state in terms of the cumulative distribution 

function.In particular,if X and Y are discrete then X and Y are independent; if pXY is 

equal to pX (x) p Y(y)for allxy belonging to x cross y. 
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In case of continuous random variable, if X and Y are continuous, then the condition for 

independence isthe joint pdf is equal to the product of marginal pdfs. Let us take 



someexamples; let fX,Y be equal to say 1, 0 less than x less than 1, 0 less than y less than 

1, and 0 elsewhere. Now, this is a jointly distributed continuous random variable. Let us 

consider say fX.So, we will be integrating with respect to y from 0 to 1, so, we get 1. 

And similarly, if we integrate with respect to x from 0 to 1, we will get 1;and of course, 0 

elsewhere.So, you can easily see that the product of fX (x) and fY (y)is equal to fX, 

Y(x,y). This condition is satisfied for all x and y. So, X and Y are independent. So, this 

may be considered as say arrival timings of aa passenger to the railway station between 

any time from say7 am to 8 am, and y may denote the arrival time of the train between 7 

am to 8 am. So, both maybe independentlydistributed and this could be the 1of the 

possible distributions. 
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Let us take another example, suppose probability X equal to 1, Y is equal to 1 is 1 by 4; 

probability X is equal to 1, Y is equal to 0 is 1 by 4; probability X equal to 0, Y is equal 

to 1 is say1 by 4; probability X equal to 0 and Y is equal to 0 is say1 by 4.So, the joint 

distribution of X and Y is given by this. Let us look at the marginal distribution of X. So, 

what is probability of X equal to 0?It is obtained from summing the probability of X 

equal to 0, Y equal to 0, and probability X equal to 0 and Y is equal to 1that is equal to 

half.Probability X equal to 1 in a similar way, it is equal to the sum of these 2 

probabilities again it is half,if we look at probability of Y is equal to 0;that is the sum of 

these 2 probabilities; that is half, and probability of Y is equal to 1; that is the sum of 

these 2 numbers; that is again half.So, we can see here that the condition that p X, Y(x i, 



y j) is equal to p X(xi), p Y(y j) is satisfied for all x i, y j in the range of x and y random 

variables.So, x and y are… 

(No audio from 08:40 to 08:49) 
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On the other hand, if we consider a distribution such asf x y is equal to 10 x y square 

where x and y are satisfying the condition; that 0 is less than x less than y less than 

1.Then the marginal distributions of x was 10 by 3 x into 1 minus x cube and the 

marginal distribution of y is 5 y to the power 4, 0 less than y less than 1. So, you can see 

that the product of f (x) into f(y) is not equal to f (x, y), because the product here will 

give you 50 by 3 x into 1 minus x cube into y to the power 4 whereas f (x, y) is 10 x y 

square. So, the condition is never satisfied. So, x and y are obviously not independent. If 

we consider another problem,sayf (x,y) is equal to 1 by y for satisfying similar condition 

that 0 less than x less than y less than 1 then the marginal distribution of x is minus 

log(x) and the marginal distribution of y is uniform. So, once again you can see that the 

product of these 2 does not give 1 by y. So, the distributions are not independent. 

So, the main important role of the condition of independence is that - it helps us to obtain 

the joint distributions for independently distributed random variables. Many times what 

happens that; we know these phenomena are independent and we know the individual 

distributions.Now, in order to study certain characteristics of the joint distribution, we 

can obtain the joint distribution by simply multiplying the 2 distributions. Where in 



general, marginal distributions do not give the joint distribution; the joint distributions 

give the marginal distributions, but theconverse is not true.However if the random 

variables are independent, then simply by multiplying the marginal distributions, we can 

get the joint distribution.Therefore, this is a quite useful concept.Now, let us look at the 

concept of expectation in case of joint distributions. 
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So, let g (X, Y) be a measurable function of X and Y. So, we define expectation of g (X, 

Y) that is equal to if X and Y are discrete, it is equal to g (x i, y j), p X, Y(x i, y j) for all 

x i and y j in the range of x cross y.This is if x and y are discrete with pmf p (x i, y j). 

