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Now, today we are dealing with constrained optimization problem. This is general form 

of constrained optimization problem, find the decision vector X? Where we want to 

minimize that minimizes the function f (X) subject to the constraint g j (X) less than 

equal to 0, h k (X) is equal to 0, and the decision vector is having n components, decision 

variable vector. Now, here we have considered the m number of inequality constraints, p 

number of equality constraints. Now, this constraint set divides the whole design space 

into 2 parts; one part is the feasible space that is the decision space; where the constraints 

are being satisfies. And the other space by the constraints at least 1 of the constraint is 

violated that is the infeasible space. 

Now, in the these in the decision space that is in the feasible space; however target is to 

find that X which minimizes f (X). Now, there are, since these are functions we have 

considered the functions f (X) g j (X) and h k these are all non-linear in nature. And due 

to the inherent complexity of the non-linear functions, is this not so easy to find out the 

optimal solution in the decision space. Now, in this connection let me tell you few things 



that is in the feasible space, if some constraint particular j is being satisfies with the 

equality side. Then it is said to be the active constraint rather if the optimal solution X 

star is on the some of the constraint, then corresponding constraint is said to be the active 

constraint otherwise the constraint is inactive.  

That means that in the decisions process that constraint is not taking part for achieving 

the optimal solution that is the idea of the active constraint. And the inactive constraint 

for the inactive constraint; thus, it is being satisfies with the lesser than sign that is the 

idea. Now, we know how to solve it. For solving this kind of problem as we know the 

first technique is that k k t conditions through, the K K T condition introducing the 

Lagrange multipliers we can solve this problem other than this there is a set of methods 

are available. 

The methods can be categorized into 2 parts; one is the direct method and another one is 

the indirect method. Direct method considers the problem the given non-linear problem 

in an explicit manner whereas, in the indirect method the given non-linear problem is 

being solved by sequence of unconstrained minimization problem; for this minimization 

non-linear problem and that is the indirect method. Direct methods, there are there is a 

list of direct methods are available. 

One is that heuristic search method few of them I will discuss today. Constraint 

approximation method; that is the cutting plane method suggested by Kelley. And there 

is another set of methods are available that is the method of feasible direction. In this set 

of methods there are 2 methods are available; one is that Zoutendijk feasible direction 

method and second one is the Rosen’s gradient projection method. And in the indirect 

method there is a also list of indirect methods are there by transformation of variable we 

can solve the given non-linear programming problem. 

And, other than this there is a set of penalty function method. In the penalty function 

method there are 2 kinds of penalty function methods; one is the interior penalty function 

method and another one is the exterior penalty function method. Thus, we will discuss 

both the types direct method and indirect method in detail. Let me start with the direct 

method today. 
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Let me start with the constraint approximation method; that is the in other name we can 

just name it as a Kelley’s cutting plane method. This method is very nice method in the 

same spach the objective, the basic philosophy of this method is that the non-linear 

functions f (X), g j (X) and h k (X) these are in the non-linear form. Now, it is all the 

non-linear functions are approximated with the linear functions. And a sequence of linear 

programming problems are being solved. And at the end will reach to the optimal 

solution of the original problem that is the idea. 

Now, for this thing let me consider a problem again minimization of f (X) subject to g j 

(X) less than 0 and h k (X) is equal to 0. Now, the step one; is that this is a sequential 

process we will just talk we will start from a point X 1. The point X 1 need not be 

feasible point. Now, and let us set the iteration number as i is equal to 1. Now, the step 2; 

is at this point we will just linearise that functions f(X), g j( X) and h k (X) with the 

Taylor series approximation. Once, we are doing that what is happening that we are 

having the non-linear feasible space; rather the feasible space bounded by the non-linear 

functions. 

Now, we are approximating this non-linear feasible space with the linearly bounded 

feasible space. And once we are considering point X 1 which is not even the feasible 

point need not to be feasible point. Then the linear feasible space rather than feasible 

space bounded by the linear functions that would be the outside of the original non-linear 



feasible space that is the idea. So, let me just elaborate the process little more than you 

can understand it. What we do? We will just linearize the functions at X 1 using Taylor 

series approximation. Thus, we can write f (X) can be approximated equal to f (X 1) plus 

del f (X 1) T (X minus X 1). 

