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Lecture -19 

Shortest Path Algorithm 

In this lecture, we want to discuss the shortest path algorithm; before discussing the 

shortest path algorithm just will discuss little bit about what is a graph for this directed 

graph, what is undirected graph, what is weighted graph? And, then we will go to the 

shortest path algorithm. Basically, if you see the we have derived shortest path using the 

C P M and path method. Now, we want to derive shortest path algorithm using the earlier 

other method that is graphically; let us see first the definition. 
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What is a graph? A graph we say that is a order pair V, E which is a composed of what is 

V is the set of vertices; E is the set of edges connecting the vertices. So, basically a graph 

will have a set of pairs of the form V, E; V is the set of vertices, E is the set of edges 

which connects the vertices and edge; what you say that is e equals (u, v) which is a pair. 
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So, if you take the example over here what I have drawn over there. But it will be better 

if it tell from here; if you are having say your vertices a b c and d, e these are the vertices 

are there. If I have drawn a lines from here a to b, a to c, a to d and there are d to e, c to 

b, c to e and b to e. So, what are the vertices here v set of vertices vertices will be a, b, c, 

d and e; what we have written over here; v is a, b, c, d, e and . And, the edges; the edges 

will be the pairs what are the pairs from the figure if you see the pairs one pair is a b; 

another pair is a c, other pair is a d. 

So, (a, b), (a, c), (a, b), (a, c) and (a, d) this is one side after that from b you can write 

down (b, c) and (b, e). So, (b, e) and (b, c) this is another one; from c it is (c, e) and then 

(c, e) the other one is (d, e); if you see on the figure over there. So, the we are drawn it 

the ((Refer Time: 02:41)) equals V is the vertices. And, therefore a b c d e these are the 

vertices. And, for that the edges are one edges is a to b, another edges a to c, other one is 

a to d I have written that; the next one is b to e that is b to c b to e; the other thing is d e 

and c to e. So, therefore b c I have to not written twice (b, c) is coming only once. So, if 

you draw any graph for the graph there will be a set of vertices and the set of edges like 

this. 
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The next one is what is directed graph and what is undirected graph? A directed graph is 

one in which the pair of vertices in a edges is un it is unordered; it is unordered means 

undirected graph sorry undirected graph is one in which the pair of vertices in a pair of 

vertices in edge is uncovered. Uncovered means what I have written that is (V 0, V 1) 

should be equals to (V 1, V 0) that is if you form any activity from V 0 to V 1 whatever 

activity time it takes from V 1 to V 0 if you take it will take the same time. 

So, undirected means it may be from V 0 to V 1 or from V 1 to V 0 whereas just the 

opposite one is the directed graph. If you see the directed graph is the edge from where 

in this case your (V 0, V 1) this should be equals to V 1 not equals to (V 1, V 0). So, if 

you have V 0 to V 1 is not equals to V 1 to V 0; that is there will be only one side edge; 

one edge either it will be form V 0 to V 1 or from V 1 to V 0. So, just like whatever I 

have drawn that is undirected graph there is no direction. So, it may be from a to b from 

b to a whereas if you make anything like this one arrow like this; then there will be a 

direction the direction is a to b. Next if you see for this one; we have written this is the 

tail and this is the head. 

So, basically this I have told earlier also; this is the tail and this will be the head. So, this 

is your directed and undirected graph. 
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Next is what is weighted graph? We can associate the edges of a graph; edge we have 

told edges means the directions the pair (a, b) edges of a graph with numeric values; then 

the graph we call it as the weighted graph. This numeric values or weights we say it may 

be nonnegative integers in general in it is in. But weight may be a measure of length of 

route, the capacity of line, the energy required to move between locations among a load, 

among a route like this or in other sense I want to say that what is the weighted graph? In 

the weighted graph if you have the you see this figure to move from a to b; you need you 

have to spend either sometimes or some cost or some labor whatever; it may be to go 

from vertex x to vertices b and that amount may be say 10 units. 

