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Today, I am going to introduce one of the most important distributions in the theory of 

probability and statistics- it is called the normal distribution. The normal distribution has 

become prominent because of one basic theorem in distribution theory which is called 

the central limit theorem, it tells that if we are having a sequence of independent and 

identically distributed random variables, then the distribution of the sample mean or the 

sample sum under certain conditions is approximately normal distribution, or as N 

becomes large the distribution of the sample mean or the distribution of the sample sum 

is a normal distribution with certain mean and variance. 
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We will talk about the central limit theorem a little later firstly, let me introduce the 

normal distribution. So, a continuous random variable X is said to have a normal 

distribution with mean mu and variance sigma square. So, we will denote it by N mu 



sigma square if it has the probability density function given by 1 by sigma root 2 pi e to 

the power minus 1 by 2 x minus mu by sigma whole square. The range of the variable is 

the entire real line, the parameter mu is a real number and sigma is a positive real 

number.  

Now, we will firstly, show that this is a proper probability density function and we will 

consider the characteristics of this. To prove that it is a proper probability density 

function, we should see that it is a non-negative function, which it is obviously, because 

here it is an exponential function and sigma is a positive number then, we look at the 

integral of fx dx over the full range; here we make a transformation, so, 1 by sigma root 

2 pi e to the power minus 1 by 2 x minus mu by sigma whole square minus infinity to 

infinity. Let us make the transformation here say, z is equal to X minus mu by sigma 1 

by, so, dz will become equal to 1 by sigma dx - this is a one to one transformation over 

the range of the variable X.  
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Therefore, this integral is reducing to integral from minus infinity to infinity 1 by root 2 

pi e to the power minus z square by 2 dz, this 1 by root 2 pi e to the power minus z 

square by 2 is also known as error function. So, we observe here that first of all it is a 

convergent integral because we can write this z square by 2 as less than modulus z, and 

here we can consider two reasons, one is z is less than root 2 and z is greater than 2, so, 



basically, this entire quantity e to the power minus z square by 2 can be considered to be 

bounded, and therefore, this is equal to 2 times integral 0 to infinity 1 by root 2 pi e to 

the power minus z square by 2 dz, over the range 0 to infinity we can substitute z square 

by 2 is equal to say, t that is, z is equal to 2t to the power half and dz is equal to 1 by root 

2t dt, so, this becomes 0 to infinity 1 by root 2 pi e to the power minus t 1 by root 2t dt, 

that is equal to 1 by root pi d to the power half minus 1 e to the power minus t dt, which 

is nothing but gamma half by root pi, now, gamma half is root pi, so this is equal to 1- 

so, this is a proper probability density function.  

We look at the moments of this distribution. Now, if we consider the transformation that 

we have made here, that is z is equal to X minus mu by sigma, this suggests that it will 

be easier to calculate moments of X minus mu or moments of X minus mu by sigma. So, 

we will do that.  
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Let us consider expectation of X minus mu by sigma to the power k. So, this is equal to 

integral minus infinity to infinity x minus mu by sigma to the power k 1 by sigma root 2 

pi e to the power minus 1 by 2 x minus mu by sigma whole square dx. So, consider the 

transformation x minus mu by sigma is equal to z, so, this will, this particular integral 

will reduce to minus infinity to infinity z to the power k 1 by root 2 pi e to the power 

minus z square by 2 dz. If we look at this function, the function is an odd function if k is 

odd and therefore, this will vanish, so, this will vanish if k is odd, and it is equal to if k is 



of the form say 2m, then this integral will reduce to 2 times 0 to infinity z to the power 

2m 1 by root 2 pi e to the power minus z square by 2 dz.  

