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Lecture - 23 
Nonlinear Programming with Equality Constraint 

Today in continuation to my previous lecture on classical optimization, today we are 

dealing with a Non Linear Programming problem with the constraints. 
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That is why, this can be said as a constraint optimization technique with equality and 

inequality constraint and today in specific, I will deal with the equality type of 

constraints. 
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Now, a general non linear programming problem may have the equality constraint, it 

may have inequality constraints and as well, it may have equality and inequality 

constraints both. Now, whenever we are applying the classical optimization technique to 

get the optimal solution for this non linear kind of problem for the equality type and for 

the inequality type of constraints, there are methods to solve it. And today in specific, I 

am just explaining the Lagrange method and some other technique to solve the non linear 

programming problem with equality type of constraints. 
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Now, before going into the detail of the technique, classical optimization technique, to 

get the optimal optimum solution for this problem, let us first try to explain, how the non 

linear programming problem with the equality constraint looks like. Now here, a general 

model can be considered that is, minimization of f X subject to g j X equal to b j, where 

m number of constraints are there and all the constraints are of equality type and it 

involves n number of decision variables. 

Now, one thing it is clear, this is the non linear programming problem, because the 

functions, which are involved in this problem that is, function f X objective function and 

the constraint g j X, m number of constraints are there and these are all non linear in 

nature. 
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Now, before going into detail about the classical technique, I am just, first let me explain 

the problem in general and I will just solve the problem graphically. For that thing, let us 

consider a simple non linear programming problem, where two number of variables are 

involved x 1 and x 2 and objective function is minimization of 2 x 1 plus 3 x 2, subject to 

x 1square plus x 2 square is equal to 1. 

Now, this is the equality constraint we are having here, one thing it is clear from the 

equation given that, this is a circle of unit radius and the centre of the circle is 0 0, that is 

the constraint of us. And we are having the objective function that is, the linear function 

that is, a line and this line is having the slope minus 2 by 3. Now, that is why we can say, 



the feasible region of this problem is a circle of unit radius and objective functions are 

the contours, these are the lines with a slope 2 by 3. 

Now, the minimum point would be that point, where the lowest lines touches the circle. 

And if we just maximize the problem, the same problem then, it will be the point, that 

will be declared as the optimal one if the point, which will be the point with a upper line 

touches the circle. 
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What even I say, let me just explain with the graph below and this is the problem for us, 

minimization of 2 x 1 plus 3 x 2 subject to x 1 plus x 2 is a x 1 square plus x 2 square is 

equal to 1. If we just draw the graph of it then, that would be the circle, that is a feasible 

region, the boundary of the circle is the feasible region for it, because this is the equality 

constraint type. Now, what about the line, the line is 2 x 1 plus 3 x 2, that is why the line, 

that is a objective function is moving on the space, in the x this is the x 1 axis and this is 

our x 2 axis. 

Now, objective function is moving along this space, now if this is so then, at this point, 

where x 1 equal to 0, x 2 equal to 0, the functional value of the objective function is 0 

and this is the slope of the objective function. If this objective function is moving 

through this way then, objective functional value will increase. And if the objective 

function is moving to the reverse side, if it takes the reverse path then, the functional f x 

value will decrease. 



In this way, the maximum value would be that line, which maximally if the function is 

moves like this then, it will just touch at the last at this point. And after that, if I just 

increase the function, it will be beyond the feasible region, that is why we can say that, 

possible maximum point may be here. Similarly, we can explain the minimum point as 

well, whatever I say, just let me just explain through the function, this is the objective 

function is moving, now this is another state of the objective function, where f x is equal 

1. 

Now, in the next, again the objective function is moved in another place and here, the 

objective functional value is coming minus 3.6. If you see here that, the objective 

function as I said, if it is coming through this way, the functional value will always 

decrease further and further. And at this point minimally, the function can move at the 

most, because that is the point, where at the last the function is touching the feasible 

region. 

That is why, we can declare this point as a point of minimum and this minimum point is, 

the coordinate of this point is minus 0.55 minus 0.83. And the objective function is 

minimum and the corresponding objective functional value is minus 3.6 and what about 

the maximum point. Similarly, if the function is moving further and further, the function 

is giving the maximum value here and this is the maximum objective functional value, 

that the value is 3.6 and the corresponding optimal point is 0.55 and 0.83. 

Now, this is we have considered in circle, now from here graphically we could visualize 

that, function is having a maximum point here, function is having the minimum point 

here. The given optimization problem, we have considered the minimization type, that is 

why the solution of this given optimization problem would be is equal to minus 0.55 

minus 0.83. 

But, if we analyse further, if we just want to maximize the same function subject to the 

same equality constraint then, maximum will be at the point 0.55 and 0.83. And where 

the maximums are occurring, there are certain things to be noticed, actually the point 

here, we need to consider the gradient of the function. 
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I am coming to that gradient of the function concept, now what is gradient of a function, 

generally in vector calculus, gradient of the scalar field is a vector field and gradient is 

the direction, in which direction the function is increasing. Now, in the gradient direction 

only, function has the fastest rate of change of the functional value, change in the 

positive sense. 