So, this 10 units wherever you are put in then we call it as the weighted graph like this 

way I can put weight for each and every graph. 
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So, you see the example; the first one is the weighted undirected graph you are put the 

weights if you see 1 to 2 some weights are given 8; 2 to 5 weight is 6 like this way the 

weights are given. So, these are un weighted undirected graph whereas if you see the 

next figure; then there are directions from 1 to 2; 1 to 4 say similarly 4 to 3 like this; and 

weights are given. So, the next example is for the weighted graphs. 
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Now, we can associate termination some notions we will use if (V 0, V 1) is an edge of 

an undirected graph. Then, you say that V 0 and V 1 are adjacent or in other sense in this 

figure if you are drawing a, b you can say a b is adjacent or this d e; this d e is adjacent. 

And, if this a, b is an edge of an directed graph basically this is I have given a direction. 



So, a, b we are calling is an edge of the directed graph whereas d e is edge of one 

undirected graph; of course both cannot occurs simultaneously you have to understand it 

that either there will be directed graph or there will be undirected graph. So, if you are 

having the directed graph for that if 2 edges are there a to b then these V 0 and V 1; this 

we call as the adjacent. 

Next is a path is a sequence of vertices V 1, V 2. V k a path is a sequence of vertices V 1, 

V 2, V k such that each vertices V i is adjacent to the next vertices V i plus 1. So, you are 

a having path in a sequence just like if you see a b, a b, e d if you want to go like this a b, 

e d something like that; for this path whenever you are moving it is a sequence of path 

moving here to here, from here, from this position starting position this then next 

position after that this position and after that this position. If you see if this is the starting 

position next one will be this is if this is V 0. 

Then, this one will be V 1 that is if it is V i it will be V i plus 1 like that way it will be 

going; you have to note on thing that in a path each edge can be travelled only once; each 

edge sorry each edge can be travelled only once each edge that is this edges can be 

travelled only once. And, the last one is the length of a path will be the number of edges 

in that path that is if I am moving in the direction of a, b, e, d. Then, number of edges 

this is your edge one I am say E 1, E 2 and E 3 this sum of E 1, E 2and E 3; E 1 E 2and E 

3 the edges which has travelled sum of this 3will give you the length of that particular 

path. 
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Then, the adjacent matrix representation that is this graph can be represented in terms of 

some matrices. 

So, let G equals (V, E) be a graph with vertices; usually the adjacent matrix we are 

denoting if you see here we have given it the notation matrix which is a 2 dimensional 

array; we have given the notation matrix here. So, if the edge (V i, V j) is in e j then 

matrix i j equals 1; if there is no such edge then matrix i j equals 0 or in other sense 

whenever you are writing the matrix say here matrix i j; whenever you are writing matrix 

i j; if there is an there is one edge between V i and V j. Then, we say this value is 1; if 

there is no edge then we say this is equals to 0. 

So, the value will be either 1 or 0depending up on whether for one path i, j for the 

vertices (V i, V j) if it is there then we say matrix i j equals 1; otherwise we say that the 

matrix i j is 0. The next one is the adjacency matrix for an undirected graph is 

symmetric; whereas the adjacent matrix adjacency matrix for the directed graph may be 

symmetry may not be symmetry. For the adjacency matrix for the undirected graph must 

be symmetric because there is no direction. And, when the graph is weighted we can laid 

the matrix in the i j you weight that label the edge from vertex i to vertex j instead of 

simply 1 or in other sense we want to say just like if you see this figure. In this figure 

wherever you are moving from a to b we have associated one weight that is 10. 



So, in that case the value will not be 1; the value will be 10. So, in this case whatever we 

are doing the if there is an edge some value is associated, some weight is associated in 

the matrix we put the weights. Let us see the example. 
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In the next example it will be very clear for the directed graph if you see there is a 

directed graph 1, 2, 3, 5. So, you have made a matrix; in the matrix there are 5 rows and 

5 rows; 5 rows and 5 columns because you are having the vertices are 1, 2, 3, 4, 5. So, 

one to one if you see there is no path obviously so it is 0; 1 to 2 there is a path so you 

have put 1. Similarly, 1 to 3 there is a path we have put 1; 1 to 4 there is no path so it is 0 

if you see the element of 1, 4. 

Similarly, the element of 1,5 this is equals 0 and the other rows are coming like this. For 

the second row 2 only 2 2 only 2, 4 there is an path from 2 to 4 and 2 to 5. So, this two 

are one and one only for the second row like this way you are putting the next elements 

of this. So, therefore if there is one edge from or path from vertex to another vertex 

corresponding element i j will become 1; if there is no path the corresponding element 

will become (0, 0). 
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Next one you see the undirected graph; for the undirected graph also same thing is 

happening 1 0; 1, 1 is 0; 1, 2, 3, 4 like this way you are doing. The only thing 2, 1 if you 

see here from 2, 2, 1 also we have made it one because from one to there is no directions. 