Now, this is valid provided the series is absolutely convergent. 
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Provided the given series is absolutely convergent. In case X and Y are continuous with 

joint pdfsayf X,Y, then we define expectation of g X,Y as double integral g (x, y) f (x, y) 

dx dy or this could be dy dx also. Provided the integral is absolutely convergent. Here 

the range of integration is over the range of the density. Whateverbethe appropriate range 

of the density here. So, in particular, we can consider given random variables we can 

define an expectation of x plus y,expectation of x minus y, expectation of log of x square 

y, any type of function of the random variable x and y, we can find out its expected 

value.  

Now, in particular,we will be concerned about product moments. So, we define mu r, s 

prime as expectation of X to the power r Y to the power s. This is r,s thproduct moment. 

Now, here this is non-central moment as we had seen in the univariate case also, we can 

define central and non-central moments. So, in particular, we can consider mu 1,1prime 

that is equal to expectation of X into Y; if we consider mu 1, 0 prime that is expectation 

of X, that is the mean of X or the expected value of the random variable X. Similarly, if 

we consider mu 0,1 prime that is equal to expectation of Y, that is equal to the 

expectation of random variable Y. Now, using this mu X and mu Y, we can define 

product moments which are central. 
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So, we can talk about mu r, s that is equal expectation of X minus mu X to the power r Y 

minus mu Y to the power s. Now, if we consider a special case r is equal to 1, s is equal 

to 1. So, this is in generalr,sth central product moment.So, if we consider both r and s to 

be 1, that is expectation of X minus mu X into Yminus mu Y; this is called the 

covariance between X and Y.We can further simplify this, we can write it as expectation 

of XY minus X into mu Y minus mu XY plus mu X mu Y; that is equal to expectation of 

XYminus… So, nowhere if wetake expectation, this is mu X mu Y minus mu X mu Y 

plus mu Xmu Y. So, this term cancels off.And we are getting, we can use this notation 

mu XY here or mu 1,1 prime minus mu1, 0 prime mu 0,1 prime. We can further see the 

effect of independence on the moments. 

If random variables X and Y are independent, then expectation of X to the power r,Y to 

the power s, this will become expectation of X to the power r into expectation of Y to the 

power s.Similarly, expectation of X minus mu X to the power r Y minus mu Y to the 

power s, that will become expectation of X minus mu X to the power r expectation of Y 

minus mu Y to the power s. To see this let us prove a general result regarding the 

independent random variables. 
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Let X and Ybe independent random variables. Then if we are considering expectation of 

a product function,then this is equal to product of the expectations. Let us assuming that 

X and Y are continuous with joint pdff X, Y and marginal pdfsayf X and f Y.So, since X 

and Y are given to be independent, we have f X, Y is equal to f X into f Y for all x, y. So, 

nowconsider expectation of g X into h of Y. So, of course, these statements are valid 

provided these expectations exist. 

(No audio from 20:19 to 20:28) 

So, let us consider expectation of g X into h Y. So, by definition of the expectation it is 

equal to g (x) into h (y)f X, Y (x,y)dx dy or dydx. Since the random variables are 

independent we can make use of the condition of independence. That means, this is equal 

tog x into hy f x into f ydxdy. 
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Now, this is nothing but the product of the integrals g (x)f (x)dx and h (y)f (y)dy which is 

nothing but expectation of g x into expectation of h y. So, the expectation of a product is 

equal to the product of expectations in case of independent random variables. 

A similar proof can be given incase the random variables are discrete, because here the 

integrals can be replaced by thesummations and thedensity function can be replaced by 

the mass function.The proof is little bit involved in the case of mixed random variables 

and whenoneof them maybe discrete or continuous etcetera.So, in particular if g (X) is X 

to the power r and h (Y) is Y to the power s. So, expectation of the product moment is 

equal to the product of the individual moments, and this statement is valid for non-

central as well as central momentsNow, if we make use of this condition on the first 

central moment - first central product moment which we call as a covariance, then 

expectation of X into Y will be equal to expectation X into expectationY, and therefore, 

covariance termwill become 0. 
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So, we have the consequence of this above theorem. That if X and Y are independent, 

then covariance of X and Yis 0. Using the covariance,onedefines the coefficient of 

correlation between X and Y.We denote rhox, y that is defined as covariance between X, 

