
Optimization 
Prof. Debjani Chakraborty 
Department of Mathematics 

Indian Institute of Technology, Kharagpur 
 

Lecture - 37 
Dynamic Programming Problem 

Today I will discuss on Dynamic Programming Problem, in practical decision making 

situations, decisions have to be taken in different sequentially in different points, may be 

points in time, points in space rather for different subsystems. Now, dynamic 

programming is an optimization tool that transforms a complex problem into sequence of 

simpler sub problems. So, that we can solve the sub problems and we will get the 

optimal solutions of the sub problems sequentially to get the optimal solution for the 

original problem. 

Now, since the decisions are being taken at different points in time or in spaces that is 

why, we are taking the decision in different stages that is the dynamic programming 

problem is also being named as the multistage decision problem. 

(Refer Slide Time: 01:27) 

 

The basic philosophy of a for solving a dynamic programming is that, the first step is that 

define the decision situation into smaller parts. Rather we have to decompose the whole 

problem into smaller parts, and for each part we have to take a decision, this is the basic 



approach for the dynamic programming. Now, we will take a small part of it, and we will 

take the optimal solution for the small part. 

Since we have considered a subset of the whole program, now we have taken the optimal 

decision for the smaller part. Then we have to enlarge this small part, the small problem 

by considering optimal solution of the previous problem, we have to consider the 

information about the current stage, current state, rather current enlarge problem. Then 

we have to take a decision of this enlarged problem, and we will repeat the process, we 

will repeat the process means we have started from a smaller part, we have a enlarged it 

a little bit then we have to enlarge further. 

How the enlargement is being done, how the smaller problem will be converted to a less 

bigger problem that I will show you with the example in the next. And that is the 

technique for solving the with the dynamic programming methodology, enlarge further 

as long as the original problem is being address fully, and we have to take the optimal 

decision of the last bigger problem. And once the optimality we reach, then we have to 

trace back, the subsequent stages to get the optimal solution as a whole. 

Now, if we see the whole process the beauty of the process is that, the big problem has 

been divided into smaller parts. That means, we have decompose the whole problem in 

different stages that is why, we are sequentially reaching from stage 1 to stage n, so that 

stage we are fully addressing the whole problem. And whatever optimal solution we 

have getting at the end, and we have each step you have to optimization technique, and 

that would be the optimal solution of the problem. 

Now, this methodology this dynamic programming concept has been invented in 1950's 

by American mathematician Richard Billman, and dynamic programming dynamic 

decision. Since, we are taking decision at several stages at dynamic, and programming 

stands for the planning or to just set the actions in the best possible way. 

And if we see the whole process you could realise that, the process we are repeating the 

optimization technique again and again for further large enlarge problem that is why, this 

is a recursive process we are adopting that is why in other way we also can say that 

dynamic programming as a recursive optimization thus. We can name the dynamic 

programming as either multistage optimization process or recursing optimization 

problem. 



Now, the process as a whole it is scribed to you, there are few things to be discussed that 

how the problem can be divided into smaller parts. Rather, how the problem can be 

divided into smaller stages, and how to reach the optimal stage these are the basic 

understanding for dynamic programming problem. That is why let us start before going 

to the detail of dynamic programming technique, let us take a simple example several 

applications of dynamic programming problem, one of the most popular application is 

the shortest problem we are applying the dynamic programming technique. 

In the knapsack optimization problem also we are applying the dynamic programming 

technique, otherwise we are also using for inventory management problems as well. 

(Refer Slide Time: 07:42) 

 

Let us take a small knapsack problem for further discussion about the methodology of 

the dynamic programming problem. This is an optimization problem, let me write down 

the statement of this problem first, a young lady is one her trekking way she is trying to 

fix there is a she is having a knapsack, and there is a specific volume of that knapsack. 

Accordingly she is planning, she wanted to carry food pack, she wanted to carry water 

bottles, as well as tent for a hut troop that is why let me just put the situation in this way. 

She can carry at the most in her knapsack, she can carry at the most 10 k g’s we wanted 

to utilise the whole space of a knapsack. But, there are certain constraints certain 

information related to the things, which she is trying to pack up three possible items with 

their utility values are given, utility values are something these are being utility values 



are given that is from a her from her experience she gathered the values. This is certainly 

subjective in nature, and the utility values. 