Similarly, we can write g j (X) is equal to approximately equal to g (X 1), g j (X 1) plus 

grad of g j (X 1) T, (X minus X 1). Similarly, h k can be written in the similar manner 

that is the with the Taylor series approximation we are just writing it this is h k grad of h 

k (X minus X 1). Now, once we are doing that; that means, let me here we have ignored 

the higher order terms. Because we have to ignore, because we wanted to linearise, we 

wanted to have the linear functions. If we have, if we want to approximate with the 

quadratic function. Then we will check the second term as well that is the idea. 

Now, if this is so; then we can formulate the reformulate the given problem. This 

problem can be reformulated again with minimization of f (X 1) plus grad of f (X 1) T, 

(X minus X 1). Rather, let me just do it subject to this set say this is the set A all right. 

And once this is so it is very clear this is a linear programming problem. And we can 

solve this linear programming problem and we will get the optimal solution. Now, you 

see whatever optimal solution we will get for this problem that optimal solution would 

be the out would be the outside of the feasible space of the original problem. 

Once again, I am repeating the thing you see we have taken a feasible space; the original 

feasible space is bounded by the non-linear functions. Now, we have a approximated 

each functions with a linear functions that is why since, the point above the point X 1, X 

1 is in the outside the feasible space. Thus, the approximated linear programming 

problem will have the feasible space which should be the outside the feasible space of 

the original problem. Thus, as we know that always the optimal solution for the linear 

programming problem would be in the boundary. And it is in the extreme that is why 

whatever optimal solution we will achieve here; that would be the point that is that lie 

outside the feasible space of the original problem that I wanted to say. 

Now, once we are getting the optimal solution that optimal solution may satisfy all the 

constraints or may not satisfy all the constraints. If it is satisfies all the constraints then 

that optimal solution can be considered as a optimal solution of the original problem. 

That means whatever optimal solution we have achieved from this linear programming 



problem; that is within the feasible space of the original problem. But it is not happening 

as such because X 1 is not really at the feasible point. 
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Now, if it is not being satisfied then we have to adopt the next process that is why let me 

move to the step 4; when g j(X 1) is greater than very small number epsilon. Because in 

general we know that g j(X 1) is lesser than equal to 0; that is why if f (X 1) is satisfied is 

not X 1. Let me consider the optimal solution we are getting out of it that is X 2 that is 

why we will just substitute X 2 in all inequality constraints. And if we see that it is 

satisfies then g j (X 2) must be lesser than equal to 0. But if it is not lesser than 0; that 

means, g j 4 some j, g j (X 2) is greater than epsilon. 

Then, in that case that problem cannot be considered as a optimal solution; that is why 

we can write down the other logic as well if g j (X 2) is less than epsilon. Then X 2 

would be the optimal solution of original problem. We can approximate original NLP; 

otherwise, go to this step that is the idea. Once, this is so then if we see some g j (X) are 

not satisfies or violated; then we will calculate, we will just see. In step 5; most violated 

constraint we have to identify that. Mathematically, we can say that we will identify that 

j which is maximum of all g j (X 2). And such that g j (X 2) is greater than epsilon; that 

means, we are considering those constraints which are violated. And we will consider the 

most violated constraint by considering the max of these. 



Once, we are getting that then we will. In the next step we will linearise the 

corresponding g j X prime about X 2. That means, we will get another linear constraint 

of this. Thus, it will become g j X prime X 2 would be X would be approximately equal 

to g j X 2 prime X 2 plus grad of g j prime (X 2) and (X minus X 2). And we will add 

this constraint in the previous linear programming problem. That means, what we are just 

reconsidering the whole feasible space. The original linear feasible space was A. 