Now, what is that direction, that is why if we say, the objective function lines are straight 

parallel lines and the gradient of the objective function is the straight line, pointing 

towards the direction of the increasing objective function, which is the upper right. It 

means that, if we consider a scalar field, here the objective function is thus, objective 

function is only the straight line, it could be thus non linear surface even. 

If we consider the non linear surface then, at any point if we consider the tangent plane, 

at that point if we consider another direction, that is orthogonal to the tangent plane, that 

would be the gradient direction. In specific, I would like to say that, if this is the curve 

for us then, at this point, this is the tangent line and the gradient direction would be the 

orthogonal to this tangent line, that is why always, whatever objective function we are 

having, gradient direction would be the perpendicular direction of the tangent lines. 

Since here the objective function is the straight line, that is why the gradient direction 

would be in the upper right. And another important fact as I said before that, in the 

gradient direction, functional value increases further and further and the magnitude of 



that vector gives us the rate of increase of that functional value. And we will see, there is 

a relation of the gradient of a objective function, gradient of the constraint with the 

optimal value of the given optimization problem, that part now I am going into detail to 

you. 

Now, this is the definition for the gradient of a objective function, similarly we can 

define gradient of the constraint, that will be pointing out from the circle here in specific. 

Because, again in the circle, if we just consider a tangent plane at tangent line at every 

point then, if the normal direction to the tangent line would be the gradient direction. 

And that direction would be the gradient direction, we will see that, there is a relation 

between the gradient of the objective function and a gradient of the constraint at the 

optimal point. 
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For defining that thing, let us go back to the problem again and let us try to explain the 

problem once more with this given graph. This is the feasible, the boundary of this circle 

would be the feasible region of the given problem. Now, this is the maximum point, 

where the objective function is having the maximum value that is, the value is 3.605. 

Now, if we consider gradient at that point, that would be directed to the normal to the 

tangent line, that is why this is the yellow line that is directed upward right, that would 

be the gradient direction. 



That means that, if the function moves in this direction then, functional value will 

increase further and further, but what is the gradient. As I said, gradient is just an 

operator and is defined in the vector calculus, gradient is operating on a scalar field, that 

is the function here f x. That is why, gradient is the operator, that is the del operator we 

are considering and del of f x would be del f by del x 1 and del f by del x 2, this is the 

vector we are considering. 

And if you want to have the magnitude of this gradient then, it would be the magnitude 

of this given vector. Now, this is the gradient of the objective function, now what about 

the gradient of the constraint. Similarly, we can see the gradient of the constraint as well 

and this is the minimum point, where the function is having the minimum value. This is 

the gradient direction of the constraint, g x is our constraint for here, here g x equal to x 1 

square plus x 2 square equal to1 and at every point, we can define the gradient in this 

direction. 

And at this point, where the function is having the optimal value, gradient of the 

constraint would be the direction here. But, what about gradient of the objective 

function, gradient of the objective function would be the, at this point it would be just 

reverse to the gradient of the constraint. But, what is happening in the maximum point, in 

the maximum point, gradient of the objective function the direction is this way, the 

direction of the corresponding vector. 

And if we consider the gradient of the constraint, that would be again at this point will be 

in the same direction. That is why it has been seen graphically that, gradient at the 

maximum point and gradient at the minimum point, there is a relation to it and we are 

trying to find out those relations. Now, these are the gradient directions as I said, at every 

point it is the normal to the tangent at that point, these are the gradient direction. From 

the minimum point, if the gradient vectors are moving in this way and it is reaching at 

the maximum point here. 

What we see, we see that, at the maximum point, the direction of the gradient of the 

constraint would be the similar to the gradient of the objective function. Why I said 

direction, because as we know, for every vector function there are two components, one 

is the magnitude and another one is the direction. Direction tells here, for the 

optimization problem it tells us that, gradient of the objective function and the gradient 



of the constraint at maximum point, both are having the same direction, but the 

magnitudes are different. 

And in the similar way, if we consider the gradient at the minimum point, gradient of the 

constraint and the gradient of the objective functions are parallel, but these are reverse in 

direction. And one thing again this is here, there is a relation between the magnitude of 

the gradient of the constraint and the magnitude of the gradient of the objective function. 

From this fact only, if this is the basis for development of Lagrange multiplier method, 

which I will explain you in the next. 

And there we will see that, the Lagrange multiplier will give us the, that only gives us the 

relation between the magnitude of the gradient of the constraint and the gradient of the 

objective function. 
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That is why from here, we can conclude something, we can conclude that, at the 

minimum point, grad of f x, grad is the del operator, del l x del l y of f x and grad of g x, 

these are parallel and opposite to each other, but magnitude of the gradient vectors are 

generally not equal. And at the maximum point, the gradient of objective function and 

gradient of constraint, these are parallel in the same direction, again the same thing the 

magnitudes are not equal, one is the multiple of the other. And in other points, in other 

points other than the optimal points, there is a scope to improve the objective functional 

value further and further. 
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Now, whatever I say it, that is the graphical illustration for a non linear programming 

problem. Now, where we have considered the non linear programming problem with 

equality constraint and containing two variables. Now, we are coming to the classical 

optimization technique and where we will just show you two methods, one method is the 

method of direct substitution and another method is Lagrange multiplier technique. Both 

the techniques will give us the value for the maximum of the objective function and 

minimum value of the objective function, under certain constraint. 

