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Today, the topic is classical optimization technique for unconstrained several variable 

optimization. In the last I talked about unconstrained optimization with a single variable. 

Today, I will talk on the necessary and sufficient condition for tackling unconstraint 

multivariable optimization problem.  
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This is the model for the unconstrained general non-linear programming problem, where 

the objective function is f X. And the function involves n number of decision variables 

and we want to minimize the function f of X. Similarly, we can maximize the function as 

well. Now, this is the general form of unconstrained optimization problem. Now, our aim 

is to find out the values for x 1, x 2, x n, which satisfy the restrictions – means here only 

the range of the decision variables are given to us; there is no other constraint as such; 

and we want to minimize the function f here. 
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Now, this is the simple example for two variables optimization problem, where we need 

to find out the maximum or minimum points of the functions – function x 1 to the power 

3 plus x 2 to the power 3 plus 2 x 1 square plus 4 x 2 square plus 6. If we see here that, 

this function involves two variables and there is no other constraints given to us. That is 

why the variables range is given; there is no restriction on the range even. Now, we want 

to find out the necessary and sufficient conditions for getting the minimum or maximum 

of this unconstrained function of several variables. 
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Now, we will just consider a general decision optimization problem, where the problem 

involves n number of decision variables. That is why the necessary condition tells us 

that, if f of X has an extreme point at the point X equal to X star and the first order 

partial derivatives exist for f; then first order partial derivative derivatives of f with 

respect to n number of decision variables; or, will be 0 at the extreme point. This is the 

necessary condition for us.  

If you remember for the necessary condition involving function of single variable; we 

had the same condition; instead of the partial derivative, there we had the first order 

derivative of the function. Since here the function is the function of several variables; 

that is why we need to consider the first order partial derivatives of f with respect to x 1, 

with respect to x 2. Similarly, for all other up to n variables – x n variable and we will 

equate to 0 at the ((Refer Time: 03:17)); then we will get the extreme point x equal to x 

star. 
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We need to prove it. We need to prove the necessary condition. That is why we need to 

prove that, if X star is the optimum point; let us consider this is the point; that is the 

relative minimum for us; then the first order partial derivatives at x star would be del f X 

star by del x 1, del f X star by del x 2; like that; del f X star by del x n. And we need to 

prove that, all are 0 individually. Now, let us assume… We will prove this one with the 

help of the Taylor’s theorem. 
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Not only that; we will prove the theorem by the contradiction process. As we know for 

the Taylor’s series, if I just want to expand the function in Taylor’s series, this is the 

form given to… This is the form. And we have considered after the second term, because 

we need to consider that, the function is a twice differentiable and this is the remainder – 

Taylor’s remainder form with us. This is the number of n variables. 
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For explaining this thing, let me explain the Taylor’s series in general for function of two 

variables; where, function is a variable. There are two variables if I want to consider; 



then f x 1 plus h, f x 2 plus h. In Taylor’s form, this would be is equal to f x 1, x 2 plus h 

– h 1 and h 2. Let me consider two increments – h 1 del x 1 plus h 2 del x 2 of f of x 1, x 

2. And the third term would be 1 by 2 factorial h 1 del by del x 1 plus h 2 del by del x 2 

square and f of this one.  

And, if I just consider up to n number of terms, then it would be minus n minus 1 

factorial and h 1 del by del x plus del by del x 1 plus h 2 del by del x 2 whole to the 

power n minus 1 f of x 1, x 2. And the n h term would be 1 by n factorial h 1 del by del x 

1 plus h 2 del by del x 2 to the power n. But, in the remainder term, there will be the 

involvement of theta will be there; where, theta will lie between 0 to 1. This is a very 

small value; and that is why this is the expression for us. 

If this is so then we can generalize it for n number of variables. And if we consider that, 

up to this second order term; then with n number of variables, the second order term. 

Then considering number of variables – again k number of variables. Here we are 

considering n is equal to 2 only upto to the second term; not only that; k number of 

variables.  

Then, we will have the remainder term only. Let me just write down the remainder term 

only. This term would be n factorial h 1 del x 1 plus h 2 del x 2 since there are k number 

of variables. That is why it would be h k del by del x k to the power 2. And f of x 1 theta 

h 1 plus x 2 theta h 2. If I expand it further, it would be two factorial rather, because n is 

equal to 2 here. If I expand it further, it would be is equal to 1 by 2 factorial h 1 square 

del 2 by del x 1 square h 1 h 2 del 2 by del x 1 del x 2. Like that it will just go further and 

further; and the last term would be h k square del 2 by del x k square and this would be x 

1 plus theta h 1, x 2 plus theta h 2. 