At this stage let us consider the second transformation that we made that is z square by 2 

is equal to t. So, if we make this transformation, then this quantity reduces to 2 times 0 to 

infinity, now, z square is equal to 2 t, so this becomes 2 t to the power m 1 by root 2 pi e 

to the power minus t 1 by root 2 t dt, by considering dz is equal to 1 by root 2 dt. So, we 

can simplify this here, there are two square root 2 is in the denominator, so, that will 

cancel with this. 
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So, we are getting 2 to the power m by root pi 0 to infinity integral t to the power m 

minus 1 by 2 e to the power minus dt, which is nothing but a gamma function. So, this is 

equal to 2 the power m by root pi gamma m plus 1 by 2. So, if m is any integer here, m is 

equal to 1, 2 and so on that is, k is an even integer, then expectation of X minus mu by 

sigma to the power 2m is given by 2 to the power m by root pi gamma m plus half. Of 

course, we can further simply this to write in a slightly convenient looking form, we can 

write it as m minus half m minus 3 by 2 and so on up to 3 by 2, 1 by 2 and gamma half, 

that is canceling out, so it is equal to 2 m minus 1, 2 m minus 3 and so on up to 5, 3, 1. 

So, we are able to obtain a general moment of X minus mu by sigma. So, if we utilize 

this, suppose I put k is equal to 1, then this is zero. So, k is equal 1 gives expectation of 

X minus mu by sigma is equal to 0, which means that expectation of X is equal to mu. 



That means, the parameter mu of the normal distribution is actually the mean of it at first 

non-central moment therefore, the terms expectation of X minus mu to the power k that 

gives us a central moments of the normal distribution. Now, we have already shown that 

if k is odd, this is zero that means, all odd ordered central moments of the normal 

distribution are 0. So, expectation of X minus mu to the power k is 0 for k odd. 
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That is we can write that all odd ordered central moments of a normal distribution 

vanish. Now, this is quite important here because we are considering any parameters mu 

and sigma square, and for any parameters mu and sigma square all the central moments 

are vanishing provided they are of odd order. Now, let us consider even order. So, if you 

consider even order, we are getting the formula sigma to the power 2m in to 2m minus 1, 

2m minus 3 up to 5, 3, 1. In particular, suppose I put m is equal to 1 here then I get, by 

putting m is equal to 1, 2m minus 1 is 1, so, that is sigma square. So, in particular, if I put 

m is equal to 1, this gives expectation of X minus mu square, that is equal to sigma 

square that is, mu 2, the second central moment of the normal distribution that is, the 

variance is sigma square.  

As we have already seen that generally mu and sigma square are used to denote the mean 

and variance of a distribution. So, the nomenclature comes from the normal distribution 

where the parameters mu and sigma square are actually corresponding to the mean and 



variance of the random variable. If we look at, so, obviously, mu 3 is 0, if we look at 

mu4 here, the fourth moment that is, if I put m is equal to 2, then here I will get 3, this is 

1, so this will become 3 sigma to the power 4. So, the fourth central moment is 3 sigma 

to the power 4; obviously, the measure of skewness is 0, measure of kurtosis that is, mu4 

by mu2 squares minus 3 is also zero. That means, the peak of the normal distribution is a 

normal peak. 

So, when we introduced the measure of kurtosis or the concept of peakedness we said 

that it has to be compared with the peak of normal distribution or a normal peak. So, 

basically, the peak of the normal distribution is considered as a control or a standard. So, 

if we look at the shape of this distribution, the normal distribution, it is perfectly 

symmetric around mu and the peak of it is normal distribution; the value at X equal to 

mu is 1 by root 2 pi that is, the mode of the distribution, the maximum value. Since it is 

symmetric about mu it is clear that the median of the distribution is also mu and the 

mode of the distribution is also mu, that is a value at which the highest density value is 

taken. Let us consider the moment generating function of a normal distribution.  
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So, MX t that is, expectation of e to the power tx, this is equal to integral e to the power 

tx 1 by sigma root 2 pi e to the power minus 1 by 2 x minus mu by sigma whole square 

dx. So, we will still consider the same transformations which we introduced for the 

evaluation of any integral involving the normal density function that is, z is equal to x 



minus mu by sigma and z square by 2 is equal to something. So, here if we write x minus 

mu by sigma is equal to z, then we are having x is equal to mu plus sigma z. So, the 

integral becomes e to the power t mu plus sigma z 1 by root 2 pi e to the power minus z 

square by 2 dz. So, since it is a quadratic in z we will again convert it into e to the power 

some term, which will involve a squaring z. So, we can write it as 1 by root 2 pi e to the 

power minus 1 by 2 z square minus sigma tz with a 2 here. This suggests that we should 

add sigma square t square and subtract it, if we subtract it, then the term will be half 

sigma square t square. So, if you look at this particular term, this is z minus sigma t 

whole square.  