So, it may be 1, 2; it may be 2, 1 both are same; for this is in from 2 to 1 it is one and like 

that way other this is the only difference between directed and undirected graph. Because 

in directed graph if there is path from 1 to 2 only 1 to 2 will be 1 whereas for if for the 

undirected graph if there is a path from 1 to 2. Then, it will be 1 to 2 will be 1 whereas 2 

to 1 also will be 1; the other things will remain the same. So, this is the example of 

undirected graph. 
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Now, the next one is the adjacency matrix weighted graph; if you see the weights are 

given for this one whenever you are putting the weights what we have done if you see 1 

to 2; 1 to 1 there is no path. And, we have put and cost of infinity that is and hypothetical 

value has been assigned infinity instead of 0. Because you have some numeric values 

over here the weights are non negative in general non negative. 

So, therefore we are putting very high value infinity over here when there is no path. So, 

far whenever for the weighted graph the matrix can be done like this. 
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Next one is what is the; so this are the basic preliminaries you can say that what we 

require; then what is the shortest path problem? In you already if you see you have done 

the shortest path problem; that is from starting from one note if you see this note; starting 

from this note if I want to come back to this note; how to do it? This basically we are 

telling that you are having a problem something like this or it is something like this also 

it may be there say it is like this; this you have done in the path C P N. So, this is you are 

starting position, this is you are ending position; from this position to this position in 

which path should we move. So, that the cost will be less; basically this is your shortest 

path. 

So, in an edge weighted graph; the weight of an edge measures the cost of travelling that 

edge; that is whenever you are moving from one vertex to another vertex whatever cost 

is associated the cost may be in terms of the time; is may be in terms of label, in terms of 



money whatever it may be that we call it as the weights. For example, in a graph 

representing the network; a network of airports the weight got should represent it may be 

distance, it may be cost or it may be time; such a graph can be used to answer any one of 

the following questions basically. The question same question may be asked in the 

different way if you see. Then, what is the first question, what is the fastest way to move 

from a to b? 

So, if you see the next question is which route from a to b is the least expensive; and the 

last one is what is the shortest possible distance from a to b. So, basically so in which 

way I should move from one path, one route to a to b route; what should be the route to 

move from a to b such that the cost will be minimum and what should be that path? So, 

basic problem is this one; for each of this questions we have the solution for the shortest 

path algorithm. 
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A shortest path between 2 vertices s and t in a network is a directed simple path from s to 

t with the property; that no other such path has a lower weight please note this one; if 

you see this one. 
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I want to move from this to this in between so many things are there. So, whenever I 

have want to move from s to t; then what should be the shortest path? So, that I can move 

from s to t such that there is no other lower weights are available to move from s to t; 

that is the lowest one that is if you see in a weighted graph and 2 vertices u and v. We 

want to find a path of minimal time weight between u and v. So, minimal time take 

between to move from s to t that we are calling as the shortest path. And, you have to 

note one thing that shortest path does not physically represents the shortest distance. But 

basically the path consist which gives you the minimum weight please note this one; it is 

not that the physically shortest distance. But it will be the minimum weights which you 

are moving along the path; so this is the shortest path.  
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Now, what is an shortest path problem? So, you are shortest path problem is this one. 
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What are the applications? The applications if you see you are writing in map navigation; 

that means whenever you want to move from one place to another place; we can use this 

shortest path problem. In circuit wiring whenever you are drawing the circuits to move 

from one circuit to another circuit the vehicle routing; that is you have to drop some 

materials at different locations of a city; what path it should follow for that one in robots 

also use in VSLI chip optimization this is use, in telemarketing, telemarketer operator 

scheduling it is use, approximating piecewise liner function we can use it; network 

routing protocol also if you want you can use it. 
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And, now single source shortest path basically whatever we will discuss that is the single 

source and single destination shortest path. So, single source shortest path means I want 

to say the path starts from a source only; from only one sou. If you see for this problem if 

you see the path may start from here, from here, from here, from here, but and it is 

destination also may be any one of this. But the problem which we want to discuss; 

basically the problem which we want to discuss here there will be only one source that is 

this one and there will be one destination that is this. So, please note that for a given 

graph G (V, E); we want to find out only the shortest path for which there is only one 

given source S and there is only one given destination say D. So, of course by reversing 

the direction of this D and S of each graph; we can reduce this problem always to a 

single source problem. 
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So, we are we want to work with single source, single pair shortest path problem. And, 

now the single pair shortest path you are having the given initial vertex s and final vertex 

t; our aim is to find out the shortest path from s to t. If we can solve the single source 

shortest path problem with source vertex s then we can solve this problem too obviously. 