The same thing has been written here as well. Here we have considered f x star plus h. At 

the extreme point, we have expanded the… We have done the same thing. And here we 

are having this one; where, d 2 f is equal to summation i is equal to 1 to n, summation j is 

equal to 1 to n h i h j and del 2 f X star plus theta h by del x i del x j. The way we have 

written here; the same thing. This we have… We can consider here as 2 factorial i is 

equal to 1 to k; j is eqaul to 1 to k; h i h j del 2 by del x i del x j and f of x 1 plus theta h, 

x 2 plus theta h 2; and there are k number of variables certainly; there will be k number 

of variables will be there – theta h k. Similarly, here as well; it will just go up to x k plus 



theta h k. Now, this is the way we have just… The same thing we have written with the 

Taylor series like this. And this is the expansion we need to prove; this is the necessary 

condition we are proving now. 
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We want to prove that, these terms are all individually equal to 0. Now, we will prove 

the theorem by contradiction process. We will consider all of the first order partial 

derivatives are not equal to 0. Let us assume that, k-th first order partial derivatives does 

not vanish; that means the del f X star by del x k is not equal to 0 and all other 0. And let 

us see what is happening then. Again we are writing the same expression here. Here it is 

equal to f X star plus h minus f X star would be is equal to this term plus this one – this 

thing. 
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Now, we are assuming here that, the k-th first order partial derivative does not vanish. 

That is why if I just write down once again the same expression; we will see that, this 

will vanish; this equal to 0. The next one again equal to 0 up to this k minus one-th 

partial derivative 0, k plus one-th partial derivative 0; and the n-th partial derivative is 

again 0 plus k-th partial derivative is not equal to 0. That is why what is happening then; 

if this is so; then we are getting… And again this is tending to 0, because h i and h j – 

these are small increments over the decision variables. When this is tending to 0, this 

expression is of order h square. That is why this will vanish again. The whole expression 

then only depend on… The left-hand side is only depending on the right-hand side value. 
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This is the expression for us; we are getting it. Now, here if we assume… We have 

assumed that, del f X star by del x k is not equal to 0; first, let us assume that, this is 

greater than 0. If this is greater than 0; that is, del f X star by del x k is greater than 0; 

then what is happening? For h k greater than 0, the left-hand side expression is greater 

than 0; for h k less than 0, the left-hand side expression is less than 0, because this we 

have assumed as greater than 0. If this is so then what will happen? Ultimately, we are 

proving that, X star cannot be the optimum point. But, this is not acceptable to us. That is 

why we will conclude that, whatever we have assumed that, k-th first order partial 

derivative is not equal to 0; that is not acceptable. 

Now, the same condition we can prove. Similarly, if we consider del f X star by del x k 

is lesser than 0; only the condition here; the condition will just reverse. For h k less than 

0, it will be greater; for h k greater than 0, it will be lesser than 0. That is why for the 

both the cases, we are reaching to the conclusion that, x star cannot be the optimal point, 

because ultimately this change of the functional value is not going to be equal to 0. That 

is not acceptable.  

That is why whatever assumption we made, that is, the k-th partial derivative – k-th order 

partial derivative, first order partial derivative is not equal to 0; that is not acceptable. 

That is why we are concluding that, all the first order partial derivatives as well as the k-



th, the first order partial derivative with respect to k-th decision variables is also equal to 

0. That completes the proof of the necessary condition. 
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Now, let us come to the next; that is, the sufficient condition proving. In the sufficient 

condition, the first condition tells us that, at the extreme point, if the matrix of the second 

order partial derivatives, that is, the Hessian matrix is positive definite; then it is relative 

minimum. At the extreme point if we see; the matrix of the second order partial 

derivatives, that is, the Hessian matrix is negative definite; then the corresponding 

extreme point is the relative maximum. And if we see at the extreme point, the Hessian 

matrix neither positive nor negative definite; then we are concluding that, this is the 

saddle point. We are… Then we need to know few things to prove the sufficient 

condition. First of all, we need to know what is Hessian matrix; then we need to know 

what is the meaning of the positive definiteness, negative definiteness of the matrix in 

general. That is why we are now starting the proof of the sufficient condition. 
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Again I am coming back to the expression as I have explained, that is, the Taylor series 

expansion. After the second order, after the second term, we have taken the Lagrange 

form of remainder. And if we just look at this expression; what this expression… This 

expression tells us that, as we know from the necessary condition at the extreme point; if 

we consider X star is the extreme point; then certainly, the first order partial derivatives – 

all will vanish together. 

 That is why only the left-hand side expression, that is, f X star plus h minus f X star is 

only depending on the term, that is, 1 by 2 factorial double summation over i and j; both 

are running from 1 to n; h i h j del 2 f X star plus theta h by del x i del x j. if you… Just I 

have showed it to you that, this expression is nothing but an expression, that is, second 

order, which involves second order partial derivatives. I will talk more on this. The only 

thing just I want to mention here that, the sign of the change of the functional variable is 

fully dependent on the the sign of this expression. 
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Let us analyze further what this expression means. As we see, this expression is in the 

form, is a quadratic form. And this is quadratic form. What is the meaning of the 

quadratic form we need to know? Not only that; we will show you that, this quadratic 

form will have the form with the Hessian matrix in this fashion. h T capital H small h at 

point X equal to X star. And one thing just I want to mention that, if you remember, the 

last order term was involving the theta. That is the remainder term for us. 