So, the integrant denotes a probability density function of a normal random variable with 

mean sigma t and variance 1 therefore, this integral should be reducing to 1 and 

therefore, e to the power mut plus half sigma square t square becomes a moment 

generating function of a normal distribution with parameters mu and sigma square. Using 

the moment generating function of a normal distribution we can prove an interesting 

feature.  
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Consider say, so, let X follow normal mu sigma square; let us consider Y is equal to say 

aX plus b where a is any non-zero real and b is any real; consider the moment generating 

function of Y, that is equal to expectation of e to the power tY, this is equal to e to the 

power bt expectation of e to the power at X, this can be considered as the moment 



generating function of the random variable X at the point at. Now, the distribution of X 

is normal and moment generating function of X that is, MXt is given by e to the power 

mu t plus half sigma square t square, so we can substitute at in place of t in the 

expression of MXt. So, we will get here e to the power bt e to the power mu at plus half 

sigma squares at whole square. So, we can adjust the terms a mu plus bt plus half a 

square sigma square t square.  

If we compare this term with the moment generating function of a normal distribution 

with parameters mu and sigma square, then we observe here that mu is replaced by a mu 

plus b and sigma square is replaced by a square sigma square. So, we can say that this is 

mgf of a normal a mu plus b, a square sigma square distribution.  
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So, by the uniqueness property of the moment generating function we have proved that if 

X follows normal mu, sigma square and Y is equal to aX plus b where a is not 0, then Y 

is also normally distributed with parameters amu plus b and a square sigma square- this 

is called the linearity property of normal distribution; that means, any linear function of a 

normal random variable is again normally distributed. Using this let us consider a 

random variable z defined as X minus mu by sigma. So, if X follows normal mu, sigma 

square and we make a linear transformation of this type, so it is 1 by sigma X minus mu 

by sigma; that means, if we compare here, then a is 1 by sigma and b is minus mu by 

sigma.  



So, if we substitute here, we will get mu by sigma minus mu by sigma, that is 0, and this 

will become 1 by sigma square into sigma square, that is 1, so this will follow normal 0, 

1. A random variable z which has a normal distribution with mean 0 and variance 1 is 

called standard normal random variable. Let us look at the density function. The pdf of z 

is denoted by, so, there is a standard notation, it is phi of z, small phi of z, it is 1 by root 

2 pi e to the power minus 1 by 2 z square. We can see the shape of it, this is symmetric 

around z is equal to 0. 
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The cumulative distribution function of standard normal random variable is denoted by 

capital Phi of z that is, integral from minus infinity to z say, phi t dt where a small phi t is 

the probability density function of a standard normal random variable. Now, before 

going to the problems, let us look at the properties of this distribution. The standard 

normal distribution is symmetric about z is equal to 0. So, if we are considering say, if 

this is the point z, then phi z is actually this area, so this area will become equal to 1 

minus phi of z, if we call this area as capital Phi z, then this is 1 minus Phi of z. By 

symmetry of distribution if we consider the corresponding point say, minus z here, then 

the area here is Phi of minus z, which shows that 1 minus Phi of z is equal to Phi of 

minus z. So, we have 1 minus Phi of z is equal to Phi of minus z, this is true for all z that 

means, we can write Phi of minus z plus Phi of z is equal to 1.  



And another thing of course, we could have observed here is that phi of, small phi of 

minus z is equal to small phi of z for all z, that is because of the symmetric property of 

the distribution. In particular, we can put z is equal to 0 then this will give Phi of 0 is 

equal to half, which is true because the median of the standard normal distribution will 

be 0.  