Because we if we are starting from an initial vertex and we are moving to the destination 

then we can solve the shortest path problem. And, it has another property that is all pair 

shortest path problem. In the shortest path problem not only we want to find out the 

shortest path between source and destination. Basically we are trying to solve the 

shortest path between any 2 vertex; whenever you are completing the shortest path 

algorithm we can develop the shortest path among the source and the destination as well 

as the shortest path between any 2 vertices. Please note this one shortest path between 

any 2 vertices which actually we are not done using the C P M method or the path 

method. 
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So, some notations which I will use actually in the development of the algorithm. The 

first one is the predecessor vertex pi (v). Predecessor vertex pi (v) is in the search 

procedure, if we can find a path from u to v with minimum weight; that is you are 

moving from vertex u to v with minimum weight during the shortest path algorithm. 

Then, you say that u is the predecessor of v or in other sense if you see if this is your u if 

this is your v; there is an shortest path between u to v. Then, we say that that the there is 

one predecessor; u is the predecessor of v or in other sense you can say predecessor is 

nothing but the parent that is u is the parent of v. So, basically this pi array tells you what 

are the predecessors of different vertex? For a vertex what is the corresponding 

predecessor that is being written on this pi array. And, this predecessor is always has to 

be uniquely defined and there must be there may be a case where v is a source vertex. 

So, if a source vertex is there the predecessor of the source vertex is always nil; that is if 

this is the source vertex say s then pi of s this is equals to nil. So, for the source vertex it 

is always nil otherwise you are getting if from u to v there is a shortest path. Then, the 

predecessor of v u is v; we say that the u sorry predecessor u is the predecessor of v; this 

is one notation. 
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The other notation is the distance function for a specific vertex s as source; the distance 

from s to vertex v is computed algorithmically and we denote it by d [v]. So, the distance 

we denote it by d [v]. So, the distance is between if you have the source s, if you have the 

destination d this two are there; you have a source, you have a destination. So, what is 

the distance between s and d that is basically told in this d [v]? 

So, basically d [v] denotes your number of edges its requires to come to the vertex v 

from source s. And, also it is known as the shortest path estimate that is from move from 

s to v what is the shortest path that also we write over here. 
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Now, there is a famous algorithm which we call it as Dijkstra algorithm; this Dijkstra 

algorithm is used will basically discuss this Dijkstra algorithm to find out the solution of 

the find out the shortest path. This algorithm can be applied for the problems where edge 

of the graph has the non negative weights number one. For non negative weights the 

bellman ford algorithm is also available; although we will work with the non negative 

weights. And, we will discuss only the Dijkstra algorithm because due to shortage of 

time; we cannot discuss you both the cases that is weighted case and non negative 

weighted cases we cannot discuss. If you see the Dijkstra algorithm is best the only two 

things; one is your you initializing the singles source and another one is your relaxing. 

So, we have to know what do you mean by we are initializing the source and what do 

you mean by we are relaxing? 
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So, what is initializing source? Initializing single source (G, s)if you see what we have 

written for each vertex v belongs to V [G] you take anything; you this is the 

initializations single source a graph; for that reason if you see we written (G, s) that is it 

has a single source for each vertex v what you will do? You will make the distance 

vertex v equals infinity and your pi v what is your p i (v) if you remember we have told 

in the just this one initialization. For initialization we are using pi whereas for the other 

one we are using the distance we are using v. 
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So, pi v your d v is just your predecessor vector you are storing in pi and whereas the 

distance vector you are storing in v. So, here what you are doing for the each vertex v 

belongs to V [G] what you have to do? You have to make the d that is d [v] equals 

infinity. 
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You are making d v that is equals to infinity and initially you are making this pi (v) this 

is equals to nil. And, pi (v) equals to nil whereas if s is the source then your d s value that 

will be equals to 0; to make it simple for you suppose you have a graph like this I am just 

drawing the graph very easy. We have a graph like this the nodes we are defining as say 

o, a, b, c and the distance suppose it is 5, 6, 7 and 8. 