Since x star is the extreme value for us, extreme point for us, in the neighbourhood of X 

star, this del 2 f X star by del x i del x j will have the same sign with del 2 f X star plus 

theta h by del x i del x j. That is why we can say that, the sign of f X star plus h minus f 

X star is fully dependent on the sign of this expression. And this expression is in the 

quadratic form; that is, this quadratic form is very much related to the matrix notation. 

And this quadratic form, there are three three terms within this: one is h T; h is the vector 

we have considered h is h 1 to h n vector; capital is the Hessian matrix for us; and small 

h is the same vector. The first one was in transpose fashion and this is the in the normal; 

and this vector at the point X equal to X star. That is why we are concluding here that, 

the sign of the function is fully dependent on the quadratic form. 
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And, this is the Hessian matrix for us. If I just write down in detail, then we can write 

down the expression – this one. Just see this expression. 
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We were having h i; i was running from 1 to n; j was running from 1 to n h i h j del 2 f 

by del x i del x j. This thing can be written as h 1, h 2, h n. That is the transpose of the 

column vector. And in between we are having the Hessian matrix. How Hessian matrix 

looks like? Just I will just write down in the next. And this is the column vector for us – 

h n. That is why this is taking the form h T, H, h as I showed you. And this H is in the 



form of del 2 f by del x 1 square, del 2 f by del x 1 del x 2, dot, dot, del 2 f by del x 1 del 

x n. Similarly, the next row would be del 2 f by del x 2 del x 1, del 2 f by del x 2 square, 

del 2 f by del x 2 del x n. And similarly, we will get the n-th – the last row as well. That 

is why I can say this is the Hessian matrix for us. That is the Hessian matrix. As I 

showed you, this is the Hessian matrix for us. And this Hessian matrix is being written 

with this term. This is the notation we are using for the Hessian matrix. 
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That is why we are saying that, the sufficient condition is fully dependent on the 

quadratic form. And the sign and the… Rather this is fully dependent on the property of 

the Hessian matrix. And if we see here, f X star plus h minus f X star is greater than 0 if 

Q greater than 0 and f X star plus h minus f X star is lesser than 0 if Q lesser than 0. That 

is why we can conclude that, at the extreme point X equal to X star, if Q greater than 0, 

then the Hessian matrix must be positive definite. And if Q less than 0, then the Hessian 

matrix must be negative definite. How the quadratic form is related with the positive 

definiteness of the Hessian matrix? That I will just tell you in the next. But, one thing is 

clear that, at the extreme point, whether the extreme point is minimum or maximum, that 

is fully dependent on the sign of the quadratic form. 
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That is why we can conclude that, if the sign of the quadratic form is positive, then 

certainly the function is having the minimum value – relative minimum value. That is 

why we can see at the extreme point, at the relative minimum point, matrix of the second 

order partial derivative, that is, the Hessian matrix is positive definite. Rather the 

corresponding quadratic form is greater than 0.  

Similarly, we can say that, at the relative maximum point, the Hessian matrix is negative 

definite; rather the quadratic form is lesser than 0. But, if we see at the extreme point, 

where the Hessian matrix is neither positive definite or negative definite; that means we 

cannot conclude whether the quadrtaic form is positive or negative. Then we will say the 

corresponding point is the saddle point for us. 
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That is why before going to the detail of any example on the unconstrained optimization 

problem involving n number of variables, let us just go through the the properties of the 

quadratic form first. If we see that, if there are n number of variables, this is the 

polynomial of degree 2. How the polynomial look like? This is the quadratic 

homogenous polynomial. There are terms are there. The terms can be written in 

summation a i j x i x j. Here Q is equal to a 1 1 x 1 square plus a 1 2 x 1 x 2; like that a 1 

n x 1 x n; like that we will get all the terms from the summation notation.  

This is the quadratic polynomial for us. This quadratic polynomial is very much related 

to our sufficient condition for unconstrained several variable optimization, because as we 

see that, whether the extreme point is minimum or maximum, that is fully dependent on 

the sign of the quadratic form. If the sign of the quadratic form is positive, then we can 

see that, the corresponding – the extreme point gives us the relative minimum value. 

That is why the sign of quadratic form is very important form for us. That is why I am 

just going through that part of matrix algebra, which we need further. 

Now, this can be written in the form of just see. This expression can be written as in the 

matrix notation X T A X. Now, one thing it is here. Instead of taking a 1 1, a 1 2 etcetera, 

if I just consider, if I just change the term in this way; I want to change the matrix a to a 

symmetric matrix. That is my target. That is why what we will do, we will just change all 

the coefficients with this form – c i j is equal to a i j plus a j i divided by 2. Then the 



corresponding quadratic form will be a quadratic form, which involves the symmetric 

matrix. Symmetric matrix means if a is a symmetric matrix, then a must be is equal to a 

transpose. That is why we will just see how the symmetric form we are getting in the 

next. 
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That is why, we can say that, this is the symmetric matrix. This should be x T C x; and 

where C is a symmetric matrix. 