The first item is the food pack, unit food pack is having the weight 3 and the utility value 

7, 2 that is the bottle of water. Individual bottle of water is having the weight 4 k g and 

utility value is 8, and if she wanted to carry that tent with are, the unit tent having the 

weight 6 k g and the utility value is 11. This is the only information is given to us, now 

we have to suggest to the young lady how to how she can plan, so that 10 k g will be 

utilised fully not only that, she can maximize hard satisfaction level. 

That means, we wanted the maximize utility value for this problem, if we see from the 

given information. We can see that, if I just consider the ratio utility value, value divided 

by weight, what we can see this values are for the foot pack 7 by 3 it is; that means, 2 by 

33. Similarly, for the bottle of water it is 2 and for the tent it is coming 11 by 6 1.83 that 

is for tent, as we could see that food pack is having better utility value, unit utility value 

that thus we can suggest in adhoc way that you just consider the food pack as many as 

you can. 

But, if we see that data set it is having the weight 3 k g s that is why, she can carry at the 

most 3 food packs. But, 1 k g will not be utilised that is why the whole constraint will be 

under utilised in this case that is whatever decision we are giving that 3 food packs that is 

not the very good weight, why is weight to suggest that is why let we have to take a 

decision in a scientific way. That is why the optimization techniques are available with 

us, and there is one way for solving this that is the integer programming problem, we can 

vary nicely just constructing integer programming problem in this way. 

If we consider x 1 is the number of food packs x 2, number of food pack number of 

bottle of water and x 3 is the variable for the number of tents. Then we can find out the 

maximization of the total utility value 7 x 1 plus 8 x 2 plus 11 x 3, and there is a 

constraint subject to that is the total weight must be lesser than 10. And here we need to 

consider x 1 and x 2 and x 3 these are all the integer values, we can solve with a 

technique you have learnt the unbound technique in other technique of integer 

programming we can solve it. 

But, we do not want to do it, we want to apply the dynamic programming, dynamic 

programming technique for solving this programme. And as I said, this is though it is a 



simple problem for us, but since we are doing it manually we can considering as the 

larger problem, we will break the problem into the smaller problems that is why we will 

break the problem into multi stages, and we will solve the problem. How we can divide 

the situation in different stages, one process could be first we will decide that if I want to 

utilise 10 k g’s of weight. 

Then first let us start from the back, we will first select how many number of tens we 

will consider that could be the first stage. Second stage could be the how many tents, as 

well as number of bottle of water will consider together all right that could be second 

stage. And the third stage is the tent number of bottles of water and the food packs in that 

way we can divide in 3 stages. 

(Refer Slide Time: 15:11) 

 

Thus we can say that our stage 1, stage 3 let me start with stage 3 that is the number of 

tents. Stage 2 number of tents plus bottles of water, and stage 1 that is the bigger problem 

for me that we wanted to address that is the number of tents plus bottles plus food pack. 

There is a constraint the total weight must be equal to 10 k g’s, we wanted to utilise if it 

is just proceeding this way, then this process is being named formally in dynamic 

programming as a backward recursive process. 

Because, we are starting from stage 3, then stage 2 then stage 1, we are considering the 

whole. We can do the reverse way as well, we can consider number of food packs cost 

then the number of food packs plus bottles, then number of food packs plus bottles plus 



number of tents in that way we can also consider. Now, these are different stages we 

have considered, now let us see once we are considering stage 3, what is happening in 

stage 3. 

If we consider a variable as d 3 about the decision regarding the weight, in stage 3 we 

have consider only the tent that is why. The decision about the weight of the tent can be 

from 0 to 10 any value, first let me consider d 3 as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 all right, 

and if we see the situation we can associate another variable say x 3, x 3 is the number of 

tents we wanted to suggest, this could be either 0 or 1. Because, as we know the tent 

weight is 6 k g that is why either x 3 can be 0 or x 3 can be 1, there is no other possibility 

for this. 

If this is, so let us write down the utility values for the entire situation for 0 0 if the 

number of 10 0, then total weight 0, number of tent 1 total weight is 0 that is impossible 

infeasible solution that is why let me put it dash here. Number of 10 0 the total weight 1, 

these are all the possible, but if I just move 0, 1, 2, 3, 4, 5 if I move to 6, then what is the 

value for x 3 is equal to 0 that is 0, but if I consider that I we have we are suggesting one 

tent for here. 