Now, here one assumption we need to make that, all the non linear functions involved in 

the non linear programming problem, this must be twice differentiable. Otherwise, this 

technique is not applicable, rather that necessary condition can be applicable, but the 

sufficient condition cannot confirm the optimal conditions further. Now, the first method 

is the method of direct substitution, this is a very much rather combination of the 

algebraic and the classical optimization technique. 

And this direct substitution method transform the original constrained optimization 

problem to an unconstrained optimization problem using the substitution procedure. And 

Lagrange multiplier technique is another technique, in the next I will just explain to you 

and that is a more powerful tool to handle the constraint optimization problems. And 

here also, though we are transforming the constraint problem to an unconstraint one and 



the rest procedure would be the same, as I told before for the unconstraint classical 

optimization technique. 
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Now, let me come in specific to the method of direct substitution, now again I have 

considered the same problems, same non linear model, general model, where we have 

considered the minimization of the objective function and subject to m number of 

constraints. This problem is having m number of constraints and n number of decision 

variables and for this problem, we are assuming the condition that, number of constraints 

are lesser than the number of decision variables that is, m lesser than n. 
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With this consideration, I am moving to the method of direct substitution. As m is lesser 

than n, that is why from the given constraint set, step 1 would be we can easily just make 

n number of variables we can transform to n minus m number of variables from the 

given set of constraints. Once again I am repeating, that step 1 suggest that, use the m 

number of constraint relations and the original objective function, which involve n 

number of variables, that will be transformed with the n minus m number of variables. 

Then, once the step 1 will be completed then, we have taken care the constraint set well, 

that is why the original constrained optimization problem will be transformed to 

unconstrained optimization problem, where it will have only m number of variables, that 

would be the step 2. And after that, the unconstrained optimization technique whatever 

we did before, the same will be applied to get the optimal solution for the given 

optimization problem, let me explain this method with the example. 
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This is the example let us consider, minimization of x square plus y square plus z square 

subject to the constraint x plus y plus 2 z is equal to 12. Here, we have considered the 

one constraint is involved and constraint is of equality type, three variables are involved, 

that is why solving this problem graphically will be little difficult for us. And we need to 

apply certain classical optimization technique for solving this and here, we are applying 

the method of direct substitution to get it. 

As I said, the step 1 would be the, in the method of direct substitution that, whatever 

relation we are having one constraint, from there we will just make the objective function 

in terms of two variables only that is, n minus m number of variables will be involved, 

how to do it. Just see, from the constraint x plus y plus 2 z is equal to12, this can be 

written as z can be expressed in terms of x and y then, it will be half 12 minus x minus y. 

Once we are getting z, we will substitute the z value in the objective function f x that is, 

x square plus y square plus the square of these right hand side term. 

Then, the function objective function will become the objective function of two variables 

only. And not only that, this is the problem, the original this is the problem, which is 

equivalent to the given problem, because we have taken care the constraint part well and 

constraint is nothing, but where we are giving the restrictions on x, y and z. These are the 

decision variables and these we have considered already and now our task would be the 



minimization of f, where f is equal to x square plus y square plus 1 by 2 into 12 minus x 

minus y whole square that is, 1 by 4, etcetera. 

Now here, we want to minimize f, if I want to minimize f, again let me apply the 

classical optimization technique, which I did before. That for necessary condition, we 

will take the first order partial derivative of f, del f by del x we will equate to 0, del f by 

del y we will equate to 0, from there we will get the value for x and y and the 

corresponding z as well, which will give us the possible extreme points of this function. 
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Now, as I said, I have just did it, 2 x plus 2 by 4 12 minus x minus y minus 1 equal to 0 

and this is the next equation we are getting. Now, we are having two equations and two 

unknowns, we want to get the value for x and y from this. For getting this, we will just 

equate the first equation with the second equation and we will get x is equal to y. Once 

we will get x equal to y, we will substitute x equal to y in one of this equation and after 

that, we will get the value for x as 2, value for y as 2 and corresponding z would be as it 

is half into 12 minus x minus y then, z would be 4 only. 

Now, this is the possible extreme point for the given optimization problem, now we want 

to confirm that, whether this point is a minimum or not. 
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For that thing, we need to go for the second ordered partial derivative, rather we need to 

check the property of the Hessian matrix H, that is the sufficient condition for us. Now, 

this is the del f by del x, del f by del y, how to construct the Hessian matrix, Hessian 

matrix would be del 2 f by del x 2 del 2 f by del x del y del 2 f by del y del x and del 2 f 

by del y 2, I have done it in the last. And if we just do the second ordered successive 

differentiation for the given expression, we will get the value 5 by 2 half half and 5 by 2. 