(Refer Slide Time: 23:07) 

 



Let us see with an example here. If I look at this example; what we see here; this is the 

quadratic form given to us. Q of x 1 x 2 is equal to 10 x 1 square. This is a homogeneous 

quadratic polynomial – x 2 square plus 2 x 1 x 2. If I want to write in the form of this 

way; just x T A x; then I have to write this one as x 1 x 2 10, 4, 2, 0; and here x 1, x 2. 

Now, here you will see that, this matrix is not a symmetric matrix. If I want to make this 

matrix as a symmetric matrix; we will just use that equation. As I have told you, we will 

just take a i j plus a j i.  

That is why this matrix will become 10, 1 and 1, 4. Certainly this matrix is a symmetric 

matrix, because transpose of this matrix is again the same matrix. And here if I just write 

x 1 x 2; here also x 1 x 2. And we can conclude that, this is again Q x 1 x 2. That is why 

the quadratic form can be written in the symmetric form. Thus, in general quadratic form 

is a related with a symmetric matrix in matrix algebra. That thing has been written here; 

that Q x 1 x 2 has been written in the quadratic form x T C x as I have just told you. 
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Now, we will just see further properties of the quadratic form. It tells us that, if the 

quadratic form is greater than 0, then the corresponding matrix rather the symmetric 

matrix is being said as the matrix is positive definite. For example… Just look at the 

example; Q X equal to x 1 square plus 2 x 2 square. If you just see the expression here; 

for every x 1 and x 2 in the space, always Q value will be greater than 0. That is why the 

corresponding matrix whatever we will get; what is the matrix for x 1 square plus 2 x 2 



square? If I just write down that matrix again; we will see that… If I just write down the 

Q x 1, x 2 is equal to x 1 square plus 2 x 2 square; then this matrix would be x 1, x 2; the 

quadratic form 1, 0, 0, 2 and x 1, x 2. 

Certainly this matrix is the symmetric matrix. Not only that; this matrix is positive 

definite. Why? Because for every x 1 and x 2, this Q value is always greater than 0. And 

for X equal to 0, Q value is equal to 0. That is why we say the corresponding matrix is 

the positive definite matrix. Similarly, for the next. If the quadratic form is greater than 

equal to 0 for X not equal to 0; then the corresponding matrix is the or the corresponding 

quadratic form is positive semi definite. Look at this expression for example. The 

example has been given; Q X equal to x 1 plus x 2 whole square. If we just see this 

expression; we see for every x 1, x 2, this value is always greater than equal to 0, when it 

will be equal to 0? When x 1 will be equal to x 2. 
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And, this quadratic form again can be written in terms of the symmetric matrix; just see. 

Q x 1, x 2 is given as x 1 plus x 2 whole square; that means this is equal to x 1 square 

plus 2 x 1 x 2 plus x 2 square. That is why this can be written in terms of x 1, x 2; 1, 1, 1, 

1; and this would be is equal to x 1, x 2. And this is again a symmetric matrix, because a 

transpose is equal to a; all right? And not only that, for x 1 is equal to x 2, always we will 

get the corresponding quadratic form as equal to 0. That is why for X not equal to 0; for 

every x 1, x 2, Q X will be greater than equal to 0; for X is equal to 0, it will be 0. That is 



why the corresponding matrix would be positive semidefinite. And if we see, the 

sufficient condition involves the positive definiteness. For negative definiteness, here 

also another concept will be involved; that would be positive semidefiniteness and the 

negative semidefiniteness. 

Similarly, in this line, we can say one matrix – the quadratic form would be negative 

definite if Q X lesser than 0 for X not equal to 0; Q X equal to 0 for X equal to 0. For 

example, Q X would be is equal to minus x 1 square plus 2 x 2 square. For every x 1 and 

x 2, this – the bracketed term would be always positive. That is why always the quadratic 

quadratic form would give you the negative value. That is why the corresponding form 

would be the negative definite. Similarly, here in the next negative semidefinite, where 

we are considering the relation Q X less than equal to 0. And here for x 1 equal to x 2 

only, the Q X would be is equal to 0; otherwise, for every nonzero x 1 and x 2, for every 

nonzero capital X, that is, the vector x, the Q X value will give us the negative value. 

That is why this is negative definite. 

But, in the next, the example, Q X equal to x 1 x 2 plus x 2 square. For different x 1, x 2, 

we cannot conclude anything about the sign of Q. That is why for some cases, for some 

combination of x 1 and x 2, Q will be positive; and for some combinations of the x 1 and 

x 2, the Q value would be the negative value, rather the nonpositive value. That is why in 

that case, we will say the corresponding quadratic form is the indefinite form. If this is so 

then how to check the positive definiteness or the negative definiteness of a matrix. In 

general, checking the positive definiteness, negative definiteness from the given 

expression; it is not so easy.  