So, basically what you are doing initially the value is if you see initially we are writing 

this value as vertex value as 0 over here. And, all other vertex values will be infinity; this 

we call as the initialization this you are making as 0. And, all this elements all these 

vertex values you are making as infinity; that we have written in the algorithm if you see 

the algorithm over here d [v] equals to infinity. And, your pi (v) is nil whereas for the 

source d s equals to 0. And, similarly after initialization your pi (s) that is the predecessor 

of source there will be nothing. So, predecessor of source always you will write down as 

nil. 

So, we have to note this one that the distance of source is always 0 initially. And, the 

predecessor of source is nil whereas the distance of any other vertex we will initialize 

with infinity; and your the predecessor of each of them will be equals to nil. Because we 

have not evaluated that. The next one is the procedure that is the relaxing procedure; for 

relaxing and edge u to v we have to test whether we can improve the shortest path 

whatever we are found that one or not; whatever shortest path we found that is correct or 

not. So, if there is a already you have obtain a path from u to v that is if you see in this 

figure. 

Suppose I have derived a path like this let me denote it by this red color pen this is a 

path. So, I have to basically there is a path and if you see the distance will be 5 plus 6; 11 

can I find out any other alternative path by which the distance will be less. And, that 

actually we find out by this relaxing method; the basic idea is this one. So, in the relaxing 

method what we are doing here if the we are trying to we can improve the shortest path 

from u to v. So, that by going through v by improving if improvement is possible; then 

you has to update the value of d [v] and pi (v). 

And, relaxing may be it may decrease the value of d [v] and update pi v this is basically 

done by this small algorithm; if you see the relax (u, v, w) this is the algorithm if d [v] is 

greater than d [u] plus w [u v]. Then, d u will be equals to the smaller value that is d [u] 

plus w u v and your pi u v equals to so let me just write down what I am saying that is if 

d [v] it is greater than d [u] plus w [u v] if this is true in that case what you will do you 

will replace d [v] by the smaller value d [u] plus w [u v]. So, what does it actually means 

the meaning is again I am just drawing this 2 parts; 3, 4 parts. If this is the initial value 

suppose this value is 10, this value is 5, this value is 12 from here this value is 7 say 

some links are there; I am not going to this links what I want to say your d (v) is this 



value 10 by some path can I get some value such that if you add with this with this 

whether the value is less than this or not. If it is less than this one in that case your d [v] 

will be replace by d [u] plus w [u v]. 

So, this gain I will explain with an example. So, this is the first one relaxing one and 

algorithms for finding out the shortest path will initialize the source. And, then relax 

edges is either ones or more that means by relaxing you can initializing in single source. 

And, you can relax each edge with ones or more that is you can reduce the value of each 

edge more than ones also. And, in bellman’s algorithm sorry in Dijkstra algorithm your 

relaxing only once whereas in a bellman’s algorithm relax its several times. This is the 

basic difference between the Dijkstra algorithm and the bellman ford algorithm. Next if 

you see the next is the Dijkstra algorithm solves. 
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This single source shortest path problem as on a weighted G equals (V, E) for the cases 

in which all edges are weighted and they are non negative that is w (u, v) greater than 

equals 0. And, Dijkstra algorithm maintains a set of set S of vertices whose final shortest 

path weights from a source to a they source S have already been determined; that is we 

are having d [v] equals gamma (s, v) this already we are doing. 
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What is the basic structure of the Dijkstra algorithm? You are given a graph G equals (V, 

E); S is the set of vertices whose shortest path you have to find out. And, V to S are the 

remaining V minus S; V is the all the vertices S is the set of vertices whose shortest path 

will be finding V minus S obviously will be the remaining number of vertices your D as 

we have told basically it is the small d array of best estimate of shortest path of each 

vertex this is small d not D. And, pi this is the array of predecessor of each vertex which 

we have define earlier. 

So, initially what you are doing I have given 1, 2, 3 like this you have to initialize your 

distance and the predecessor; that is you are finding what is initialize d and predecessor? 