Now, this will help us in evaluation of the probabilities related to any normal 

distribution. So, if we are having a general normal distribution that is, normal mu sigma 

square and we are interested to calculate say, probability of a less than X less than or 

equal to b then it is equal to f of b minus f of a.  
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However, if we consider the result here that X minus mu by sigma will have a standard 

normal distribution, then this can be shifted to FX that is, probability of X less than or 

equal to x; this we can write as probability X minus mu by sigma less than or equal to 

small x minus mu by sigma. Now, this is Z. So, this is equal to Phi of X minus mu by 

sigma; that means, the probabilities related to normal distribution can be calculated in 

terms of probabilities related to standard normal distribution. Now, how would you 

evaluate this? Capital Phi of z is equal to integral of minus infinity to z e to the power 

minus z square by 2 dz. If we made the transformation z square by 2 is equal to t after 

suitably altering the ranges so that it is a 1 to 1 transformation, it is reducing to an 

incomplete gamma function; so, the incomplete gamma function can be evaluated using 



numerical integration say Simpson’s one-third rule etcetera, and tables of the standard 

normal distribution are available in all the statistical books.  

So, if we want to evaluate the probability related to any normal distribution, we will 

firstly, convert it to a probability related to standard normal distribution and then utilize 

the tables or numerical integration here. In particular, if we consider say, probability, any 

particular probability say, X less than or equal to b say probability X greater than a, 

probability a less than X less than b, or 1 minus probability of a less than X less than b, 

so, these are some of the usual probabilities that are required in normal calculations, so, 

all of this can be evaluated using the properties of the standard normal cumulative 

distribution function. One more point here is that since the values of the cdf can be 

evaluated using Phi of minus z plus Phi of z is equal to 1 therefore, many times the tables 

are tabulated only for either positive arguments of z or negative arguments of z.  
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So, suppose that the time required for a distance runner to run a mile is a normal random 

variable with parameters mu is equal to 4 minute 1 second and standard deviation 2 

seconds, what is a probability that this athlete will run the mile in less than 4 minutes or 

in more than 3 minutes 55 seconds, if we consider X as the time required and we 

consider it in the time measured in seconds, then X will follow normal distribution with 

mean 241 seconds, here 4 minutes 1 second is 241 seconds and sigma square is 4 



seconds. So, what is the probability of running in less than 4 minutes that means, X is 

less than 240, what is the probability of this event?  

So, utilizing this relationship, we can write this as X minus 241 by 2 less than 240 minus 

241 by 2, which is probability z less than minus 0.5, which is Phi of minus 0.5. So, this 

value will see from the tables of the standard normal cdf and this value turns out to be 

0.3085- most of the tables are given up to four or five decimal points and we can also use 

a numerical integration rule such as Simpson’s one-third rule, etcetera, to evaluate this. 

Similarly, if we want to calculate what is the probability that he will run in more than 3 

minute 55 seconds, then probability X greater than 235 that is, probability z greater than 

minus 3, that is if we put 235 minus 241 divided by two, so it becomes z greater than 

minus three; so, if we look at the shape of the distribution minus 3 suppose here then 3 

are here, so this is equivalent to Phi of 3, which is 0.9987, it is extremely high 

probability. So, here you can see that mean is 4 minute 1 second that means, almost 

surely he will complete the race within 3 minute within, in more than 3 minute 55 

seconds.  

This also brings out another important property of the normal distribution. The normal 

distribution is having high concentration of probability in the center, since you are 

having in the density function e to the power minus z square by 2 the terms go rapidly 

towards 0, the convergence towards 0 is very fast; therefore, in the range around the 

mean mu most of the probability is concentrated. (Refer Slide Time: 26:34) 

So, if we consider say, probability of say, modulus z less than 0.5 that is, minus 0.5 less 

than z less than 0.5, here z denotes standard normal distribution; so, this is equal to Phi 

of 0.5 minus Phi of minus 0.5. So, we can write because the value of one of them needs 

to be seen, we need not see both of them, either we see Phi of 0.5 or Phi of minus 0.5 and 

the other one we can write in terms of 1 minus that; so, this we can write as 1 minus Phi 

of minus 0.5; so, this becomes 1 minus twice the value of Phi minus 0.5 as 0.30; so, this 

is equal to 1 minus 2 into 0.3085, that is equal to 1 minus 0.6170, that is equal to 0....  