The examples I showed you. Since those are involving only the two number of variables; 

that is why we could say very easily whether the quadratic form is positive or negative or 

nothing can be said about that. But, if we have n number of variables – more than 2 

number of variables – 3, 4, 5, 6; looking at the expression of the quadratic form, it is not 

always so easy to say whether the corresponding matrix is positive definite or positive 

semidefinite, etcetera. That is why they should have some process to check it. 
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The process is that, we will… There are two processes rather. One process is that, we 

will just see the principle minors of the determinant – of the corresponding determinant. 

From there we will conclude. This is either this way or we will just look at the 

eigenvalues of the corresponding matrix. From there also we can conclude about the 

positive definiteness or the negative definiteness or semidefiniteness or indefiniteness 

about the matrix. Now, if it is positive definite; if the principle minor of A are all greater 

than 0; principle minor determinant means that, k-th principle minor would be; we will 

just consider first k-th row and first k-th column together. Then that will give us k-th 

principle minor. 
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In that way, if we are having the matrix a 11, a 12, a 13, a 14, a 21, a 22, a 23, a 24, a 31, 

a 32, a 33, a 34, a 41, a 42, a 43, a 44. Then the first principle minor of this matrix would 

be A 1. The first principle minor will have give me the corresponding determinant. The 

second principle minor would be is equal to the first two rows and first two columns. 

That is why a 11, a 12, a 21, a 22. The third principle minor would be the first three rows 

and first three columns. That is why it would be a 11, a 12, a 13, a 21, a 22, a 23, a 31, a 

32, a 33. And the fourth principle minor will coincide with the given matrix. Since the 

given matrix is of the order 4; that is why here if we are having a matrix of size n by n, 

we can say that, this is the first principle minor, second principle minor; this is the n-th 

principle minor. 

If we see that, all the determinant values are positive; then the corresponding quadratic 

form is positive definite. And if we see that, the principle minor determinants are having 

the sign – alternate sign starting from negative; then the corresponding quadratic from 

would be negative definite. And that is why k will run from 1 to n. The first principle 

minor will give me the negative value; second principle minor will give me the positive 

value; third one negative; fourth – positive. In that way we will get the alternative sign. 

And similarly, positive semidefiniteness. We will have the principle minors, which are 

all non-negative values. That is why some principle minor may have the 0 value as well. 

Then only we can say the corresponding form is the positive semidefinite – the matrix. 



And similarly, negative semidefinite would be; if we are having the alternative sign of 

the determinant values starting from negative. And indefinite; if we would not get any 

pattern; then we will say, the corresponding matrix is indefinite in nature. This is one of 

that example. The same example we have taken before. Just see the example. 10 x 1 

square plus 2 x 1 x 2 plus 4 x 2 square. This can be written in the quadratic form in this 

way – x 1, x 2; 10, 1, 1, 4; x 1, x 2. This is a symmetric matrix for us. If we look at the 

principle minors, the first principle minor would be greater than 0; second principle 

minor – the determinant value is again greater than 0. In that way, if we are having a big 

expression with few more number of variables; from there very easily we can conclude 

whether the corresponding quadratic form is positive definite or not. 
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And, this is… That was one of the check. And this is the alternative check; alternative 

check whether the matrix is positive definite or negative definite. It has been said that, a 

matrix is positive definte if all the eigenvalues of the matrix are positive; and it is 

negative definite if all the eigenvalues of them are negative, because we need this idea 

for when we are expressing the case whether the Hessian matrix is positive definite. We 

are concluding the corresponding extreme point is the minimum point – relative 

minimum point. If the Hessian matrix is negative definite, we are concluding that, the 

corresponding extreme point is the maximum point – relative maximum point. That is 

why checking the positive definiteness, negative definiteness – these are very important 

for unconstrained optimization problem. 
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Let us take an example, where the function involves two variables: x and y. And this is 

the expression – x cube plus 3 y cube plus 3 x square plus 3 y square plus 24. And we 

want to have the extreme points first. For checking the extreme points as we know, the 

necessary condition offers us the possible extreme members of the extreme points. That 

is why we will take the first order derivative – partial derivatives with respect to 

individual decision variables; and we will equate to 0. del f by del x 1; it is coming 3 x 

square plus 6 x. That is equal to 3 x into x plus 2. And this we are equating to 0. We will 

get two points from here: one point x equal to 0; and another point x equal to minus 2. 

Similarly, from the second – del f by del x 2, we are getting two points for y: one is y 

equal to 0; and another one is y equal to minus 2 by 3. That is why we can say these are 

all the extreme points we are getting from the necessary conditions. With every 

combinations of the x and y, we got just from the previous equations. We are getting four 

extreme points. Through these necessary conditions, we are getting the extreme points 

for function of several variable. Now, we do not know whether 0, 0 is the relative 

maxima or minima. That is why we need to have the next level check, that is, the 

sufficient condition check for it. 
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And, for checking the sufficient condition, as I have proved that, we will look at the 

property of the Hessian matrix, because the Hessian matrix will tell us whether the 

corresponding extreme point is a relative minimum or maximum or the saddle point; 

rather we will look for the quadratic form we are getting through the Hessian matrix. 