We need to check the property of this Hessian matrix, because it will ensure, whether at 

the given point, the problem is having minimum or maximum. As I said, there are 

different method for solving it, one of the method is to check the corresponding minors, 

sign of the minors. As we see that, the first minor is positive, second minor is again 

positive then, we can conclude the Hessian matrix is positive definite. As we know, if the 

Hessian matrix is positive definite then, the corresponding point must be the point of 

minima. 

Thus, we can say that, 2 2 4 is the point of minima for the given function and the 

corresponding functional value would be 2 square plus 2 square plus 4 square, that would 

be 24, that is all about the method of substitution. Now, moving to the next method, that 

is the most powerful technique for solving non linear optimization problem with equality 

constraint. The method is in the name of scientist, Lagrange and the method is method of 



Lagrangian multiplier and this method involves some unknown parameter, that is called 

the Lagrange parameter. 
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And I am just going to detail this method in the next, method of Lagrangian multiplier, 

here also we have considered the same non linear programming problem. And first we 

are considering the simplest one, a non linear with two variables x 1 and x 2 and we are 

having only one equality constraint that is, g x 1 x 2 is equal to b. Let me explain the 

Lagrangian multiplier technique for this problem first then, we will generalise this 

method for n number of decision variables and m number of constraint. 

Now, this is the method, what is the method involves, the method involves in this way 

that, we will convert this constraint optimization problem to an equivalent unconstrained 

optimization problem with the help of some unspecified parameter, the name of this 

parameter is the Lagrange multiplier. What is the way of doing it, we will convert the 

constraint optimization problem to an equivalent by introducing the Lagrange function. 

That is why in the next, I will show you how to construct the Lagrange function and after 

that, we will just minimise the Lagrange function for getting the optimal solution for this. 
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Now, this is the problem for us and as I said that, we will convert this constraint 

optimization problem to an unconstrained one with introduction of the Lagrange 

multiplier lambda. Just see, we have constructed the function L and the function L 

involves two functions together, one function is the f objective function, f of x 1 x 2 plus 

lambda g of x 1 x 2 minus p. Now, if we minimise this Lagrange function then, the 

problem comes down to the same problem that is, the unconstrained optimization 

problem. 

As you know, how to solve the unconstrained optimization problem, the first order 

partial derivatives will give us the necessary conditions and second order will tells us 

about the sufficient conditions of the optimal values. But, just look at this Lagrange 

function, the L function, this L function involves three variables, two are the decision 

variables x 1and x 2 and there is another variable is being involved, that is the lambda, it 

is called the Lagrange multiplier. 

This is the unspecified positive and negative value it can take, thus lambda is an 

unspecified positive and negative constant and it is being named as the Lagrange 

multiplier. Now, we are trying to minimise the Lagrange function in the next. 
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Now, this is the problem, now the new objective function would be the minimization of 

the Lagrange function. Now, here the lambda is a variable for us then, what would be the 

necessary condition for this, necessary conditions would be the gradient of L must be is 

equal to 0. 
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What is the meaning of it, it means that, del L by del x 1 at the optimal point x star equal 

to 0, del L by del x 2 at the optimal point, this must be equal to 0. Similarly, del L by del 

lambda at x star, it will be 0, that is the necessary condition can be framed in this way. 



The Lagrange function L, which involves three number of decision variables x 1, x 2, 

lambda has an extreme point that is, maximum or minimum at x star that is, x 1 star, x 2 

star, lambda star. 

If the first order partial derivates exist and at the optimal point, all are equal to 0 and this 

gives us the possible extreme points for a given non linear optimization problem with 

equality constraint. 
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Now, as I said, let me just write it down in detail, L is a function, where L is equal to f 

plus lambda g, that is why we can write del L by del x1 equal to 0 with the similar 

equation del f by del x 1 plus lambda del g by del x 1 equal to 0. Del L by del x 2 equal 

to 0 gives us the equation del f by del x 2 plus lambda del g by del x 2 equal to 0. What 

about del L by del lambda equal to 0, del L by del lambda will give us g is equal to 0, 

that is the original constraint for us. 

Now, that is what we get from step 1, we get three equations and three unknowns, 

unknowns are x 1, x 2 and lambda. Therefore, solving these three equations, we will get 

the values, possible extreme point for the given optimization problem, that is the x 1, x 2, 

x 3. Now, one thing it is to be noticed that, if we are having n number of decision 

variables and m number of constraints, at least here we have consider only one constraint 

and this necessary condition will give us n plus 1 equations with n plus 1 unknowns in 

general. 
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Now, going to the next step, once we get the three equations and three unknowns, we 

will express all x i s in terms of Lagrange multiplier for the given equation, from first 

two equations. And once we will get x 1 and x 2 in terms of lambda, we will substitute 

that one in the third equation in step 3 and we will get the value for lambda. Once we 

will get the value for lambda, from the given necessary conditions, we will get the values 

for x1 and x 2 as well. Whatever I said, let me explain through the numerical example in 

the next. 
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This is the example for us, here also we have considered two variables and one equality 

constraint and the problem is of minimization type. Minimization of f x y, 5 by x y 

square subject to the constraint x square plus y square is equal to 1. Now, for solving this 

problem, first we need to construct the Lagrange function, after introducing the Lagrange 

multiplier lambda. How to construct Lagrange function as I said, Lagrange function 

would be the function of three variables here, the decision variables x and y, as well as 

the unspecified Lagrange multiplier that is, lambda. 