Now, we are adding another constraint this constraint; that means, the feasible space is 

being reconstructed. And we will get an optimal solution for that linear programming 

problem as well. And we will repeat the process in the similar manner we will check 

whether all the constraints are being satisfied are not. If these are being satisfied we can 

declare the next optimal solution of the original NLP. Otherwise, we have to repeat from 

step 4 to step 6 again and again. And we have to identify in each case which constraint is 

being violated. In that way we will just proceed and we will get the optimal solution at 

the end. Thus, we can say take next step 7; if we just want to complete this iteration 

process previous LPP and get optimal. Then go to step 4 otherwise go to step 4 how by 

setting i is equal to i plus 1 otherwise select the optimal. 

Now, what is the advantage of this process is that if I just look at the whole process. 

Once again, if I just want to summarize the process; that the advantage is that this is like 

a ((Refer Time: 17:15)) cutting plane method. We are using for integer programming 

problem here also the same thing; we are just adding the linear constraints one after 

another original feasible space. And the advantage is that we can solve, we can use the 

simplex algorithm rather the dual simplex method. In each step we are adding one 

constraint at each time. And we can use the dual complex very easily. And we will get 

the optimal solution of the original problem; which is very complicated may be that is 

the non-linear programming problem. 

And, there is a disadvantage as well the disadvantage is that. And this method works 

only for convex programming problem. Because for the convex programming problem 

only we can ensure the convergence of the process otherwise in many cases it may 

diverge. And another disadvantage we can just point it out that is that since we are 

adding the constraints again and again. There is a chance to become the problem as a big 

one. And though we can solve it with linear programming problem that is not a problem 

for us. 
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Let us apply this method for a numerical problem; then it is it would be clear to you. Let 

us consider a linear program, a non-linear programming problem; that is minimize f (x 1, 

x 2) is equal to x 1 minus x 2. We have considered the linear objective function that does 

not matter we can consider non-linear as well. And there is only 1 constraint g that is this 

problem I have taken from the optimization book written by S. S. Rao this is the 

constraint for us and it is. And if we just solve one, if you want to solve it in otherwise in 

by using the Kuhn tucker conditions. We will see the optimal solution will be x 1 star 

would be is equal to 0, x 2 star would be is equal to 1 and f min would be minus 1. 

Now, we will use the cutting plane method. And we will see how the problem can be 

solved. Now, if we see the feasible space for this; the feasible space may be unbounded. 

And this we want to bound it that is why in the step 1; let us consider another constraint 

that is x 1 is in between minus 2 and 2. And x 2 in between minus 2 and 2 these are 

given. Now, first what we will do, we will solve minimize f that is x 1 minus x 2, subject 

to these 2 constraints. And we will see that we will get optimal solution that would be 

starting point of our problem X 1 star would be is equal to( minus 2, 2). And we will get 

the f value at this point f X 1 star is equal to minus 4. 

Now, once this is so we will just in the next step. We will linearise g about X 1 star that 

can be done very easily. First we will find out the grad of g; grad of g would be is equal 



to 6 x 1 minus 2 x 2 and minus 2 x 1 plus 2 x 2. And we will consider this grad of g at 

the point minus 2, 2 and minus 2 and 2. 
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And, ultimately we can linearise it with the function g (x 1, x 2) would be approximately 

equal to that is g (X 1) star plus grad of g(X 1) and(X minus X 1). If we just do it we will 

get these value as approximately equal to minus 16 x 1 plus 8 x 2 minus 25. And since 

this is the approximated linear function of the given non-linear function. Let us consider 

the next step with this constraint. Thus, the next step we will consider the next linear 

programming problem as minimization of x 1 minus x 2, subject to this constraints plus 

25 less than equal to 0; and x 1 and x 2 both minus 2, 2. 

Because we wanted to bound the feasible space that is why we have consider this 

constraint. Not only that this constraint helps us in finding out the initial starting point 

even. Now, we will solve it. And once we will solve it, we will get the next optimal 

solution X 2 star that would be is equal to minus 0.5625 and 2. Where, the functional 

value would be is equal to minus 2.56 previously it was minus 4. Then next we could see 

the functional value has decreased that is why if we go further iteration there is a chance 

to converse the process. But if we just see then we will see that again that here the value 

of g (X 2 star) that is very high it is given 23. If I just summarize the whole process in 

the table we can see it. 
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This is the initial state for us as we have considered minus 2, 2. And here the g j value 

was 23. Now, in the next step we have considered these constraint we got this optimal 

solution; we could see the functional values minus 2 as I will showed you. And then we 

will see again the g j value is coming very high that is 6. That means, we are still this 

value is very high that is why we will we have to consider we have to linearise these g j 

with respect to this point again. Otherwise, we will be very far from the boundary of the 

feasible region original the given problem. 