Whether the quadratic form is positive or negative, accordingly, we will conclude 

further. And this is the Hessian matrix for us; for this would be a 2 by 2 matrix, because 

we are having only two variables here. And del 2 f by del x 2 – we are getting from the 

previous. We are getting del f by del x 1 as 3 x square plus 6 x. That is why del 2 f by del 

x 1 square. Here it should not be x 1, x 2; it should be x and y.  

In the next, we are having del 2 f by del x 2 is equal to 6 into x plus 1; and del 2 f by del 

x del y would be is equal to 0, because del f by del y was not involving any x component 

there; that is 0. This is our Hessian matrix. We will just see the nature of this Hessian 

matrix at different extreme points. That is why we will go for the principle minors of this 

Hessian matrix. Looking at the sign of the principle minors of this Hessian matrix, we 

can conclude whether the given – whether the extreme points which, we got from the 

necessary conditions – these are all the minimum or maximum or the saddle point. 
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In this table, everything has been given in a nutshell. Just see… Let us see the first 

extreme point 0, 0. And the Hessian matrix was 6x… First, the Hessian matrix was this; 

the first principle minor was 6x plus 6. At 0, 0 point, the value is 0 here. The principle 

minor for the second… The second principle minor at 0, 0 point – it would be 6, 6. That 

is why the value of this determinant would be is equal to 36 – plus 36. And we see the 

first principle minor is positive; second principle minor – positive. That is why we can 

say the corresponding Hessian matrix is positive definite. And we conclude that, this is 

relative minimum. 0, 0 is the relative minimum. And the corresponding functional value 

is 24. 

Go for the next extreme point; that is, 0 comma minus 2 by 3. Again we will go back to 

the Hessian matrix. 0, minus 2 by 3 – the first Hessian matrix first principle minor is 0; 

first principle minor is 6 for us; and the second principle minor will give us some value. 

And this is the value for us; that is, minus 36. That is why we cannot conclude anything 

from here, because the first principle minor will give us positive, second principle minor 

give us negative.  

But, as I said, for the positive definiteness, all principle minors starting from the first – it 

would all be positive; and for the negative definite starting from the first principle minor 

– it would be alternate sign; but it will start from the negative sign. Since it is starting 

from the positive sign, first one is positive; next one is negative. That is why we 



conclude that, the corresponding Hessian matrix is indefinite; and the corresponding 

extreme point is the saddle point for us; that is, saddle point means neither maximum nor 

minimum for the corresponding function. And this is the functional value – 76 by 9 at 

that point. 

Similarly, the other extreme – third extreme point. Third extreme point is minus 2, 0. 

First hessian matrix – minus 12; second is again minus 72. Both are negative. Again we 

cannot conclude anything. And the corresponding Hessian matrix is indefinite. Again 

this point is a saddle point. And go for the last one – minus 2, minus 2 by 3. If you just 

see the first principle minor, it gives me the value – the negative value – minus 6; and the 

second principle minor gives the value, that is, positive value – plus 36. And since it is in 

the alternate sign starting from the negative sign only, that is why we can conclude that, 

corresponding Hessian matrix is negative definite. And the corresponding extreme point 

is the relative maximum point for us. That is why this is the corresponding value. 
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Now, till now, whatever we have learnt for function of several variables, the necessary 

condition gives us the possible extreme points; and sufficient condition tells us whether 

the extreme points we achieve. These are the relative minimum or relative maximum or 

the saddle point. But, nothing we have said about the global optimality. Now, that is why 

we need to say something about the global optimality for this function. For example, this 

is the function for us. Now, whatever conditions we got, we will get this point as a 



relative maximum; this point as a relative minimum; this point as a relative maximum; 

this point as a relative minimum. But, if I just look at the graph, you see this will offer us 

within this range. If this is the function is defined from a to b; then within this range, this 

is the global maximum. That is why whatever necessary and sufficient condition we have 

learnt; that could not tell us anything about the global optimality. We need to know 

something more about this when we can say the extreme point is a global maxima or 

global minima. That is why we are coming to the next for this. 
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And it has been said that, a concave function has a global maximum; and a convex 

function has global minimum. Now, what is concave function? What is convex function? 

That we need to learn again. And we will see that, convex and concave funtion again will 

be related with the positive definiteness and the negative definiteness and rather the 

semidefiniteness as well. But, here just I want to mention that, a concave function… We 

are considering a function, which involves n number of variables.  

And, not only that; the problem is unconstrained optimization. We will say if the 

objective function that which we are trying to optimize; if the corresponding function is a 

concave function and whatever maximum we are achieving, that is, a local maximum we 

are achieving; that is the global maximum for us. And if we see the function is global 

minimum; if we see the function is convex; then whatever minimum point we have 

achieved through the necessary and sufficient condition – the local, rather the relative; 



this is the global minimum as well. But, one thing we should mention here. Let us see the 

pattern of the concave function and the convex function. 