And that would be is equal to objective function plus lambda into the constraint, that is 

the original problem. Constraint optimization problem will be transformed to an 

unconstraint optimization problem, where the problem is having three number of 

variables. 
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Now, we will go for the necessary conditions for the given equation, we will get from the 

given equation del L by del x equal to 0. We are getting this equation minus 5 1 by x 

square y square plus 2 x lambda equal to 0, del L by del y equal to 0 gives us the 

equation minus 10 by x 1 y cube plus 2 y lambda is equal to 0 and the third equation that 

is, del L by del lambda equal to 0, will give the original constraint that, x square plus y 

square minus 1 equal to 0. 

Now, these three equations we are having and three unknowns we are having, from these 

three equations, we will just transform lambda in terms of x and y from first two 



equations. And we will substitute those values in the third equation we will get the 

corresponding value of lambda and in sequence, the values of x and y. From the first 

equation, we get 2 lambda is equal to 5 by x cube y square and from the second equation, 

we get 10 by x y to the power 4. 
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Once we have done so, we are substituting this one in the next and we will get the value 

for lambda as well as x star and y star. And we get the optimal value as x star is equal to 

1 by root 3 and y star is equal to root 2 by root 3 and this is the possible extreme point 

for the given constraint optimization problem. Now, we need to verify the sufficient 

condition for this problem, now for verifying the sufficient condition for this problem, 

we need to know what are the sufficient conditions for the given Lagrange function, that 

will be explained in the next. 
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But, before to that, let me explain the necessary condition for general non linear 

programming problem, where the function is having n number of decision variables and 

m number of constraints. Now, here also the same reasoning can be applied, we can 

introduce the Lagrange multiplier and we will construct the Lagrange function for this 

given optimization problem. Now, one thing is clear that, for this problem, we are having 

m number of constraints, that is why for constructing the Lagrange function, we need to 

use m number of Lagrange multipliers. 

And we will construct the Lagrange function in this way f plus lambda 1 into g 1 minus b 

1 plus lambda 2 into g 2 minus b 2, in this way j will run from 1 to m and this is the 

corresponding Lagrange function. First what we see in the Lagrange function, Lagrange 

function is a, this problem is again an unconstraint optimization problem and this 

problem involves m plus n number of decision variables. 

Because, the n number of original decision variables and we have introduced m number 

of Lagrange multipliers due to m number of constraints and this is the form of the 

Lagrange function that is, f plus summation lambda j g j minus b j, j is running from one 

to m. Now, again we will apply the necessary condition for these, necessary condition is 

as I said, gradient of the objective function we will just equate to 0 that is, del L by del x 

1 equal to 0, del L by del x 2, in this way del L by del x n equal to 0. 



Similarly, del L by del lambda 1, del L by del lambda 2, del L by del lambda m is equal 

to 0 and that will give us total m plus n number of equations, that I am going to detail in 

the next. 
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That is, we can say, this is the necessary condition for getting optimum for 

multidimensional non linear programming problem, where n number of decision 

variables are involved. 
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Now, what are the equations we are getting just see, del L by del x 1 equal to 0, del L by 

del x 2 equal to 0, del L by del x n equal to 0, similarly del L by del lambda 1 equal to 0 

this way. Now, whatever I say it, the same thing we will apply for the numerical example 

and we will see one thing it is to be noted here that, since the problem is having n 

number of decision variables and m number of constraints, necessary condition gives us 

m plus n number of equations and we need to find an m plus n number of unknowns. 

Thus, we need to find out the possible optimal value from this m plus n number of 

equations. 
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Now, before going into detail of the application of this technique for more than two 

variable non linear programming problem, let us first introduce the sufficient condition 

for dealing with the equality constraint, where we are having m number of constraints 

and n number of decision variables. Here also as I said that, L is a function here, where 

m plus n number of decision variables are there, for applying the sufficient condition, we 

need to construct the Hessian matrix with L. 

Now, the Hessian matrix will be positive definite for minimum value, negative definite 

for maximum value and for saddle point, neither positive definite neither negative 

definite. Thus, we can say that, the sufficient condition for f x to have a relative 

minimum at x star is that, quadratic Q. That is, the summation over i and over j del 2 L 

by del x i del x j d x i d x j, this quadratic must be positive that is, the quadratic form 



must be positive for all admissible values for d x i d x j and this would be negative for 

maximum for all admissible values of d x i and d x j. 
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Now, how del 2 L by del x j i del x j looks like, this can be formed with this Hessian 

matrix. Now, whatever matrix has been formed here, let me explain the same with this, 

let me just see, what are the forms of M, V, etcetera in the next. 

(Refer Slide Time: 38:26) 

 

As I said, we have considered the function minimization of f x 1 x 2 x n subject to g 1 x 

1 to x n is equal to b 1, g 2 x 1 to x n is equal to b2 and upto g m x 1 to x 2 to x n is equal 



to b m. Now, our corresponding Lagrangian function would be L, that will involve n 

number of decision variables x 1, x 2, x n and we are having m number of Lagrange 

multiplier lambda 1, lambda 2 upto lambda m and this would be is equal to f plus 

summation j lambda j g j minus b j, j will be from 1 to m. 