That means, once we are linearising g j with respect to this point we will get this 

constraint. And in the next problem we will add this constraint again; that means, we will 

add this constraint here itself. And once we are adding this constraint we will get another 

point that would be 0.2 and 2 functional value is again decreasing g j value is decreasing 

again and again. Thus, we will just repeat the process again and again 10 times. We 

could see that functional value is converging to minus 1. And g j value is almost 0 that is 

why that is quite acceptable. And as we say in the original if we just apply the K K T 

condition there also we could see the f mean value was coming minus 1. And the 

corresponding optimal solution was coming 0, 1. 

Here also the same thing that we are getting the optimal solution as 0, 1 almost 1. That is 

why this could be taken as the approximate optimal solution of the original non-linear 

programming problem. And that is all about the starting the Kelley’s cutting plane 



method. Through, which we are getting the sequential linear programming problem. And 

we can solve the problem with the dual simplex technique. And very nice this method is 

nice. In that sense, that we need not tackle the non-linear functions term very easily with 

the linear functions only we are getting the solutions. But the disadvantage as I said that 

it is applicable for the convex programming problem. For the non convex problem it is 

not easy to consider. 
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Now, let me go to the next method that is the method of feasible direction. This is 

another direct method because we are considering the problem. We are addressing the 

constraint original constraint say it original problem. Thus, this is not an indirect method. 

But how? What is the basic philosophy of this method? Let me just first summarize it 

then I will go to algorithm of this method. The method stays that minimization of f (X). 

Let me consider the constraints g j (X) that is the non-linear inequality constraints; 

where, f and g are non-linear functions. In the similar manner there are m number of 

inequality constraints. 

Now, the method of feasible direction there is a beauty of this method is that this is also a 

searching technique we will start from a point. And we will iteratively we will proceed in 

such a manner that functional value is decreasing in each iteration. Not only that we will 

remain in the feasible space that is the idea of the method of feasible direction. And the 

mathematician Zoutendijk invented this method. And this method is very robust method. 



And this method is applicable very much. And we are using this method here in there for 

non-linear programming problem. 

Let me just elaborate that method for you. Now, as we have seen in the k k t condition 

that is we start from a point X 1; then if this point is a regular point rather the feasible 

point. Then that feasible; if I want to move to the feasible point then the idea is that we 

have infinite number of directions through which we can do. Because as we have seen 

for the unconstrained optimization technique. We have adopted this process we started 

from X K. And we are moving to X K plus 1 with the considering lambda K as the step 

length. 

And, this is the direction; that means, from 1 point if this is a point for us. We are 

moving to the next point this is specific step length. And there is a specific direction; that 

means, X K is going to X K plus 1. Since, this is X K we can proceed in different way. In 

infinite number of directions we are having in which direction should I move? 

Zoutendijk has suggested some technique he has said just moved through the usable 

direction. Then we will reach to a better we will adopt a better that is the idea. Now, let 

me tell you what is that? As we know that if I move from a point X K to the next point X 

K minus 1 with the direction S K; then we can say that S is a feasible direction. 

If you remember we have done that in our k k t condition when we have described k k t 

condition in detail. We have said that this direction would be this dot product that is if 

this is the feasible direction S. And if the grad f is the gradient of the objective function 

always it makes the obtuse angle. That means, lesser than 0 not only that we have also 

consider to remember that S T grad of g j is always less than is equal to 0. That also 

makes the obtuse angle for the minimization problem. 