Then d 3 is 6 k g; that means, decision regarding the weight in the knapsack if it is 6 k 

g’s, then what is the utility value, utility value is 11 here. Now, go to the next 7 this is 0 

the utility value 11 again, this is the simply situation and let me just complete the whole 

table in this way 11 and 11 here. And all other coming in feasible solution, if this is the 

case there are only one option in each case, but it is not happening for other stages. 

Because, once we are moving to the further stages we will see that situation will be much 

more complicated, in that case we have to select the higher utility value that is our 

objective. Thus we can say that f 3 is an is the objective in the stage 3, which is the 

maximization of the utility value, if we just write in this way otherwise we can write 

mathematically maximize utility value is 11 x 3, x 3 could be either 0 or 1. 

Mathematically we can write it, then we can see the utility values are coming this way 

11, 11 this is simple situation that is for stage 3. 



(Refer Slide Time: 20:04) 

 

Let us move to the next stage that stage 2, what is happening just see here also we are 

considering d 2 as the decision regarding the weight of tent, as well as bottle total 

weight. Already we have considered weights of tents as d 3, and what about weights 

about bottles if I consider x 2 is the variable regarding the number of bottles, we wanted 

to consider then d 2 must be is equal to d 3 plus 4 x 2. 

Because, 4 is the unit weight for bottle of water if this is, so and then d 2 is the variable, 

and there is a name for this d 2 variable I will name it formally later on I will tell that for 

stage there is a set of set values, there is associate state variable that part I will discuss 

later on. We can see the d 2 is equal to d 3 plus 4 x 2, and what else we can say since the 

weight of the bottle is 4 k g, then either we can consider x 2 is equal to 0 or when or 2 at 

the most not more than that all right. 

Let me complete the table as we did for the other set x 2 is equal to 0, x 2 is equal to 1 

and x 2 is equal to 2 1 we will write on the utility value for each and every cases. Here 

also the same d 2 can be from 0 to 10, if d 2 is 0 then this is 0 if d 2 is 1 0, d 2 is 2 3, but 

once it coming through the weight d 2 equal to 4. That means, we are considering one set 

of bottle, we cannot consider the tent here d 3 is 0 rather here, then what should be the 

utility value just now we have to considered in the table that the utility value of the bottle 

of water is 8. 



Thus we can say for this is 0, this is 8 let me consider 5 if it is 5, again there is only one 

possibility x 2 must be is equal to 1, there is no possibility if I consider 6. Then there is a 

possibility that, it could be 1 tent tats why the utility value is 11, we can consider as well 

1 bottle even, still the knapsack is underutilised still we may consider. Because, we 

wanted to see each and every alternatives for this different decisions all right, if it is 7 

here also the same situation. 

But, once it is coming to 8, either we can consider 1 tent or we can consider 1 bottle, we 

may consider 2 bottles as well that is why possible. Because, total k g is 8 k g and our 

maximum limit is 10 therefore, it is quite possible for 8, we can have three alternatives, 

and if it is 9 we can consider 1 tent or we can consider 1 bottle of water or we can 

consider 2 bottles of water all right. If it is 10 the beauty here comes, we can consider 

one tent x 2 is equal to 0 x 2 equal to 1; that means, we are considering 1 bottle, but there 

is a provision to have 1 tent as well. 

Because, 1 tent 1 bottle will be total will 10 k g that is why what is the total utility value 

here 11 plus 8 that would be 19 here. And here if we consider 2 bottles there is no space 

for tent that is why 16, let us see the utility values for the individual cases, when d 2 is 

equal to 0 the utility value is 0 if I just move in this way up to 3 this is 0 up for 4 it is 8 

again for 6 its 11, for 7 it is 11, for 8 maximum value is 16, this is for 8, this is for 9 

maximum value is 16, but see for 10 the maximum value is 19. 

Thus if we without knowing even the much complicated dynamic programming 

technique, here also we can decide that, that could be the optimal solution up to this 

stage. If I consider this problem as an as individual optimization problem, then we can 

say that this is the optimal solution, and here you see we have just considered the value 

of the previous stage. And utility value and the utility value of this stage, without 

considering further else. 