If we just see here that, del L by del x 1 would be is equal to del f by del x 1 plus lambda 

1 del g 1 by del x 1 plus lambda 2 del g 2 by del x 2 upto lambda m del g j by del x 1, 

this should be x1. Similarly, if I make del L by del x 2, this should be del f by del x 2 

plus this, that is why we can make it in general del L by del x i is equal to del f by del x i 

plus lambda 1 del g1 by del x i plus lambda 2 del g 2 by del x i upto lambda m del g j by 

del x i. 

Similarly, if we just do the first order derivative of L with respect to lambda 1 then, this 

would be is equal to, the first one would be is equal to g 1 only and what about del L by 

del lambda 2, it would be g 2. In this way, if I just make, it would be del L by del lambda 

i would be g i of x 1 x 2 x n. Now, we are constructing the Hessian matrix, how Hessian 

matrix looks like, Hessian matrix would be this, the matrix would be this one, del 2 l by 

del x 1 square del 2 L by del x 1 del x 2 del x 2 del x 1. 

In this way, del 2 L by del x n del x 1 and in the next, del 2 L by del lambda 1 del x 1, in 

this way if I just move further, the last element of this row would be del 2 L by del 

lambda m del x 1. And what would be the next second line, second line would be del 2 L 

by del x 1 x 2 del 2 L by del x 2 square del 2 L by del x n del x 2 del 2 L by del lambda 

1del x 2 del 2 L by del lambda m del x 2. In this way, the last term would be here, it is 

not the last term, that is the n th row would be, del 2 L by del x n del x 1del x n del 2 L 

by del x 2 del x n. 

And the last term would be del 2 L by del x 1 square, here del x 1 square and this would 

be del lambda 1 del x n and here it would be del 2 L by del lambda m del x n. If I move 

further, because L is a function of n number of decision variables, not only that m 

number of m number of Lagrange multiplier as well. That is why, the next term would be 

del 2 L by del x 1 del lambda 1 and the last one would be del 2 L by del x 1 del lambda 

m. 

And this term would be del 2 L by del x 1 del x n and this would be del 2 L by del 

lambda 1 square. And if it will be go further and further, whatever I have written in the 



matrix, let us try to evaluate all the values in the next, if you see the values here, we will 

see the value should be like this. 
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What is del 2 L by del x 1 square, del 2 L by del x one square from the given equation it 

would be, del 2 f by del x 1 square plus lambda 1 del 2 g 1 by del x 1 square. In this way, 

lambda m del 2 g by g j by del x 1 square, rather it would be is equal to del 2 L by del x 1 

square. Similarly, the next term let us see, del 2 L by del x 2 del x 1, del 2 x by del x 2 

del x 1 would be is equal to, if we just see this one, it would be is equal to del 2 f by del x 

2 del x1 plus summation lambda j del 2 g j divided by del 2 x 1, that would be is equal to 

del 2 L by del x 2 del x 1. 

Now, in this way, if we just move further and further, we will see the last term, that is the 

term that is, del 2 L by del lambda 1 del x 1, lambda 1 del x 1 this would be is equal to 

del 2 L by del lambda 1 is equal to g 1 and here g 1 and del 2 L by del x 1 is equal to del 

f by del x 1 plus lambda 1 into g del g 1 by del x 1 plus the other terms, that is why we 

are getting from here, this term would be is equal to del g 1 by del x 1. In this way, if we 

just do further, the other terms as well we will see that, the function m, the term, it is not 

the function, the part of the matrix, whatever matrix I have written, the same matrix the 

m. 

Here the same matrix if I just write down then, upto this, that if I just partition the matrix 

in this fashion, we will see that, this matrix corresponds to capital M, this corresponds to 



capital V, this corresponds to the transpose of V and here it will be 0, because del 2 L by 

del lambda 1 square will be 0. Similarly, for other terms as well, that is why we can say 

that, del 2 L is equal to M V V T and 0, where M is equal to del 2 L by del x i del x j and 

V is equal to del g j by del x i and this matrix would be is equal to 0. 

And we will see in the next as well with example the same Hessian matrix, how it will be 

constructed for the given numerical example. Now, what we can conclude that, if the 

Hessian matrix is positive definite then, it will be relative minimum, if it is negative 

definite, it will be relative maximum. 
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That is why, this is the sufficient condition we can say that, if the principal minors 

determinants of the given Hessian matrix are all greater than 0 that is, A corresponds to 

del 2 L. If these are all greater than 0 then, it is positive definite, otherwise its negative 

definite. Now, there is another method to check the Hessian matrix, whether this is 

positive definite or negative definite. 
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The method tells us that, that is called the Eigen value method and Eigen value method 

tells us that, if the Eigen values of the given matrix are all positive then, the 

corresponding matrix is positive definite. Now, for this thing, we can construct the 

characteristic equation, for the given Hessian matrix, this is the characteristic equation 

for us. And we have considered M minus z V V T and if this should be 0 minus z and if 

the roots of this matrix that is, the values of z, these are all positive. 