Then, the set S which contains all the elements that is initially empty; while there is some 

still vertices in V minus S you have to short vertices V minus S according to current best 

estimate of their distance from the source; that is whatever remaining vertices are there 

what is the minimum distance that you have find out. Then, you have to add you the 

closet vertex in V minus S to S and we will relax the all the vertices still V minus S is 

connected to u. 
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I the basic property what we are using basically one is we are trying to find out two 

things; one is the optimal sub path. And, another ones is the triangular in equality this are 

the basic principle is used; your sub path of a shortest path is itself a shortest path. This is 

the basic principle any sub path you take of a shortest path always that must be the 

shortest path. And, the if you are having a small length between u and v; then always you 

take any other 2 points that will always remain the shortest. And, this we call as the 

triangular inequality. 
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Now, the Dijkstra algorithm I have just rewritten in terms of the algorithm here; which 

we have written Dijkstra (G, s) that is a single source. Initial line if you see you are 

making d [s] that is equals 0 actually that is not properly visible. 
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If you see d [s] this you are making initially 0; next is for a all v belongs to V minus s 

you are making d [v] is you are making as infinity pi (v) equals nil. And, your s is 

approaching 0; S is null this 3 things that is if you see the slide for all do d [v] equals 

infinity pi (v) equals nil. And, your S is 0; S is null and your Q is V this 2 are important I 

will discuss; please to go the slide here. 

So, this 3 parts do d [v] equals infinity pi (v) equals nil this part basically you are doing 

as the initialization as with discussed it has 2 basic parts; one is the initialization and 

another one is the your one is initialization and another one is the relaxing. So, the first 

part we have done that is the this one what is S? S is the set of vertices set of visited 

vertices; please note this one set of visited vertices; how many vertices already we have 

visited. And, obviously this will be initially empty because we have not visited anything. 

So, S is the number of visited vertices and you Q initially it contains all the vertices 

initially Q is all vertices. 

 And, so what I will do basically initially S is empty your Q is all the vertices once I am 

visiting vertex; then that will be moved to S and that will be deleted from this. And, 

ultimately our aim is we will repeat our process; relaxing process until your Q is not 



equals phi; for this condition we will move from there. So, let us see. So, the next part is 

while Q not equals phi in the slide if you see; the next one is while Q not equals phi do u 

equals minimum distance of (Q, d) that is you have to calculate; what is the minimum 

distance? Then, if d u equals infinity will break otherwise S equals S union u. And, then 

for all v vertices belongs to neighbors of u do if d [v] greater than d [u] plus w [u, v]. 

Then, d [v] will be d [u] plus w [u v] and pi (v) equals u again this part if you see the last 

part is basically the relaxing part. 

So, the it is consisting basically of 2 parts; one is the initialization part, another one is the 

relaxing part. In the initialization part your initializing 2 things; one is the distance array 

and another ones the predecessor array. And, then in the relaxing part your revisiting all 

the vertices and if possible you are trying to reduce the cost. And, so this 2 together will 

give you the shortest path. Now, let us take one example and how it works. 
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So, let us check this example in the flowing graph if you see we are having s. And, from 

there you want to visit the single source problem; this is not the single destination 

problem of course. Because you may visit to any vertices but the source is same. So, it is 

if you see from the graph it is directed graph number 1; number 2 is the it is one after 

directed graph it is also weighted graph weights are given. So, let us see what happens in 

the next steps. Let us see here. 
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So, step one is here initialization problem; step one is the initialization. In the initially 

what is happening you are having this thing; the graph if you see the graph the graph I 

have drawn over here whatever graph problem was there that is s to u, u to v like this 

way all the. And, all the weights are also given over here like 100, 10, 30, 20 like this. 

Now, let us see the problem. In the problem itself you are having the initialization 

problem that is s to u, u to v what I have told you we have to find out what is your d; first 

what is the distance and what is your pi? So, your distance obviously it will be s is 0 as I 

told you since it is source. And, for u all are infinity this is the basic thin. In the 

initialization process the distance of all vertex which will be infinite and distance of s is 

0 whereas whenever your calculating your pi we have not written source over here. 

Because for source nothing is coming source is already here. And, for all others the 

predecessors obviously of u, v and all these are nil the predecessors of this one are nil. 