Now, Zoutendijk he said that this direction is being this is the feasible direction. If I 

move with this condition this is a feasible direction. And if I move with this condition 

that no sorry, this is not the feasible direction that is the descent direction. That means, 

for the minimization problem if I consider the direction as S. And if we consider S T 

grad f if it is giving the less than value; that means, if it is making the obtuse angle. That 

if the direction makes the obtuse angle with the gradient of the objective function that is 

the descent direction. That means that direction gives me better functional value for the 

minimization problem; that means, the functional value improves. We are getting the 



better minimum in this direction not only that if S is the direction; if we consider S T 

grad g j where j can run from 1 to m. 

Now, this direction is the feasible direction; then it makes again the obtuse angle. And 

this is called the feasible direction. And he has suggested that if any direction consider 

both the conditions together; that means, any direction x which is as well as feasible; 

then that direction can be said as usable direction. Thus, according to Zoutendijk he has 

suggested that always move in direction where the direction is usable all right. Let me 

just whatever philosophy said. Let me summarize whole thing mathematically. 

Now, how far we can move that is a next question. Because if I move by considering 

both the conditions together then from this point, I will go to this point, then I can go to 

this point, then I will go to the boundary of the feasible space. In this way I will move. 

But we know if this is the objective function for us. And optimal will come here that is 

why and that is the K K T point. And at K K T point, we will see that this will all satisfy 

with the equality sign that part we are just considering in the next. 
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Before doing that thing let me consider a minimization problem. And let us try to 

visualize what is the feasible direction? What is the meaning of that? Plus x 2 greater 

than equal to 4. If it is draw this one then we can see that this is the circular region. And 

this is a line for us and this is the circle. And if I just move further this is a circular 

region do not mistake it. Then the optimal will come here is the optimal solution all 



right. Because we have considered the constraint x 1 plus x 2 greater than equal to 4; that 

means, this region, now minimization problem. 

Now, here mathematically we can say that let me say which direction e t is grad of f it is 

2 x 1, 2 x 2 grad of g equal to minus 1, minus 1. If we considered the function g as minus 

x 1 minus x 2 plus 4 less than equal to 0. Because I was trying to explain the 

methodology with g lesser than equal to 0 that is why grad g would be minus 1, minus 1 

this case. If this is so then we will say that this is the descent directions for us. And how 

what it would be if I can consider the s 1 s 2 is the descent direction for us and how it 

would be if I consider the vector S 1, S 2 is the direction; then it would be 2 X 1, 2 X 2. 

Let us start the process with an initial point x 1 (1.45 2.55) this is very much satisfying 

the constraint this is the point for us. Then we can see that S T grad a for this point it is 

coming as (S 1, S 2), (2.9 and this is 5.1). Now, we can say that 2.9 S 1 plus 5 point S2 

less than 0. It is the feasible it is the descent direction; that means, if we move from this 

in this direction then that would gives us the descent direction. Now, what is that 

direction at all? Now, this is the gradient of f rather this is the minus grad f. Because the 

functional value is decreasing further and further. And if I just take a tangent here that 

tangent the half space of that; that means, this region would be the descent direction for f 

that is the idea. 

Now, let us move to the next what is the feasible direction; that means, we will calculate 

S T grad g. This is coming (S 1, S 2), (minus 1, minus 1); that means, we can say that 

minus S 1, minus S 2 lesser than 0 this is the feasible direction. Now, what is the usable 

direction? Then usable direction is that direction; that means, that set of (S 1, S 2) which 

satisfies both the conditions together that is 2.9 S 1 plus 5.1 S 2 lesser than 0 that is the 

descent direction. And minus S 1, minus S 2 less than 0; that is a feasible direction, 

which direction it could be? This is this direction is the sorry, this direction is the usable 

direction give as said by the Zoutendijk all right. What is this direction then? This 

direction would be nothing but this cone. That is why this cone is being said as the cone 

of improving feasible direction clay. 
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Now, whatever thing I said numerically same thing we will just translate in mathematical 

form that we will see that we will find S? Forgetting the usable direction such that S T is 

grad f is less than 0, S T grad g is less than equal to 0 all right. Now, if I consider 1 

artificial variable. But how to solve it mathematically? That is why we are formulating a 

linear we are formulating a problem optimization problem. So that we can consider the 

we can very easily we can consider the direction. Artificial variable alpha such that alpha 

is equal to max of S T grad f and S T grad g j these are all g j at point X 1. Because we 

are X 1 is our starting point all right. Now, you see all the values are negative values S T 

grad f is negative, S T grad g is negative that is why alpha is negative here. 