Then, we can say the corresponding Hessian matrix is positive definite, rather we are 

having the relative minimum. Now, this is the alternative process, otherwise we can 

apply the, checking the sign of the minor, that will work fine for checking the positive 

definiteness or negative definiteness for the given Hessian matrix. 



(Refer Slide Time: 49:05) 

 

Now, before applying the same technique for the general non linear programming 

problem, let us try to understand further, regarding the method of Lagrange multiplier. 

As we see the method of Lagrange multiplier, this is a rather an extension of the classical 

optimization technique, only the new thing is involved here. We are introducing the 

unknown Lagrange multiplier and we are constructing the Lagrange function and we are 

going for the necessary and sufficient condition over the Lagrange function. 

But, what is the meaning of the Lagrange function, what is the physical interpretation 

rather the economic interpretation of the Lagrange multiplier, that is the very important 

thing for a decision theory. That is why, I am coming to the next the Lagrange 

interpretation of the Lagrange function, Lagrange multiplier, the physical meaning to it 

and the economic interpretation of the same as well. We are considering a general 

problem that is, the optimization of f X subject to g X is equal to b, b is a constant we 

have considered here. 

Now, the Lagrange function would be certainly L is equal to f X plus lambda into g X 

minus b and the necessary condition will be del f by del x i plus lambda into del g by del 

x i equal to 0. And the other condition would be g of x 1 x 2 x n would be is equal to b, 

that is why these are the necessary condition. 
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Now, if you analyse the necessary condition further, we will see that, from the necessary 

condition, we can do the sensitive analysis over these. How to do the sensitivity analysis 

over this, we will see that, if we just change the value for b that is, if we just change the 

feasible space, feasible region, if we either extend or relax the feasible region or we will 

just tighten the feasible region, we will see the objective functional value will change. 

Not only that, the Lagrange multiplier will play a key role on these and from that 

mathematical explanation, we can generate the economic interpretation of the Lagrange 

multiplier. That is why, our next task would be to do the sensitivity analysis over these 

and we will change the value for b and we will see, how the objective functional value 

are changes with respect to the value of lambda, that is why we are doing certain 

simplifications of the necessary conditions. 

These are the necessary conditions for us, from here we will get the relation between the 

optimal value of f and the Lagrange multiple lambda and the b as well, because we need 

to find out the effect of a small change of b in the optimal value of f, that means we are 

changing the feasible region. Now, if I just do certain simplification here, we can see 

that, del f by del x i d x i would be is equal to minus lambda del g by del x i d x i. One 

thing we can see here as well that, del f by del x i is equal to minus lambda del g by del x 

i. 



What it gives us, it tells us that, if we consider the gradient of the objective function, 

gradient of the objective function is del f by del x 1 del f by del x 2 upto del f by del x n. 

And whatever the gradient of the constraint, gradient of constraint would be del g by del 

x 1 del g by, rather we are applying the del operator on the constraint as well as the 

objective function. 

What we see, we see that, the gradient of f is equal to minus lambda gradient of g, it will 

gives us some idea in the optimal value, what is happening, how the gradients are 

parallel and what would be the magnitude of the gradient vector for the objective 

function and the constraint. I will come into detail to that, but for doing that thing, let me 

simplify the given necessary conditions further. The simplifications can be done in this 

way so that, we will get the total we will get... 

From here, we are simplifying g x equal to b, rather d g is equal to d b, now here one 

thing it is clear that, generally b is a constant for the given constraint. But, you see if the 

b is something we want to change it, we want to do the sensitivity analysis over b, that is 

why we are taking the value for d b, we are considering the d b, the change of b value so 

that, the size of the feasible region will change. Now, in the next, we have taken the 

summation over all i’s, considering all decision variables together in the left hand side as 

well as considering the right hand side. 

And we can generate that d f is equal to minus lambda d g, rather we can see that, d f is 

equal to minus lambda d b, because as we know, d g is equal to d b, we have just done. 

Now, this relation gives us some more ideas about the Lagrange multiplier, let us see 

what is happening. As we known, in any business application for any optimization real 

life situation, the objective function f often represents the profit that has to be maximize 

or the revenue has to be maximized or the problem may involve the cost function, that 

has to be minimized. 

And what are the constraints, constraints are the available resources like availability of 

manpower, availability of the raw material, the capacity or the budget constraints are 

there. Now, whenever we are trying to say that, we are relaxing or we are changing the 

value of b. We are relaxing or tightening the feasible region, it means that, we are 

changing the available resources. And we will see, if it change the available resource, if 

we extend the available resource, we need to incur certain cost due to it. And we want to 



change for that extra unit of limited resource, how much gain I am taking out of it, that 

gives me the value of d f, that I am coming into next. 
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That is why we can say, at the optimal stage, where lambda star is the corresponding 

optimal value then, we can say that, d f star is the change in the optimal value, that would 

be is equal to minus lambda star d b. Then, what we can conclude here that, the values 

for lambda star, it could be positive, it could be negative, it could be 0 as well, that is 

why when lambda star would be 0, what is the meaning of it let us try to analyze. When 

lambda star would be negative what is the meaning of it, when it is 0 what is the meaning 

of that as well. 