Now, this function is a convex function and this is a concave function for us. Now, how 

we can define the convex function and concave function? This is the convex function for 

us. If I consider a point here say x 1 point; this is corresponding f x 1; this is the x; this is 

the f x. We are considering of single variable only. This is the f function for us. We will 

say this f function is convex; f x is convex. If we take two points here: x 1 and x 2; and if 

we see that, if we just take any point in between x 1 and x 2; say this is the point for us. 

This point can be written as lambda x 1 plus 1 minus lambda x 2; where, lambda is lying 

between 0 to 1. Then we can say, if we see the functional value at this point – any point 

in between x 1 and x 2, is lesser than equal to lambda into f x 1 plus 1 minus lambda into 

f x 2; then corresponding function is the convex function. 

And, the reverse case; if we consider a point x 1 here and if we consider another point x 

2 here; and in between if I consider any point here; then if we see at this point, that is, 

lambda x 1 plus 1 minus lambda x 2; for lambda in between 0 to 1, if we put lambda 

equal to 0; we will get the point x 2; if we put lambda is equal to 1, we will get the point 

x 1. And if we want to get any point in between x 1, x 2; we will just vary the value for 

lambda from 0 to 1.  

And, if we see this is greater than equal to lambda into f x 1 plus 1 minus lambda into f x 

2; then the corresponding function is the concave function. That is why if we see the 

objective function is concave function; then the corresponding min-maxima; we will get 

the global maximum. And if we see the the function is convex; then we will get the 

global minimum. But, here one thing we should point it out. This global maxima or 

minima may not be unique one. 

For uniqueness, we should have the next condition. Condition is that, we shloud have a 

strict convex function for global minimum; and we should have a strict concave function 

for global maximum. Strict means what? Whatever inequality we have achieved here; 

that equality signs should not be there. That is why we will get only one point here; there 

should not be any flat area, where we will have several points, where the equality holds. 

That is why we want to say that, we should have only one point here. And strict convex 

means this inequality would be less than; strict concave means this would be greater than 



only. And for strict concave, we will have the unique global maximum; and for strict 

convex, we will have the unique global minimum. That is why looking at the functional 

pattern – whether the function is concave or convex, we can conclude above; we can say 

something about the global optimality of the unconstrained optimization problem. But, 

again the checking of the convexity reduces to the checking of positive definiteness and 

the negative definiteness of the matrix. 
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Because we know this property as well; if f is a function of n number of variables; then f 

is convex. If we form the Hessian matrix; if this is positive semidefinite; then the 

corresponding f function would be convex function. Similarly, if the Hessian matrix is 

negative semidefinite, then the corresponding function will be the concave function. And 

for checking the positive definiteness, we know the principle minors; will be all positive. 

The determinant values will be all positive; that semidefiniteness. That is why greater 

than equal to sign is there. And for negative semidefinite, we should have the alternate 

sign of the principle minors starting from negative value. 
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But, we know the other thing as well. If f is strictly convex everywhere within the given 

domain, where the function is defined; then we will see the corresponding Hessian 

matrix will be positive definite. And similarly, for the… If we see the Hessian matrix is 

negative definite, then the corresponding f must be strictly concave everywhere. That is 

why looking at the Hessian matrix as well, we can check whether the function is strictly 

concave or strictly convex. That is why the Hessian matrix not only gives us the possible 

extreme points; can check whether these are local maxima or local minima. 
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But, also it gives us the next level, that is, whether the local minima, local maxima is 

again the global maxima or not. Here just one of the property is given here. Let X star is 

a local or relative minimum; then X star is a unique global minima if there is a function 

from S to R; that is a real line. That is a… It is a… If function of several variable, then it 

should be S from to R n. If f is strictly convex, then the relative minimum would be the 

unique global minimum. Let us prove it. Let us consider X star is the local minimum for 

us. Then we know if X star is the local minimum; then in the neighbourhood… 
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For example, this is the function for us. Now, here this is the local minima for us; this is 

the local minima for us. How we will check this is the local minima? We will just look at 

if this is X star for us; we will just see the neighbourhood of X star. If we see in the 

neighbourhood, this relation holds that f X greater than equal to f X star; then we will say 

the corresponding minima is the local minima for us; where, X belongs to the delta 

neighbourhood of X star. 

Now, X star we are… We have to prove that, X star is also the global minima. Now, let 

us assume that, X star is not the global minima. We are having another global minima X 

hat within the domain of the function. That is S for us. Then if X hat is another global 

minima for us; then we can say that f X hat must be lesser than f X star. Now, within this 

condition, let us see further what is happening; and we have assumed that, f is strictly 

convex. If f is strictly convex through the condition f of lambda X hat plus 1 minus 



lambda x star; this must be lesser than; it is not lesser than equal to, because this is 

strictly convex; lambda of f X hat plus 1 minus lambda f X star; where, this point is a 

point in between X hat and X star. We have considered any point. If this holds; with this 

condition – f X hat is lesser than f X star, we can further simplify it and we are achieving 

to the condition that, f lambda X hat and 1 minus lambda X star is less than f X star. 
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This is the condition we are getting it. But, if we consider lambda as very small amount, 

so that the lambda X hat plus 1 minus lambda X star would be in the delta 

neighbourhood of X star. If we consider lambda very small; that would be very near to X 

star; that will be certainly in the neighbourhood – delta neighbourhood of X star; then 

what we see, in the delta neighbourhood of X star, we are getting one point, where 

functional value is lesser than the functional value at the extreme point.  