If I go to say stage 1, just see what is happening that is why this optimal solution for 

stage 2. Let us go to stage 3 and also we can say many thing here just see, we can 

develop a relationship, we can say that f 2 d 2 equal to maximization of 4 x 2 all right 

plus f 3 d 3 clear and over x 2, x 2 could be 0 or 1 or maximum value coming 8 plus f 3 d 

3 just now we have calculated that was 11. That is why we can say that, this could be the 



relationship between the previous utility value, and previous objective function, previous 

stage objective function the current stage objective function. 

Here, we will see later on that we can develop a nice result from here, we can write down 

the result as f for the backward recursive relation f n minus 1 d n minus 1. What is your d 

2, d 2 is in this stage the d 2 can take any value d 2 is the decision we wanted to take it 

could be 0, it could be 10 even, it could be in between any value. Thus here also if we 

consider the n minus 1'th stage for a general problem we will see that, that would be 

maximization of this is the notation. 

Let me use it now I will describe later onwards the meaning of r n minus 1 d n minus 1 

this means that, immediate return we are getting after selecting d n minus 1. If I see here 

for d 2 is equal to 9, d 2 equal to 9 what is the immediate return, immediate return for x 2 

equal to 1 that is 8 that is why we have considered in this way plus f n d n, you can 

understand this relation later on. This is a very important relation in our dynamic 

programming technique, I will discuss later on this one. 

At least we can say that, the optimal objective functional value of the next stage is very 

much dependent on the objective functional value of the previous stage. Thus I said if 

you remember I just started my lecture with that thing, that we have to first take the 

smaller part of the problem. Then we have to enlarge the problem little bit by 

considering the optimal value of the previous problem, and we have to consider the 

return value, rather the information regarding the decision at this stage in detail. 

And both considering we have to take the optimal decision for the next stage, and we 

have to proceed further and further as long as we can average the whole problem totally. 



(Refer Slide Time: 28:46) 

 

Now, let us move to the next stage that is stage 3, stage 3 means what, we wanted to 

consider tents, we wanted to consider as well as the number of bottles of water, as well 

as the number of food packs, this is stage one I started with stage 3. The naming 

convention is up to the person up to the decision making that is why I can say that d 1, 

that is the number of that is the capacity that is the total weight. In this stage is d 1 if it is, 

so this must be is equal to the weight of coming from the previous stage plus weight of 

the current stage that weight is 3 x 1. 

Because, if I consider x 1 number of food packs, then total number of total weight would 

be 3 x 1, and d 2 is the weight optimal weight just now I consider from the previous 

stage that is for tents as well as for bottles. If this is the case we wanted that d 1 must be 

10 because, considering d 1 considering we have fully, now we are fully addressing the 

whole problem that is why it is not better to consider d 1 as 10. If we consider d 1 

starting from 0, 1, 2, 3, 4, 5 that these not very much good way to think it, that is why 

better to consider d 1 as the wanted to utilise the full space that is why d 1 is 10 here. 

Now, once d 1 is 10 then what about the value for x 1, x 1 k g’s are 3 k g individual in 

unit k g that is why x 1 could be 0, x 1 could be 1, x 1 could be 2 and x 1 could be 3 

even. Because, if I consider number of food packs 3 at the most it would be 9 k g’s, now 

we wanted to utilise let us see the whole situation in this stage, if we consider x 1 is 



equal to 0 what is it mean, x 1 equal to 0 means from here d 1 is equal to rather d 2 let 

me consider d 2, d 2 is equal to d 1 minus d 0 that is equal to 10 only. 

If I go back to 10, the previous stage if d 2 is equal to 10 the optimal corresponding 

objective functional value is 19. And here the return is 0 for this case that is why 0 plus 

19 it would be 19 only all right, if we consider x 1 is equal to 1 it means that d 2 must be 

is equal to d 1 minus 3. That means, 10 minus 3 that equal to 7 go back to the previous 

table, for the 7 the corresponding value objective functional value is 11, if I just 

substitute here, return from this state we have considered 1 that is why return will come 

as 6 no 7. 

If I consider 1 food pack the return is 7, and here the return is for 7 the return is 11 that is 

why we will consider 7 plus 11 that is equal to 18 thus this is 18. Let us consider x 2 is 

equal to 2, which means d 2 is equal to d 1 minus 6; that means, 10 minus 6 that is equal 

to 4, go back to the previous table. The 4 the corresponding utility value optimal utility 

value is coming 8 that is why if I go to the formula f n minus 1 d n minus 1 is equal to 

maximization of r n minus 1 d n minus 1 plus f n d n. 