Y divided by standard deviation of X into standard deviation of Y. We can use a notation 

sigma XYdivided by sigma X sigma Y where sigma X squarewas a variance of X and 

sigma Y square denotes the variance of Y. Now, the question arises that what this 

correlation coefficient between X and Y represent.So, we claim that this gives a measure 

of linear relationship between the random variables X and Y. 
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So, in particular, let us consider say consider say random variables U and Vwith say 

expectation of U is 0, expectation of U square is equal to 1, expectation of V is equal to 

0, expectation of V square is equal to 1. If we consider these 2 random variables,consider 

the term expectation of U minus V whole square. Now, naturally this is greater than or 

equal to 0 being the average value of a non-negative term.Now, this will imply 

expectation of U square plus V square minus 2UV is greater than or equal to 0. 

Substituting the value of expectation U squareand expectation of V square as 1, this 

relationship is reducing to expectation of UV is less than or equal to 1.  

Similarly, expectation of U plus V whole square is greater than or equal to 0. This yields 

expectation of U square plusV square plus 2UV is greater than or equal to 0. Once again 

substituting the values of expectation U square and expectationV square as 1, we get 

expectation of UV greater than or equal to minus 1.So, we have got that expectation of U 

intoV lies between plus 1 and minus 1 providedexpectation of U and expectation ofVis 0, 

and expectation of U square and expectation ofV square is 1. 

Now, we can consider when the equality will be attained. So, here equality at 1 will be 

attained when expectation of U minusV whole square is equal to 0. Now expectation of a 

non-negative random variable is 0 if and only if the random variable itself is 0. That 

means U must be equal toVwith probability 1.In a similar way, the equality at minus 1 

will be attained, if U is equal to minusV with probability 1. 
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Let us consider the expressions for this. Here expectation ofUV is equal to 1 if and only 

if probability of U is equal toV is equal to 1, and expectation of U intoV is equal to 

minus 1.So, now let us take for any random variables X and Y, let us use a notation that 

expectation of X is equal to mu X, expectation of Y is equal to mu Y, variance of X is 

equal to say sigma X square and variance of Y is equal to sigma Ysquare;define U is 

equal to X minus mu X by sigma X, V is equal to Y minus mu Y by sigma Y. So, if we 

takes expectation of U,this is equal to expectation of X minus mu X by sigma X, and by 

the linearity property of expectation, it is expectation X minus mu X by sigma X, that is 

simply 0. 

If we consider expectation of U squarethat is equal to expectation of X minus mu X 

square by sigma X square. Now, the numerator is simply variance of X that is sigma X 

square. So, it is 1. So, in a similar way, you cansee that expectation ofV is 0 and 

expectation ofV squareis 1. So, if we make use of the equality that we have proved here 

for U, V random variables with the property that expectations are 0 and the expectation 

of the squares are 1. So, we get expectation of UV between minus 1 to 1.Now, for any 

random variables X and Y, when U andV are defined like this; what is expectation of UV 

representing? 
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So, expectation of UV is equal to expectation of X minus mu X by sigma X into Y minus 

mu Y by sigma Y. So, the numerator here is simply the covariance termbetween X, Y 

divided by the standard deviations of the X and Y. That is the correlation coefficient 

between. So, for any random variables X and Y - the correlation coefficient lies between 

plus 1 and minus 1; the least value is minus 1 and themaximum value is plus 1. 