That is why whatever conclusion we made that, X star is the local optima; then it is 

failing. That is why whatever assumption we made before, we have considered that, X 

star is not global minima, but f is strictly convex. That assumption is totally wrong. That 

is why we can conclude that, when f is strictly convex; whatever local minima we are 

getting both; that is the global minimum as well. That is why we are taking the 

conclusion that, X star is the global minima. 

Now, with the function is strictly convex; if the function is not strictly convex, if we are 

having the function; if we see the function is not strictly convex; function is convex only; 



that is why the lesser than equal to sign is involved there; then we will see that, we will 

have several optima together we can have. But, if we see the function is strictly convex; 

then in that case, we would not get several global optima; we will get the unique global 

optima. That also we can prove it. We are considering one of that global optima X 

double star, which is different from X star.  

And, if we take any point in between; that is, considering lambda is equal to half; that is 

again within the doamin of the function. And we see in that point, the functional value is 

lesser than f X star. That is not acceptable to us, because the function is strictly convex. 

That is why the less than sign is there. And X star we have assumed as the global 

minima; we should not have any other point for the functional value is lesser than that. 

That is why whatever we have assumed that, we are having another global minima with 

X double star; that is, that assumption was wrong. That is why x star cannot be… That is 

why we can conclude that, we cannot have more than one X star when the function is 

strictly convex. That we concluding here that, when f is the strictly convex function, then 

we can conclude that, the corresponding local minima is the global minima. 
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Similarly, when function f is the strictly concave function, the corresponding maxima – 

local maxima would be the global maxima. Now, for the next, again we can prove that, 

for strictly convex function, the corresponding Hessian matrix is positive definite. That is 

why whatever conclusion we made before that, if the function is… We should have a 



relative minima if the Hessian matrix is positive definite. Here we are making further 

assumption that, f is strictly convex. Whatever local or relative minima we will get; that 

would be the global minima as well. That we can prove very easily. Just look at the 

function. This is the expression we are getting from the Taylor’s series. And since the 

function is the convex function, we can say this one as well. How we can say it? 
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Let me just go through the graph once. Look at this graph; this is the convex function. 

That is why we are taking a tangent here; where, the optima exists at X star. All right? 

We are considering another point, that is, X star plus h; X star plus h here. This is the X; 

this is the f X. Then certainly function is the convex function for us. Not only that; we 

have considered only the function is strict convex function. Now, at X star plus h, this is 

the functional value. That is why the whole value upto this would be is equal to f of X 

star plus h.  

But, upto this, if I see this part; this value would be is equal to f X star. And what about 

this value? This value would be is equal to h del f, because if we consider the tangent 

here with the angle theta; if this is h; then it would be is equal to h tan theta; tan theta 

would be nothing but the slope of this tangent. That would be the first order partial 

derivative. That is the gradient function we are considering. That is why what we see 

that, f X star is star plus h is greater than summation of f X star plus h of delta f at X star. 



And, this is the reverse for the case of concave function. This is not the same for concave 

function. For the concave function, it will just reverse f X star plus h must be lesser than 

f X star plus h. That is the gradient of f. That is why if I just combine these two 

conditions together, what we get? We get f x star plus h minus f X star is greater than 

this value. That is why what we conclude that, if the function is strictly convex; then the 

corresponding Hessian matrix is greater than 0. That is the conclusion for us. That is why 

we can say the Hessian matrix is positive. If it is positive definite, then the function is 

strictly convex. 
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Now, whatever results we made out till now, we are summarizing all together right now. 

A convex function has a local minimum if at extreme point Hessian matrix is positive 

semidefinite. A strict convex function has a global minimum if the Hessian matrix is 

positive definite everywhere. And a concave function has a local maximum if at extreme 

point, the Hessian matrix is negative semidefinite. And a strict concave function has the 

global maximum if the Hessian matrix is negative definite everywhere.  

Whatever conclusion we just made up to this; this is very much related with that well-

known fact, that is, a convex programming in optimization technique. We will just 

reconfirm all these results together in the convex programming further when we will 

consider some more complicated situation, that is, the constraint optimization problem 

with several variables in the next. 
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And, thus we are concluding our lecture with this. That we can determine maxima, 

minima for the unconstrained optimization problem, where the objective function is 

continuous and differentiable. And we have said even not only that; we are not getting 

not only the local optimum; we are also getting the global optimum. With further 

conditions, we are having with the function – objective function involved in the function 

in the problem. 
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And these are the references can be referred for further learning of this topic. 