Just now we have considered f n d n is equal to 8, and what about r n minus 1 d n minus 

1, we are considering 2 food packs that is why total utility value will be 14 it is coming 

14 plus from here 8 that is coming 22 clear. If I consider x 1 why I have written x 2 this 

is x 1, x 1 equal to if it is 3 then certainly d 2 must be equal to 0, d 2 must be not 0 d 2 

must be is equal to 1. That means, we cannot consider any tent at all the corresponding 

value is 0 that is why the utility value is coming only for 3 food packs that is coming 3 

into 7 21. 

If it is a c this stage, there are something to be decided that, the maximum utility value is 

coming for this option only that is why this is the optimal solution for us. And if I 

consider f 1 d 1 that would be is equal to 22 here, and this is the one thing and here we 

can conclude that how many food thing, how many food packs etcetera, how many items 

we will consider one by one. For this case if I go back to this case what we have seen, we 

have seen that x 1 is equal to 2 and corresponding d 2 equal to 4 go back to the previous 

page d 2 equal to 4 means we have considered x 2 equal to 1 all right. 

And we have considered x 3 is equal to 0 that is the optimal decision, and I just explain 

the process in detail. Because, just we wanted to say few things up to this that, in every 



stage if I just consented on this stage the last stage, in every stage the optimal objective 

functional value is dependent on the optimal objective functional value in the previous 

stag. Without looking at that how we have reached to that position that is very important 

for dynamic programming technique. 

Thus the bellman win he invented these methodology, and there is a principle of 

optimality by bellman. And it has been really said that very nice optimality theory I will 

just formally introduce that part right now. 

(Refer Slide Time: 35:17) 

 

The characteristics of dynamic programming, since the problem I have explained 

hopefully it is clear to all of you how we have considered the stages etcetera. That is why 

for applying dynamic programming technique, first thing is that we have to consider the 

stage, we have to decompose the whole problem into smaller parts that is called the 

stage, and this is essential feature of dynamic programming problem. And stages are 

being computed, stage we have to get the optimal solutions of individual stages 

sequentially. 

Now, the stage can be dependent on time it may not dependent on time, and the problem 

I just consider there is no dependence of time. But, if I consider simple example that is 

for the inventory problem, we wanted to take the decision that about the quantity to be 

ordered in every month. That means, the decisions are being dependent on very much on 



time, if we are in we have a dataset from there the experience you just wanted to design 

that in which month, how much to order. 

For that thing, we need few information with us it is given that inventory level in each 

month. We have the order amount in each month, not only that we have the demand rate 

as well in each month, from there we have to take the decision how much to order in 

each month, this is the data for previous year it could be. Now, I just wanted to say that 

the bigger inventory problem can be subdivided into smaller problems by considering in 

each part there is a small optimization problem as if we have. 

One we are defining the stage, the next critical part is to define the stage, generally stage 

is being termed as n, n can start from the n to 0 or we can start from 0 to n. Depending on 

that we as I have just now developed the backward relationship from stage 3 to stage 1, 

similarly we can go from stage 1 to stage 3. And we can develop the forward recursive 

relation for the problem that is the thing about. 

Now, regarding the stage for each stage there is a stage, since we have different states in 

stage that is why we will just introduce we will associate some state variable. For the 

previous problems sate variable could be for stage 2 it was x 2, for stage 3 it was x 3 like 

that, thus we can have different values for different state for individual state variables, 

these are these correspond to different states. And there is no state rule, how we will 

define the state. 

As we have considered the state variables like by considering the stages with first tent, 

then tent plus bottle of water plus food pack. Instead of that one may consider tent bottle 

of water and food pack I individual stages etcetera that is also quite possible there is no 

set rules from the experienced, you have to do it that is why it is very critical to find out 

the states. Generally states we are just writing with the variable S n, there we have 

written x n in the previous problem. 

There is another part is there is a decision variable as we have done there d 1, d 2, d 3 

these are the decision variable. There is a set of possible values of the decision variables; 

that means, there is a domain of decision variables, and that domain is being named if I 

consider decision variable as d n, domain may be considered as capital D n, D n is the 

decision space. 