Now, rhoX, Y is equal to 1. So, we look at the conditions for attaining the equality, 

expectation of UV was 1, if and only if probability of U is equal toV is 1. So, this will be 

satisfied if and only if probability that X minus mu X by sigma X is equal toY minus mu 

Y by sigma Y is equal to 1 or you can say probability that X is a linear function of 

Y.That is x is equal to sum a times Y plus b where a is a positive number, because sigma 

X by sigma Y.Similarly, rhoX, Y is equal to minus 1 if and only if X minus mu Xby 

sigma X is equal to minus Y minus mu Y by sigma Y is equal to 1 or probability that X 

is equal to aY plus b is equal to 1 if a is negative. So, this condition that X is equal to aY 

plus b where a is apositive; this is known as that X and Y. 
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So, we can write it that X and Y are perfectly linearly related in positive direction. That 

is X is equal to aY plus b for a positive and probability of this statement is 1.And if we 

say probability of X equal to aY plus b is equal to 1 where a is negative, then we say that 

X and Y are perfectly linearly related in negative direction.Now, this gives an 

interpretation for the coefficientof correlation. So, we can see that - in general coefficient 

of correlation lies between minus 1 to plus 1. The bounds minus 1 and 1 are attained. So, 

minus 1 is attained when there is a perfect linear relationship in a negative direction or 

you can say perfectly negatively linearly related, and the equality at 1 is attained when it 

is perfectly linearly related in the positive direction or perfectly positively linearly 

related. 

So, in general any value between minus 1 to 1 denotes the degree of the linear 

relationship between random variables X and Y. Suppose I say the correlation coefficient 

is equal to 0.7 that shows that there is a good positive correlation between X and Y, and 

here the relationship is of the linear type. If we say rho X,Y is equal tominus 0.3; it 

shows that there is a lower degree of negative linear relationship between the random 

variables X and Y.When rhoX, Y is equal to 0, we say that the random variables X and Y 

are uncorrelated; now, here uncorrelated means that the linear relationship is not existent 

between random variables X and Y. So, we can interpret these statementsas... So, 

correlation coefficient is a measure of linear relationship between 2 random variables.If 

rhoX, Y is 0, we say that X and Y are uncorrelated. At this point, it is important to 



understand the difference between uncorrelatedness and independence. If we say that the 

random variables are uncorrelated, it does not mean that they are independent.Of course 

if X and Y are independent, it will imply uncorrelatedness, becauseif X and Y are 

independent then covariance term is 0,thereforecorrelation term will also be 0. So, we 

have the following result, if X and Y are independentthen rhoX,Y is 0, but the converse 

of this is not true. So, proof is of course obvious that – if X and Y are independent then 

covariance term is 0and therefore, the correlation term is 0.Let us look at the converse of 

it. 

(No audio from 37:34 to 37:42) 
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Let X and Y have joint pmf asX is taking values 0,1,Y is taking values minus 1, 0and 

1.The probabilities are 0, 1 by 3, 0, 1 by 3, 0, 1 by 3. So, here we consider say 

expectation of X. So, here you can calculate the marginal distributions by adding the 

rows and columns. So, the marginal distribution ofX is 1 by 3, 2 by 3, the marginal 

distribution of Y is obtained as 1 by 3,1 by 3,1 by 3. So, expectation of X is equal to 0 

into 1 by 3 plus 1 into 2 by 3;that is equal to 2 by 3. If we look at expectation of Y that is 

equal to minus 1 into 1 by 3 plus 0 into 1 by 3 plus 1 into 1 by 3; that is equal to 0. If we 

look at expectation of X into Y; so, we look at all the possibilities of theX and Y values 

here. So, X is 0,Y is minus 1 with probability 0 plus X is 0,Y is 0 with probability 1 by 

3,X is 0,Y is 1 with probability 0,X is 1,Y is minus 1 with probability 1 by 3,X is 1,Y is 



0 with probability 1 by 3 plus X is 1,Y is 1 with probability1 by 3.You can see these 

terms vanish, we are getting minus 1 by 3 and plus 1 by 3. So, it is 0. Therefore, 

covariance term is 0 and consequently rhoX, Y is 0.But we can see here that the product 

of the marginal distributions,for example, pX, 0 and p Y, 0 both are 1 by 3, but pX, Y. 

So, let us write here, pX, 0 is 1 by 3, pY, 0 is 1 by 3, but if we consider pX,Y 0, 0; that is 

also 1 by 3. So, X and Y are not independent. So, they are uncorrelated, but not 

independent.  