That means, within a very short distance that is, minus 0.5 to 5, itself almost forty 

percent of the probability is concentrated. If we consider say, minus 1 to 1, this consist of 

almost 60 percent of the probability; if we consider minus 2 to 2, this consist of more 



than 90 percent of the probability; if we consider minus 3 to 3, this consist of more than 

99.99 percent of the probability. 

So, in terms of mu sigma this means that mu minus 3 sigma less than X less than mu plus 

3 sigma is greater than 0.99, these are known as 3 sigma limits then, minus 2 to 2 is 

called as 2 sigma limits. So, in the industrial applications where certain product 

requirement such as, the width of certain bolts produced, diameters of certain nuts, 

etcetera, or various kind of quality control features which are implied in industry if they 

follow the normal distribution, then the industrial standards specify that in order that the 

product we defined as a good item or proper item, the specification should be within 3 

sigma limits. So, in industry industrial standards these things are quite useful. (Refer 

Slide Time: 29:49) 

Let us consider another application. Assume that the high price of a commodity 

tomorrow is a normal random variable with mu is equal to 10 and sigma is equal to 1 by 

4, what is the, what is the shortest interval that has probability 0.95 of including 

tomorrow’s high price for this commodity?  

Now, from the properties of the normal distribution that we discussed just now, we 

should consider here the interval to be asymmetric interval around the mean, because we 

are requiring a shortest interval, so shortest interval will be symmetric around this, 

because if we take non symmetric interval then this will become slightly longer because 

of the tail is converging faster and there is more concentration of the probabilities 

towards the center.  
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So, we can consider, since here the mean is 10, we can consider the interval of the form 

10 minus a to 10 plus a. So, we want the value of that the probability of X lying in this 

interval 10 minus a top 10 plus a is 0.95. So, consider the transformation X minus mu by 

sigma. So, here mu is 4, mu is 10 here, so, X minus mu by sigma, so, it becomes minus a 

by sigma less than or equal to z less than or equal to a by sigma, and sigma is 1 by 4, so 

this is 4a; so, this is becoming Phi of 4a minus Phi of minus 4a is equal to 0.95; what is 

the value of a for which this is satisfying?  

Once again we utilize the relation between capital Phi of X and capital Phi of minus X. 

So, this becomes twice phi of 4a minus 1 is equal to 0.95, and this gives us Phi of 4 a is 

equal to 0.975- and from the tables of the normal distribution we can see that the point 

up to which the probability 0.975 is 1.96- so, after evaluation a becomes 0.49; and 

therefore, the interval 10 minus a to 10 plus a reduces to 9.51 to 10.49. So, if the mean 

price is 10 and the standard deviation is 0.25, then the interval which will have the high 

price with probability 0.95 is 9.5 to 10.5 approximately, which is basically 2 sigma, 

because here sigma is 0.25, so 2 sigma becomes 0.5, so around 10 the interval of 0.25 is, 

so, in 2 sigma limits we have more than 95 percent of the probability here.  
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Another important point which I mentioned was that the origin of the normal 

distribution, the normal distribution was derived as a distribution of the errors by Gauss. 

So, he was considering astronomical measurements, now, he did not consider one 

measurement, he considered several measurements and considered the average of those 

measurements to consider that as the estimate of the actual measurement. So, since in 

each measurement some error will be concentrated and therefore, if we look at the 

distribution of the errors, gauss observe that it is normal distribution, that is why it was 

called, normal distribution is also called the law of errors or the error distribution, 

etcetera. And it turns out that the sample mean or the sample sum is normally distributed. 