Let us try to analyze that in the next, now the case 1 if lambda star is positive then, we 

see, if d b is positive, that is 1 unit increase in the positive value of b, that means d b is 

positive. Then, we are getting the d f value will be negative, because lambda star 

positive, d b positive and d f star is negative. Then, what is happening, we are getting a 

better minimum, because the change in the objective value, functional value is negative 

that means, we are getting a better minimum in that case. 

That is why we will see in general, for we will consider the Kuhn Tucker condition 

further, we will see for the minimization problem, always the lambda star will have the 

positive value, just we will detail in the next. But, for the timing we want to say that, if 

we just increase the available resource 1 unit then, the objective functional value will be 



decreased, that is better for the minimization of the optimization problem. And if we 

consider lambda star is negative then, again here if b is positive that means, if we relax 

the feasible region, we will see that, optimal value of the objective function will again 

increase. 

Because, lambda star is negative, altogether it would be positive, that is why we will get 

the increase in the objective functional value. That means, we are getting better objective 

functional value in the maximization problem, that is the maximum value of the 

objective functional value increases. But, if we see the lambda star equal to 0 that means, 

there is no effect on the optimal value for the given optimization problem. From here, we 

can conclude that, if we want to pay extra for the available resources then, that is the 

limited resource. 

If I want to pay more on that then, we are gaining something and how much gain we are 

considering, that can be easily connected with value of lambda star. Because, lambda star 

if it is positive then, we will get the better gain in minimization problem, if lambda star is 

negative, we will get the better gain in the maximization problem. Thus, in economy, this 

is the economic interpretation for the Lagrange multiplier, the value of Lagrange 

multiplier at the optimal solution is equal to the rate of change of the value of the 

objective function, as the constraint is relaxed and thus, it is being named as the shadow 

price due to the relaxation of constraint. 
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Now, this is the economic interpretation, now let us try to explain the necessary 

sufficient condition for the general non linear programming problem, where one 

constraint is involved, which is of equality type. Let us formulate the Lagrangian 

function, here the Lagrangian function would be the objective function plus lambda into 

the constraint. Again we are developing the necessary conditions by considering the first 

order partial derivates of the Lagrange function and we are equating to 0. 
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From here, we are getting the optimal values as 8 by 3 minus 1 by 3 minus 4 by 3 and 

corresponding lambda is 40 by 3, because we are having four equations and four 

unknowns, from here we are getting the optimal value for the given equation. Now, we 

need to check, whether this optimal value is the minimum or not. For that thing, we need 

to construct the Hessian matrix, for four variables this is the corresponding Hessian 

matrix for us, this corresponds to the matrix n as I referred before and this is the matrix 

of size 3 by 1, this is V, this is the matrix V T, transpose of the same matrix V. 

And if we just substitute the corresponding values here, we will see that, this Hessian 

matrix is positive definite, because the principal minors all are positive. Thus, we can 

conclude that, whatever optimal solution we got for the problem, that was the minimum, 

that gives us the minimum value of the objective function and that is the solution for the 

optimization problem. 
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Now, we have considered the Lagrange function here, but something I would need to just 

mention here few things in connection to this Lagrange technique that, we have 

considered L is equal to f plus lambda 1 into g 1 plus lambda 2 into g 2 upto lambda k 

into g k. And as I said, necessary conditions will generate the values for the decision 

variables including the values for lambda. Now, we will see that, for the active 

constraints only, the Lagrange multiplier will give us the positive value for the 

minimization and negative value for the maximization problem. 

And for the inactive constraint, the corresponding Lagrange multiplier value will be 0, 

we will talk on these further in the next topic when we will deal with a Kuhn Tucker 

conditions further. Now, in this connection, I want to say another thing as well, I want to 

mention that, some authors they prefer to write the Lagrange function in a different way, 

instead of x, instead of representing with f plus lambda 1 g 1 plus lambda 2 g 2, they 

prefer to write it f minus lambda 1 g 1 into minus lambda 2 g 2, etcetera. 

Now, if you see, it is in that way, whatever analyses we have done, the similar analyses 

can be done here as well, but only changes will be there in this case, only in the sign of 

the Lagrange multiplier. For the minimization, we will see the lambda star would be 

negative in that case, positive for the maximization, that is the second thing. And another 

thing I just want to mention also that, as I said that at a maximum point, the gradient of 



the objective function and the gradient of constraint both are parallel, but the magnitudes 

are different. 

And we will see that, the gradient of the objective function is the multiple of the gradient 

of the constraint, that multiplication constant is the Lagrange multiplier for this. That 

would be positive, that would be in the same direction in the maximum and it is in the 

reverse direction in the minimum, but the magnitudes are different, that I just wanted to 

mention here. 

In the next, we will deal with the necessary and sufficient condition for the non linear 

programming problem with inequality constraints and in specific, the Kuhn Tucker 

conditions further ((Refer Time: 63:41)). And these are the references, you can refer for 

this kind of non linear programming problem and that is all for today. 

Thank you. 