Now, this further brings out the contrast between the concept of independence and 

correlatedness.So, independence simply means then that the random variables or we can 

say the observance of the 2 phenomena has nothing to do with each other; that 

isonephenomena which yieldsthe random variable X and the phenomena which yields 

the random variable Y, they are totally independent; whereas the correlation gives a 

degree of linear relationship between the random variables. So, if they do not have a 

linear relationship, the random variables may become uncorrelated. But that does not 

mean that they are independent.For example, even in this problem, it may happen that X 

is actually Y square,because the probability that X equal to 0 is same as probability Y is 

equal to 0, and probability X equal to 1 is samesum of probabilityY is equal to minus 1 

and probability Y is equal to 1.So, this could be a non-linear relationship.So, let us take 

up a few examples for calculation of the covariance and correlation term. 
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So, let fX, Y be equal to x plus y for 0 less than x less than 1, 0 less than y less than 1, 

and 0 elsewhere.In order to calculate the coefficient of correlation, we need the first and 

second moments of x and y and also the first product moment of the joint distribution. 

So, expectation of X into Y that is equal to double integral xy into x plus y dx dy, 0 to 

1.So, this is simply integral of x square y plus x y square which we can easily evaluate 

and it is equal to 1 by 6 plus 1 by 6 that is equal to 1 by 3. In order to calculate the 

moments of x and y separately, we can make use of the marginal distributions. So, you 

can see here this will be equal to x plus half for 0 less than x less than 1,and similarly the 

marginal distributions of Y will become y plushalf for 0 less than y less than 1, and 0 

elsewhere. 

The distributions of X and Y are same. So, it is enough if we calculate the moments for 

1of them. So, expectation of X becomes the integral of x into x plus half from 0 to 1 

which is obviously7 by 12.So, the same value will be expectation of Y; and expectation 

of X square likewise can be calculated; that is equal to 5 by 12 same as expectation Y 

square, and therefore, variance of X that is equal to expectation of X square minus 

expectation of X whole square that is equal to 11 by 144;that is sigma X square and 

sigma Y square.So, correlation coefficient is then equal to 1 by 3 minus 7 by 12 square 

divided by 11 by 144 which after simplification is minus 1 by 11. So, this means that 

there is a low degree of negative linear relationship between the random variables X and 

Y. We can take up some examples which we read yesterday. 
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So, let us consider say fX, Y is equal to say2, 0 less than y less than x less than 1, 0 

elsewhere.Here, suppose we want the distribution of X then it is equal to integral with 

respect to y,2dy from 0 to x that gives 2x.So, expectation of X is equal to 2x square dx 

from 0 to 1; that is 2 by 3. Expectation of X square is equal to integral 2x cube dx, 0 to 1; 

that is equal to half.Therefore,sigma X square that is variance of X is equal to half minus 

4 by 9; that is equal to 5 by 18.Iam sorry this is not 5 by 18, it is 1 by 18. So, we are able 

to calculate the mean and variance of the distributions of X. 

Similarly, let us calculate the marginal distribution of Y that is integral 2 dx from y to 1; 

that is equal to 2 times 1 minus y for 0 less than y less than 1, 0 elsewhere.So, 

expectation of Y is equal to integral 2y into 1 minus y dy from 0 to 1; that is equal to 

twice y. So, that is y square that is 1 minus 2 y square that is 2 by 3 that is equal to 1 by 

3. Expectation of Y square will be equal to 2y square 1 minus y dy integral from 0 to 1. 

So, once again 2y square;so, y square is integrated toy cube by 3. So, this 2by 3 minus 2y 

cube, y cube is integrated to y to the power 4 by 4. So, that is 2 by 4; that is half.So, it is 

equal to1 minus4 minus 3 by 6; that is 1 by 6.So, wecan calculate the variance of Y that 

is equal to 1 by 6 minus 1 by 9. So, that is equal to 1 by 18. 
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Now, we have calculated the means and variances of the random variables X and Y. In 

order to get the correlation coefficient, we need the product moment also. So, 

expectation of X into Y that is equal to 2xy. Now, here we can choose the order of 



integration,we may do dy dx. The range of y is from 0 to x, and the range of x is from 0 

to 1. So, this is equal to 2 times integral 0 to 1.  