However, even apart from the gauss, mathematician such as De-moivre and Laplace, 

etcetera, they obtained the normal distribution as an approximation to binomial 

distribution, or distribution of Poisson approximated to normal distribution.  

So, let us look at it, normal approximation to binomial. So, let X follow binomial n, p. As 

n tends to infinity, the distribution of X minus np divided by root npq is approximately 

normal 0. Similarly, Poisson approximation too. So, let X follow poison lambda 

distribution. As lambda tends to infinity X minus lambda by root lambda, this converges 

to normal 0. Basically, these were the original central limit theorems, the modern 

versions are for any random variable X. So, let us look at applications of this year. (Refer 

Slide Time: 37:25) 



The probability that the patient recovers from rare blood disease is 0.4, if 100 people are 

known to have contracted this disease, what is the probability that less than 30 will 

survive? So, if we consider here X as the number of survivors, then X follows binomial 

100, 0.4, and we are interested to calculate the probability that X is less than 30. 
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Now, if we look at the actual calculation of this, using the binomial distribution, then this 

is reducing to sigma 100cj 0.4 to the power j 0. 6 to the power 100 minus j, j is equal to 0 

to 29. You can look at the difficulty of the evaluations, of the complexity of the terms 

here, we have factorials involving 100c0, 100c10, 100c20, 100c25, etcetera, and then the 

powers of numbers which are smaller than 1, so, the large powers of these numbers will 

yield lot of computational errors and also the terms will be complex. However, here we 

can see that N is large, so if we can consider, if we try to look at np is equal to 40 and we 

want to use Poisson approximation, then that will also be very complicated because that 

will involve the same summation e to the power minus 40 40 to the power j by j factorial, 

which again involves large terms here. So, in place of that we will use the normal 

approximation, so np is 40 and npq is 24, so square root of that is 4.89. So, probability of 

X less than 30, now, here what we do, we apply so called continuity corrections, this 

continuity correction is required to approximate a discrete distribution with a continuous 

distribution.  



Consider like this, in the binomial distribution the curve is like this; now, if we are 

approximating it by a normal distribution and suppose this is 30, so, it could be also less 

than 29, X less than or equal 29, so in that case if we had approximated it by normal, we 

should have attained X less than or equal to 29 whereas, here if we write straight away, 

we will write X less than or equal to 30 because in continuous distribution the probability 

of a point is negligible, so, a better thing would be to take a middle value between 29 and 

30 as 29.5- so, this is called continuity corrections. Now, we make use of the fact that 

this X minus mu by sigma is approximately normal, so, 29.5 minus 40 divided by 4.899, 

this is z less than or equal to minus 2.14 that is, the cdf of the standard normal 

distribution at the point minus 2.14. So, from the tables of the normal distribution we can 

observe it is 0.0162. So, the probability is quite small that less than 30 will survive.  

Let us look at another example where the Poisson distribution is approximated by normal 

distribution. So, consider a large town where the home burglaries occur like events in a 

Poisson process with lambda is equal half per day that is, a rate, find the probability that 

no more than 10 burglaries occur in a month, or not less than 17 occur in a month. So, if 

we consider this, then X follows Poisson 15 if I denote by X the number of burglaries 

occurring in a month’s time. So, since lambda is half per day in a month we assume 30 

days, so the parameter lambda will become15, so, probability X less than or equal to 10. 

Again we make use of the continuity correction, since it is less than or equal to 10 it is 

also same as probability X less than11. So, in normal distribution, it could have been 

calculated as X less than or equal to 10 or X less than or equal to11. So, as a continuity 

correction we take the midpoint X less than or equal to 10.5. So, if we make use of the 

normal approximation here, then X minus lambda by root lambda is approximately 

normal as lambda becomes large, so, here, it is 15 here, so, 10.5 minus 15 by root 15, 

which are after simplification minus 1.16, so, the value of the normal distributions 

cumulative distribution functions at this point is 0.123.  