So, once I have written this I have to calculate this matrix; once I have calculated this 

matrix. Then, this distance values you put it here distance of source s is 0 you write down 

here 0 distance. And, all others basically they are infinity, infinity x is this and this is 

infinity. So, you are I have written it rates so that you can understand it properly. So, you 

are calculating first what is the distance array; from the distance array on each vertex you 

are writing now the values. For the initialization you know source of a distance is 0 

whereas source of other vertices infinity. And, you have written all this whereas for the 

predecessors for all of them predecessors initially is nil. So, initially your S is phi and 

your Q is all the vertices that is s, u, v, x and y; I think the first step is clear that your S is 

phi and your q is s, u, v, x and y. 



(Refer Slide Time: 41:49) 

 

Now, let us come to the step 2. 
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For the step 2 basically again you are having this thing; you are having this one you have 

to first calculate what is the distance, what is the pi? And, then from there you will 

calculate the this one. So, for calculation of this what is your mu say I am just writing 

mu. What is your mu? Mu is the minimum distance of Q that is what do you mean by 

minimum distance of Q? Minimum distance of Q means I want to say which vertex is 

having lowest value over here; you see the earlier one graph in this these vertex you have 



supplied the values which vertex is having the lowest value obviously the source will 

have the lowest value; the source value is 0. So, therefore your mu is here. Since, the 

source value if you see it is 0 the this sis the minimum value therefore your mu is 

actually it is s. And, your S basically now it will become s I will write down that your S 

is basically s. 

So, once I have obtain what is the distance? Now, from this neighbor what is mu; you are 

calculating which are having the lowest value of the vertex that vertex you choose. Now, 

from that vertex you find out what is the neighbor of this vertexes? The neighbors of this 

vertex one neighbor is u and another neighbor is s. Neighbor means there is directed 

graph from s to u or s to v not the opposite way; if there is direction from s to u your 

telling ((Refer Time: 43:42)) u is neighbor. So, neighbor of s is u and the neighbor of s is 

x. So, now what I have to do? I have to find out the distance of you and the distance of x; 

what is the distance of u? Distance of u is the value of the vertex s plus this weight 

whatever you have given; value of this plus the weight from moving from s to u. 

Therefore, your s u if you see d u that is distance of u basically it will be the value of the 

source s value of the vertex s that is 0 plus weight from moving from s to u that is 100. 

So, you can write down from here that your d [u] is equals to 0 plus 100. So, this is 

equals to 100. And, on the same way I have to calculate what is d x; what will be the d x? 

d x is what was your predecessor; predecessor is s what is the value of the vertex says 

vertex says is 0 plus the weight of this path x to s that is 50. Therefore, d x will be equals 

to 0 plus 50 and that is equals 50 So, you can write down d (x) that is equals 0 plus 50. 

So, this is equals 50. So, now you got a change over here the value of d u the distance of 

u, the distance of x are not now infinite. So, it is now fixed. So, now what are the values 

let me write down over here. 

So, for this let me just calculate first the distance is what from s to x it is 0 obviously; for 

distance of u is now 100 just now we calculated distance of x; that is equals to distance 

of x is 50, v is infinite and y is infinite what about the predecessor? Predecessor which 

the predecessor of u now? Predecessor of u is x, predecessor of x is s, predecessor of u is 

a x, predecessor of x is s. So, change it predecessor of u is s predecessor of x is s for v 

and y it is nil. 



So, once you have drawn this your s is this thing. So, from Q what will happen earlier 

your Q was {s, u, v, x, y}. Now, already you have visited s and that has come to S. 

Therefore, you should delete this s from Q; so that now you will get Q equals u, v, x and 

y. So, once I have written this now write down the distances for this it is 0 still; for the 

next one it is 100; for this one it is 50 and for this is it is infinite; and for this it is infinite 

still. Now, whenever so like this way first you are calculating the distance no first you 

are finding out whatever vertex are there which are as the minimum value; the minimum 

value obviously 0 among all this vertex values. 

So, you are finding what is the neighbor of this vertex; after you finding the neighbor 

you are finding the distance of those neighbor using this formula; that is value of that 

vertex plus the weight for going to from vertexes to u like that. So, once I have done this 

you are filling up the array d distance array, you are filling up the predecessor array for 

u; from that figure it is clear predecessor of u is s, predecessor of x is s we have written 

it. Accordingly the set S and Q your operating over there and then you are writing the 

distances over there. If you see once I have obtain this from s to u this is the shortest 

path; this sub path is the shortest path for moving from s to u you cannot minimize this 

distance value 100 in any way. If I want to move from s to u in by any means I cannot 

minimize or I cannot make it lesser than 100. So, therefore what I am doing I am putting 

an array over here. 