Now, firstlywe are integrating with respect to y. So, we get y square by 2. So, this 

termcancels out and that gives us x square. So, we are left with x cube dx that is equal to 

1 by 4. So, covariance term between X and Y that is equal to expectation of XY minus 

expectation X into expectation of Y; that is equal to 1by 4 minus 2 by 3 into 1 by 3; that 

is equal to 1 by 4 minus 2 by 9.So, once again it is equal to 1by... So, 9 minus 8 by 36. 

So, 1 by 36. So, the coefficient of correlation is equal to 1 by 36 divided by 1 by 18 both 

variances of X and Y are 1 by 18. So, sigma X into sigma Y will be 1 by 18. So, it is 

equal to half.So, this shows that there is a moderate degree of relationship, moderate 

degree of positive linear relationship between the random variables X and Y. We also 

introduce the concept of the joint moment generating function between the random 

variables X and Y as follows. 
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Joint moment generating function between X and ofX and Y; so, we use a notation M 

X,Yat the point s,t. It is expectation of e to the power sx plus ty, provided the expectation 

exists in a neighborhood of(0, 0). At(0, 0), this always exist and is equal to 1. So, in a 

neighborhood of(0, 0) this should exist. Now, the nature of this term is nice, it suggests 

certain properties.For example, it is equal to expectation of e to the power sx into e to the 

power ty. So, the first thing that we observe that if the random variables are independent, 



it will become product of the expectations of e to the power sx and e to the power ty 

which are nothing but the individual moment generating functions of x and y. However, 

because of the uniqueness property of themgf’s, we have a stronger result here. 

X and Y are independent; this implies and implied by that M X, Y s,t is equal to M Xs M 

Yt for all st.In order to prove this, let us consider the case of continuous random variable 

with jointpdfsay fX, Y andmarginal pdf’ssay fX and fY. Now, here let us notice that - if 

the random variables are independent, then this expectation of a product will be equal to 

the product of the expectations. So, the jointmgf will be equal to the product of the 

individual or marginalmgf’s.  

Let us look at the converse. Let this(1) relation be true, then this implies that integral e to 

the power sx plus ty fX x,y dx dy is equal to integral e to the powersx fx dx into integral 

e to the power ty fy dy for all st.Now, the right hand side we can write as product of 

thetwointegrals can be written as a combine integral e to the power sx plus ty fx into fy 

dx dy. Now, note here the left hand side denotes the jointmgf of random variables X and 

Y then the pdf is fX,Y. The right hand side denotes the joint distribution - the jointmgf of 

the random variables X and Y then their joint distribution is given by fX into fY. And 

this statement is true for all st. So, by the uniqueness of themgf, the twodensities must be 

same. 
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So, the left hand side denotes the moment generating function of a random variable X,Y 

with joint pdf fX,Y(x,y) whereas the right hand side denotes mgf of a random variable 

with joint pdffX into fY.As they are identical by the uniqueness of mgfwe conclude that 

the distributions must be the same. So, we should have fX,Y(x,y) is equal to fX into fY 

for all xy. That is X and Yare independent.So, this is quite a strong property and that is 

true, because of the uniqueness property of the moment generating functions. So, 

independence of random variables can also be proved through the consideration of the 

joint mgf. 
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We end this onewith another result, if X and Y are independent, then M X plus Y that is 

the moment generating function of random variable X plus Y; it is equal to the product 

of MX and M Y.The proof of this is almost trivial. The left hand side is expectation of e 

to the power t x plus y and so if independence is there, this can be written as tx into e to 

the power ty which will become expectation of e to the power tx into expectation of e to 

the power ty which will be this term and this term respectively.Thisresult is extremely 

useful in obtaining the distributions of sums of various random variables, because if we 

know the mgf’s of those random variables, then we can identify the distribution of the 

sum by identification of the mgf of the sum as the mgf of certain random variable. So, 

we will consider the bivariate normal distribution in the next lecture. 