Similarly, not more, less than 17 in a month that is, probability X greater than or equal to 

17, which is 1 minus probability X less than or equal to 16, or 1 minus probability X less 

than or equal to 16 by 0.5- that is the continuity correction- and after shifting by 15 and 

dividing by root 15, it becomes 0.39, which we can see from the tables of the normal 

distribution, and 0.3483 is the value if we compare with the exact value which we could 

have calculated from the e to the power minus 15 15 to the power j by j factorial; in the 



first one we would have j is equal to 0 to 10, then this value is actually 0.118, so, we can 

see that there is a very small margin of error even for lambda is equal to 15; in the 

second one the value is 0.3483 by approximation and the exact value is 0.336, so, the 

error margin is extremely small. 
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A related distribution to normal distribution is called lognormal distribution. So, if we 

say Y follows normal mu, sigma square, then X is equal to e to the power Y has 

lognormal distribution. So, the density function of log normal distribution will be given 

by 1 by sigma x root 2 pi e to the power minus 1 by 2 sigma square log x minus mu 

square, here x is positive and mu and sigma as usual. The necessity of this kind of 

distribution can be understood like this, that many times X observations may be very 

large and log x observations may be useful on the other hand, if Y observations are very 

small, then e to the power Y observations may be of the reasonable size, so if we take e 

to the power Y, then that will have a lognormal distribution.  

The moments of the lognormal distribution are obviously, in the form of the moment 

generating function of, so, this is nothing but the moment generating function of Y at 1 

that is, e to the power mu plus sigma square by 2. If we consider the second moment, 

then it is equal to expectation of e to the power 2y that is, My 2 that means, variance of 

X is equal to e to the power 2 mu plus 2 sigma square. In general, mu k prime is equal to 

expectation of e to the power ky that is equal to e to the power kmu plus half k square 



sigma square. So, moments of all orders of the log normal distribution exists and they 

can be expressed in terms of the moments of the moment generating function of normal 

distribution. 
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 Lets us look at one application here. Suppose the demand of a certain item follows a 

lognormal distribution with mean 7.43 and variance 0.56, what is the probability that X 

is greater than 8? So, if we utilize this formula here, the mean of a lognormal distribution 

is e to the power mu plus sigma square by 2, the second moment is e to the power 2 mu 

plus 2 sigma square, so, we have mu1prime is equal to 7.43, which yields the equation 

mu plus sigma square by 2 is approximately 2, and mu2prime is variance plus mu1prime 

square, so, 0.56 plus 7.43 square and we substitute here the value for this, so, after 

simplification this gives the equation mu plus sigma square is equal to 2.0106. So, if we 

solve these two equations we get mu is approximately 2 and sigma is approximately 0.1.  

So, now, the probability of a lognormal random variable can be calculated using normal 

distribution. So, probability of X greater than 8 reduces to probability logx greater than 

log8, which is probability z greater than log8 minus 2 divided by 0.1, which is 

probability z greater than 0.79, and from the tables of the standard normal distribution 

we can see it is 0.2148. So, this distribution is quite useful in various applications and 

since it is directly related to the normal distribution the calculations related to this are 

quite conveniently handled using the properties of the normal distribution. Another thing 



that you can observe here is that this distribution will be skewed distribution, X is having 

symmetric distribution, but logx is having skewed distribution here. We can actually the 

third moment, the fourth moment, etcetera, to consider the measures of skewness and 

kurtosis, etcetera.  

We have considered almost all the important continuous distributions which arise in 

practice of course, one can say that we are looking at any given phenomena, then what 

will be the distribution corresponding to that that can be considered by making a 

frequency polygamma ,(()) histogram, and looking at the data we can see that what kind 

of distribution will be best suited to describe that data. The distribution that we have 

discussed so far are the ones which are more important in the sense that they arise in lot 

of practical applications and also historically they are important as they were considered 

as certain phenomena like, some physical phenomena, or some genetic phenomena 

etcetera where they arise. In the next lecture will be considering various applications of 

these distributions. So, we stop here. 

 