Once, alpha is negative what is our target? Our target is the process has been designed in 

such a way that if we just move from a point X 1; then we will move to that direction. So 

that if I just move in this direction; then there is a chance that if I take a lambda K such 

that I will be out of the feasible space that lambda K should not be that. So that I am out 

of the feasible space always I want to be in the feasible space. That is why select suitable 

lambda K. So that we will remain in the next if this is X 2 for us. 

Then, we will remain within the feasible space; that is why we will try to remain far from 

the boundary of the constraint that is the idea. That is why we are trying to maximize 

alpha; that means, we wanted to say that we will reduce alpha till it becomes negative. 

Thus, we can formulate a problem as minimize alpha; sorry, minimize alpha such that S 



T grad less than equal to alpha. Because alpha is maximum of these 2 and S T grad g j 

less than alpha for all g j is equal to 1 to n here also for all j all right. This is the problem; 

that means, that find S? Such that this is being satisfied that is why finding out the visible 

direction is not difficult for us. Because that direction we will search which will satisfy 

this optimization problem. 

Let us use this one after doping certain modification. Now, you see one thing is that we 

are interested about the direction S not about the magnitude S is it not. Because this is 

the direction we are looking for, not looking for the magnitude of the moving direction. 

That is why always we will try to normalize S by putting S i is equal to 1; rather we can 

say that S T S is equal to 1. That is normalization process we can do it other if we 

consider i-th component. How many components of A should be, A should be have n 

number of components. That is because we are moving in the design space where n 

number of that is n dimensional space. 

Because the number of decision variables are n that is why we wanted to consider S T S 

equal to 1, otherwise we may consider S i in between minus 1 and 1. Then the advantage 

of considering this constraint is that we can bound this feasible region. Otherwise, this 

space may be unbounded for certain case all right or else we can consider this or we can 

consider this is not being considered. Because always it will give you a quadratic 

function; but it will give you a linear function all right that is why we are considering 

this. 



(Refer Slide Time: 43:22) 

 

Now, we are doing certain modification for this problem. Let me just write down this 

modification in the next. Minimization alpha subject to S T grad f less than equal to 

alpha, S T grad g j less than equal to alpha, for all g j is equal to 1 to m. And we have 

considered the i-th component all i-th all components of S is in between 1. Now, we are 

modifying this problem by considering another variable beta is equal to minus alpha. If 

we just do that we are getting another problem. Just see minimization of minus beta 

subject to S T grad f plus beta less than equal to 0; S T grad g j plus beta less than equal 

to 0; and S i in between minus 1 and 1. 

What is the advantage of considering that. Because you see this is a linear, these are all 

the linear functions what is that what are the decision variables? Decision variables are S 

i because we wanted to find X,S? That is the is the feasible direction. Now, alpha is the 

negative value. That is why we wanted to impose that the decision variable that is one of 

that is beta that must be positive. That is why this can be considered very nicely that beta 

is positive here. Now, there is another modification Zoutendijk suggested that for the 

constraint set the tone of the improving feasible direction he wanted to capture the angle 

in between that. That is why he has introduced another term in the constraint set that is 

theta j, for all j. And this theta j is being named as push factor rather this is capturing that 

is angle between the angle of the cone. 



Now, in general theta is always a positive. Because if theta j is negative is not possible 

because it is always it is acute angel for us. Not only that theta j can be if it is equal to 0 

then it is tangent altogether. And always we are considering theta j greater than 0. And 

by default we are considering the theta j equal to 1 in each case. Otherwise, we can 

consider it as a variable, we can consider as a. Now, for finding out feasible direction as 

a as a whole we can say this is the optimization problem we have to solve at each 

iteration. 