And regarding the decision space, it could be discrete it could be continuous that is why, 

once you are learning the dynamic programming technique you have to know the detail 

of the discrete that decision space how to handle as well as the continuous decision space 

how to handle that both the things you have to learn together that is why it could be 

discrete, it could be continuous. 

And second very important thing is that, that is called stage transformation equation or 

transformation equation also it says. And this equation tells you that, how one set of the 

previous stage is being transformed to the next state of the next stage; that means, one 

stage in stage n how it is being converted to the next state of stage n minus 1, whose 

responsible this stage transformation equation is responsible. 

For example, as I have taken the inventory problem, in the inventory problem I can 

consider, if I consider the inventory level as at n'th stage. This is very much dependent 

on the inventory level of the previous state plus ordered in the previous month minus 

demand that is the consumption in the previous month, if I consider it as R if it is, so this 

is the stage transformation equation for the inventory problem because, as you could see 

that I n is function of I n minus 1 that is the beauty of it. 

(Refer Slide Time: 42:08) 

 

Now, this is the next part, now if I just draw that figure of a multistage decision making 

process. Then we would see that state S n and the decisions d n, these are the inputs for 

stage n, then we will have the stage transformation equation S n, d n and we will move to 



the next state that is S n minus 1. That means, we will move to the next stage, where we 

have different states stage n minus 1 all right, and if these are the inputs we are moving 

to the next, there is a for individual. 

As we have seen for individual stages, we have considered the optimal return value that 

is why we may consider the optimal return value as r n. This is again the function of d n 

and S n, here also the stage transformation equation is there for each stage we have the 

stage transformation equation. And again we have the optimal return in each stage, and 

in this way we will just move to the next state or next stage, again and again to reach to 

the whole problem. 

And if I just write in a mathematical rotation this fact, whatever I have done in this figure 

to same thing, if I just want to write in mathematical rotation that, then we have to write 

down that is the decision that is the objective functional value in the n'th stage is equal to 

maximization of return of individual stages plus if I consider this stage, here is a input 

decision about d n minus 1. Then at this stage, if I want to consider the decision this is 

dependent on the return of this value plus return of the previous one. 

In this way we will just proceed to r 1, d 1, S 1, where we have considered the stages S 

has the through the stage transformation equation. Because, as we have seen this T m 

function is responsible for this, where m is running between 2 to n because, if I consider 

it as n, n minus 1 S n minus 1 is the function we are getting T n, d n, S n in this way and 

it will end to m equal to 2. Then only we will reach to the last stage S 1 and it is coming 

from then the 3 all right. 

And here the decisions are in the decision space, just wanted to write down in a 

mathematical way this thing. In other way also we can write it just see, you will get the 

you have seen the same pattern previously that f n d n is equal to maximize r n d n, we 

can write S n as well if I just consider the whole part from here to here, this is the f n 

minus 1 d n minus 1 thus the n'th stage value is dependent on the n minus 1'th stage for 

the forward recursive relation. 

In the backward recursive relation the situation is totally different from here, the next the 

formal statement of optimality has been reached. 



(Refer Slide Time: 46:25) 

 

And let me write down that optimal bellman’s principle of optimality, if I write down 

formally the bellman’s principle of optimality it says that an optimal policy has the 

property that whatever the initial state is I have just copying the bellman’s principle of 

optimality. Because, that is very important you have to learn the thing in a formal way, I 

will explain it further constitute, and the remaining decision one must continue constitute 

and optimal policy which regard to the state first decision. 

Now, what is the meaning of it means that for a sequence of the decision in multistage 

optimization problem, in dynamic programming problem regardless the current decision 

d n, and the current state S n all the subsequent decisions must be optimal. Now, the 

problem we have solved before you must have seen that, if I am in one stage n'th stage I 

am just using the optimal solution of the previous stage. And what how we have reached 

that point that is not more important for us, only important is up to reaching that point 

what is the optimal value. 

And according to that we have taken the decision, that has been said in the bellman’s 

principle of optimality that is very important. And if we just see the that is the shortest of 

the problem, there we will see that if I just see the shortest path you know the definition 

of shortest path problem. And I will just explain the thing in a better way in the next, and 

we will see that, if I consider a particular stage at that stage it is not important for me 

how we have reached to the state stage from the initial point it is more important for me. 