Now, this can be further be modified with another modification let us see. So that we 

will get a function where S i is not even negative value. We wanted to have a positive 

value here. again because here S i is coming negative. And we know for the linear 

programming problem the simplex algorithm works only if non negativity constraint we 

have to ensure that. That is why let us consider another variable t i is equal to S i minus 1 

all right. Then since S i is in between minus 1 and 1, t i would be in between 0 and 2 all 

right. No, rather it is 1 minus S, t i would be is equal to, S i would be is equal to t i plus 1 

all right in the similar way. Now, if this is so if we just write down this problem again 

this problem is being formulated in this manner. 

(Refer Slide Time: 47:39) 

 

Find t 1, t 2, t n in place of S 1, S 2, S n which minimizes minus beta subject to. If we 

just elaborate here we are putting t i is equal to S i plus 1. If I just put S i plus 1 then we 

are considering as t 1, del g 1 by del x 1 plus t 2, del g 2 by del x 2, t n now g 1. Because 



first constraint we are considering x n plus theta j beta less than is equal to summation i 

is equal to 1 to n, Del g 1 by Del x i all right. Because we have considered S i is equal to 

t i minus 1. Now, this is for all j that is why let me put j here, for all j from 1 t m. And, 

for the objective function we are considering 1 constraint only less than equal to 

summation i is equal to 1 to n, del f by del x i. And t i is in between 0 and 2 what else 

beta is greater than 0. This is the linear programming problem right. That is why that 

would be considered as the usable direction that is all about the usable direction. 

(Refer Slide Time: 49:40) 

 

If I go back to the methodology that is the Zoutendijk method. For feasible direction this 

is the process for us start with an initial point X 1; evaluate f(X 1), g j (X 1). And. if g j( 

X 1) is lesser than 0; that means, we are in the interior point. And in the feasible 

direction S i would be is equal to minus grad of f. And we have to normalize S i and we 

have to go the step 5 if we are in the interior point. But if we are in the boundary point 

then we have to find out a feasible direction by this process. That is minimization of 

minus beta S T grad f plus beta less than is equal to 0 in this way we are finding out the. 

There is a another constraint that is the beta is greater than 0 that is we are getting the 

usable direction alright. 
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Now, whatever direction we are getting if this is almost equal to 0 then we can stop our 

iteration; that means, there is no further possibility for improvement. But if we see that it 

is not equal to 0 rather beta star is less than epsilon. Epsilon is the very small positive 

value. Then we will stop iteration we will declare that the corresponding X i as the 

optimal solution. If it is not so then we need to go the next step. Because we have to find 

out a suitable direction; because how we will find out lambda i? And S i in such a way 

that we can move to the next point i plus 1. And we will do the process how we will find 

out the functional value at this point. 

And, if the difference of the functional value rather the rate of difference is very small. 

And if X i s are very close the norm that is because these are all the vectors these are 

very close to each other. Then we will declare that one as the optimal solution otherwise 

we have to move to the we will we have to go to the next; if it is not optimal. Because we 

have to repeat the process again and again; we will see whether X 2 is in the boundary of 

the feasible space or not. If it is in the boundary of the feasible space something is there, 

if it is not in the boundary of the feasible space, it is in the boundary of the feasible 

space; then we have to repeat this process from step 2 again. But if it is in the interior 

point we can proceed further with this step length and we will move to the next. 
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And, I have prepared one problem for you to understand in a better way. Just look at this 

is the problem for us f (X 1, X 2). And this is a non-linear x 1 square plus x 2 square 

minus 4 x 1, minus 4 x 2 plus h and g is this one. Now, we are starting the process from 

0, 0; since, 0, 0, 0, 0 the point is very much in the feasible space not only that the point is 

in the interior point it is not the boundary point. Because with this point it is not being 

satisfied with equality sign. If we can considered the starting point as 2, 1 then certain it 

is a boundary point and we have to do some processing. 

So that we are not out of the feasible space; otherwise, we can remain with the next. Just 

you see what we are doing as I said g j x 1 is lesser than 0 and we are getting the next 

direction as 1, 1. Because we are considering the descent direction of f that is 4, 4 we are 

normalizing it and we are getting the direction 1, 1. And our next task is to find out 

which one we are trying to move from X 1 to X 2 in such a way that X 2 is equal to X 1 

plus lambda 1, S 1. S 1 is this one, X 1 is given 0, 0 what is lambda 1? We have to just 

find out in the next. 

For doing that as we did it for the unconstrained optimization problem here also the same 

thing. We will do the same we will just find out the function f and we will see for which 

value of lambda f is minimum. That is why we are getting f lambda is equal to 2 then f is 

minimum. But if lambda equal to 2 then the next point X 2 would be is equal to2, 2. Just 

look at the constraint if it is 2, 2; then I will be out of the feasible space; that means, g 1 



is violated that is not accepted. That is why what should be done we have to reconstruct 

lambda 1, we have to suitably select lambda 1 in such a way that g 1(X 2) will be at the 

most on the boundary all right. But here g 1 (X 2) is coming greater than 0 it is not 

accepted. That is why we will select lambda in such a way that it is in the boundary. 
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If this is so very easily we can select by considering g(X 2) by substituting X 2 in g we 

will see the lambda 1 value is coming 4 by 3. That is why we are saying X 2 is equal to 4 

by 3, 4 by 3 which is nothing but X 1 plus lambda 1, plus S 1 all right. Now, we will 

select whether X 2 is optimal or not. Now, we see the difference of f (X 1) and f (X 2) 

that is not very low, that is very high, that is not acceptable. That is why X 2 is not can 

be cannot be considered not only that norm of difference X 2 minus X 1 that is also very 

high that is not very small value. 

Here, we are considering epsilon 2 and epsilon 3 as a pre assigned very small positive 

value may be 0.0001 and 0.0002 even we can consider the same value. That is why you 

see not only once we are reaching to X 2. X 2 is in the boundary on the boundary of the 

feasible space because it is satisfying the constraint with the equality sign. That is why 

we have to select the next process; the next S 2 that is the next direction in such a way 

when I should not be out of the feasible space; that is the check for us. 

Because if I you see I am in the boundary there is every chance that I will be out of the 

feasible space. That is why always select that direction that is usable direction; that 



means, that lies within the direction the cone of improving feasible direction. That is why 

in the next case what I am doing? I am selecting the usable direction that problem with 

that linear programming problem. As I explained you before that is minimized minus 

beta subject to the t 1, t 2; I just showed you the that is the this one. 

This is the whole linear programming problem writing again for this one and we are 

getting these linear programming problem. And we are getting the beta star is equal to 

minus 4 by 10. Now, once beta star is equal to minus 4 by 10 as we have considered t is 

equal to S i plus 1 that is why S could be t i, t 1 star minus 1, t star from here we are 

getting 2, t 2 star we are getting from 3 by 10. That is why my next that is S 2 could be is 

1 minus 0.7; that means, this is the usable direction in the next. That is why from S 2 I 

can move in this direction. 
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Again the problem is still there. What should be the step length? That is why we have to 

add on to the next process that is lambda 2. We have to find out lambda 2 in such a way 

that I will remain within the feasible space. Not only that we are selecting the descent 

direction. And that is the usable direction that is why we are selecting lambda 2 in a 

suitable manner. So that I remained with the use in the usable direction. If I just repeat 

the process as we did for in step 2 the similar way we are selecting lambda 2 as 0.1 3 4. 

Then, we see that g (X 3) is within the feasible space and for this X 3. That is why this 

lambda 2 is quite acceptable for us that is why we can move to the next. In this way we 



just proceed further and further after few steps we can see the optimal solution is coming 

this way. And we will get the functional value as 0.8. And this is the method where we 

are using the method of feasible direction. There is another alternative method is also 

there that is the Rosen’s gradient projection method. 

Now, today I am not going to detail that method. But either of these 2 methods we can 

use it. The beauty of this method is that we can very nicely we can adopt a search 

iterative process in such a way that always we will remain within the feasible space. And 

that this method is very popular method that is why I discuss this one with this today I 

am concluding. In the next I will discuss few methods on indirect searching technique for 

constraint optimization problem that is penalty function method.  

Thank you very much for today. 