In the previous stage, what was the optimal value, how much distance I have covered, 

how much minimum distance I have covered, how much minimum cost I have to 

incurred for it. That information only needed because, that was the optimal solution of 

the previous stage, that is why how we have reached to that that is not important for 

taking decision at the current state. That’s the bellman’s principle of optimality, and that 

can be very nicely explained with the shortest path problem just look at the shortest path 

problem. 

(Refer Slide Time: 50:08) 

 

This is the problem we have to move from vertex A to vertex B, and there are different 

path in between different cities are there, we wanted to travel from city 1 to city 10 say 

these are the different alternatives in front of us, we have to take a decision that in which 

way shall we move. So, that the cost is minimum, and for travelling from one node to the 

another node individual costs are given with the green colour pen, and we have to take 

the decision accordingly how shall we approach for this. 

For approaching to this problem, first of all we have to divide the whole problem into 

different parts. That is why we have to divide the problem into different stages, we can 

go forward we can come backward as well, we can start our journey from these points 

vertex A we can start our journey from vertex B as well. If I just move from vertex A to 

vertex B with the iterative process as I explained before, with the bellman’s principle of 



optimality at individual stage we will take the decision, and we will reach to the ultimate 

stage to get to address the whole problem. 

Now, we that recursive relation is the that processes are forward recursive process, we 

can go backward as well that is starting from vertex B to vertex A. That is why let me 

first divide the problem into different stage, see we can name these stages as stage 0, the 

next stage where only the nodes 8 and 9 are there, stage 1, this is stage 2, this is stage 3, 

this is stage 4 just. If I just divide the whole problem into these different stages, then first 

there is nothing to decide at stage 0, you will just jump we will just move from 10 to the 

8 or 9. 

Because, we wanted to go backward, in stage 1 we have to just take a decision whether 

to chose 8 or 9 from the figure it is very clear that is 3, that is why we will select the 0.8. 

Once we have reached to 8 we need not consider anything about the previous stage, we 

are happy with this decision, we have this optimal value is only needed for the next. We 

will move to the next stage, stage 2 if I move to next stage 2 if you see if I just associate 

a state variable as I say that for each state there is a state variable. That is why state 

variable either can be 5 or 6 or 7. 

Thus the state variable can take any value of these three, but which one to select for that 

thing we have to select the written from the previous stage only, that part let me just 

elaborate in the next. 

(Refer Slide Time: 53:23) 

 



Once we are in the stage 0; that means, we are at the vertex 10 here, let me put n is equal 

to 0. And the state variable s is equal to 10, when n is equal to 1 then state variable could 

be either 8 or 9 as we have seen, and let us see the corresponding objective functional 

value at different alternative. Because, we are moving in a discrete decision space, here 

we have only two alternatives with us either 8 or 9. 

That’s why we can take a decision here, we can formulate the this is the naming 

convention, we can formulate this objective functional value. That means, we have been 

consider f 1 8 that is from 10 to 8 this is coming 8, and f 1 9 that is the root 9 to 10 this is 

4. And from here we will certainly select 3 that is my optimal value if I move to the next; 

that means, we are moving through n is equal to 2, how many alternatives we had. We 

had 5, 6 or 7 these are the alternatives. 

Here I just wanted to mention one thing that for taking decision I have used the 

transformation equation like that f 1. Let me put S 1 this is 0, this is S 2, f 1 S 1 is equal 

to this is the minimization problem, we have to we wanted to minimize the objective 

function f 1 s 1 is equal to minimum of r d 1 plus previous stage that is f 0 10. Rather S 

1, S 0 rather all right if this is, so then we have two alternatives with us, one is a d 1 is 3 

plus 0, this is 0 always and this is 4 plus 0 that is why we have selected the three value 

here. 

Here let us see, how many alternatives we are having, we are having only 4 alternatives 5 

to 8, 6 to 8, 6 to 9, 7 to 9 all right. If we have this alternatives with us, let us formulate 

the function here as well 5 to 8 means, we have considered once we are reaching 2.8 the 

value was 3 and at 5, it was 7 that's why it is 7 plus 3 which is equal to 10 units say 10 

rupees or 10 units of rupees we have to consider. 

If I move to 6 to 8 again I have to come if I just move 6 to 8, the immediate cost I have to 

incur 3. And what about the previous one that is again coming 3 because, at 0.8 it was 3 

that is why we are getting equal to 3 plus 3 6, for 6 to 9 previous stage the optimal value 

is 3, always it is if I just write down the equation f 2 S 2 is equal to minimization of r d 2. 

That means, the decision if I consider either this or d 2 can take either this value, this or 

the 4 alternatives it has f 1 S 1, f 1 S 1 we have already got 3 that is why we have these 

are the values for us, and this is 4 plus 3 is equal to 7. 



Then certainly this is optimal for us, 6 is the optimal at this stage, thus if I just look back 

the table. Once we are reaching to stage 2 optimal solution we got that is 6, we did not 

once we are moving to stage 2 to stage 3, we need to consider that how we have reached 

to stage 2. Where the optimality occurs it is not important for us, only important thing is 

that how much optimality we have achieved here that is why if I write down the whole 

detail in the next. 

(Refer Slide Time: 57:55) 

 

Then I can write down in a table in this manner, just let me reads this table properly, I 

have written the alternatives 5, 6, 7 that is for stage two here. These are the headings for 

it, initial state the decisions immediate cost we have to incur for that decision, and what 

is the resulting state. What was the optimal return in the previous stage, and the 

functional value accordingly we will take the decision that is the thing at 0.5 5 8 

whatever I said same thing I have written here. 

And if I consider the optimization problem up to this point, then this could be the 

individual optimal solution for each state values. Let me move to the next, where the 

another three 2, 3, 4 that is stage 3 is there 2, 3, 4, if I just write down the same kind of 

information here. We could see that from two there are only two alternatives 2 to 5, 2 to 

6 this is the immediate cause, this is the resulting stage, this is the optimal solution for 

the previous stage. 



Because, just now we have considered for the 5 it is 10 that is why we are writing 10 and 

therefore, the total cost 10 plus 10 20, 3 to 6. Once we are reaching to 6 how much I have 

to immediate cost I have to incur that is 6 and for 6 this is the 6 the optimal solution we 

have written 6, how we have reached to 6 that is not important for us, as I said again and 

again and this 2 to 7. For 7 the optimal is 8 in that way we have written 8 plus 8 is equal 

to 6 10. And among these 3 12 is the minimum 1 that is why this is the optimal solution 

at this stage. 

Let me move to the next, and if I juts reach to 0.4 then this is again the same thing we 

have written the at 0.4 the optimal value is 15. But, if I consider the whole together 2, 3, 

4 that is stage 3 together, then the optimal value is 12 either coming from this point or 

this point any one of these two all right. Let me move to the next that is stage 4, only one 

that is the whole problem, there are three alternatives 1 to 2, 1 to 3 and 1 to 4, for 1 to 2 

we are incurring 14 units. 

Similarly for 1 to 4 also we will incur the same 14 units that is we can say the optimal 

solution is for this problem the optimal solution, rather the minimum cost policy we can 

write down this way. 

(Refer Slide Time: 1:00:57) 

 

Either we have done this is one alternative with 14 units, we have to just bear the cost 

and this is coming 1 to 2 14, if we go back then it was 12 and this is the 12 is the this is 2 

this is 12 this is 2 12. Now, this 12 we are getting from 2 if I am go to 2 this 12 we are 



getting here; that means, go to 6, for 6 we are getting 6 to 8, in this way we can get the 

whole path. And this is the path for us 1 to 6 to 8 to 10 there is another alternative path is 

also there, we can move 1 to 4 to 6 to 8 to 10 for both the cases we need to 14 units. 

And that is the optimal solution as a whole for this problem, now that is all about the 

dynamic programming problem, now I can give you another problem for practice. 

(Refer Slide Time: 1:02:18) 

 

This is a nice problem we can work on it, and there is a hint also how to consider the 

state variable and state variable. We have considered 6 stages, and there are few state 

variables we have considered, and this is the problem we can work it and you can get the 

optimal solution in the similar manner. And this is the multi stage decision process we 

have considered the decisions space as discrete one, that is why there is a need to discuss 

further. 

How to consider the uncertainty in the whole decisions process this is one part we should 

consider in the multi stage thing, the multistage decision process that is dynamic 

programming. And the another topic we have to address that is the dynamic 

programming problem, where the state variables will move in the continues space that is 

all for today. 

Thank you very much. 