Similarly, to move from s to x this sub path also gives you the minimum distance; you 

cannot minimize for that. So, the sub paths which I will not be able to minimize; that 

initially I am putting by this red arrow. So, this is your step 2. Now, let us go the step 3. 
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Now, in step 3. 
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Again you are having now in step 3 what I have to do first; this was the figure for the 

step 2. So, from this figure first I have to find out which vertex is having minimum; now 

from which vertex you will check? You will check from only the vertex u, v, x and y; 

you do not have the vertex S now. So, basically I will go through the vertex whatever is 

there in the set Q; because after each step for the vertex it will be one vertex will be 

removed. So, among the vertex u, v, x and y if you see the vertex x has the minimum 

value that is 50; the vertex says at the minimum value what are the neighbors? The 

neighbor is one is u this arrow is there; one arrow is to their v, another arrow is there y. 



So, from this remaining vertex u, v, x, y we are finding minimum distance is there for the 

vertex x that is 50 and the adjacent vertex of x are u, v, x and y; what is the distance now 

we have to calculate? The distance say d [u] if you see what will be d [u] now; d [u] will 

be the distance of the vertex x plus this one; that is d [u] will be equals to your d [u] this 

is equals I am just showing one you can calculate afterwards; d [u] will be vertex this 

plus d [u] initially this is 100; initial value is 100 if you see. And, what is the distance 

now 50 plus 30. 

So, 50 plus 30this is equals 80; so 100 is greater than this. So, therefore I have to now 

update this d [u] from 100 to 50 plus 30; 80 what about d [v]? Your d [v] will be d [v] if 

you calculate 50 plus 90 plus 140 you d [v] will be 50 plus 90 that is equals to 140. 

Similarly, your d [y] this will be d [y] will be 50 plus 20; 70 this is also will be replaced 

because in both cases alpha are greater than. So, what are the distances you are getting 

from s to s it is 0; from u now earlier if you see it was 100 now it is replaced by 80; from 

v it is 140; we have calculated from x it remains fixed that is 50 and for y it is 70; for y if 

you see it is it is 70. 

Similarly, for now you see the what are the predecessor for u? The predecessor is now it 

is not the 80 is there 80 coming from through this path. So, the predecessor of u has 

changed now x. Similarly, for v also the predecessor is x; for x the predecessor is 

obviously s and for y also the predecessor is x. So, you if you know write down the 

values now it is 0; it is eighty this one is 50, this one is 140 and the last one is 70. So, 

now the if you is the arrows will be changing; this is the minimum value to move from 

here to I will not go this direction. If you go this direction the value is 100 whereas if you 

move from this to this the distance is 80. So, one path will be this to go to this path 50 

plus 90 140 and then the 50 plus 20 70. So, this is the s to u. 

So, basically whenever you are moving the steps the shortest path is being change 

changing; which we are showing by the arrows over here. Now, come to the on the same 

way if you calculate for the step 4. 
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Now, for the step 4 if you see over here sorry I have not written your minimum of s your 

S is here s and x whereas Q is u, v and y. So, now basically you will check between u, v 

and y what is the minimum one? The minimum value is here your y and for y if you see 

the vertexes s and v these are the neighbors. So, you will calculate d [s] and d [v]; your d 

[s] is equals to I am just writing from here d [s] initially is 0 and it is less than 70 plus 70. 

So, basically there will be no change whereas your d [v] this was 140; d [v] is 140 and 

what d [y] d y is your 70 plus 60; so 70 plus 60. So, 140 is greater than this. So, your d 

[v] will be changed. So, v distance now will become 130; all other distances will remain 

as it is that is 0, 80, x is 50, y is 70 for u it is again if you see it is x; for v now it has 

changed to y, for x again it is s and for y it is for y the earlier one that is x. So, your S 

now will be s, x and y; y will be removed and because the your taking y was the initial 

value minimum value. So, q is {u, v}. So, the values will become now this is 80 remains 

fixed; this is 50, this is 70 and this one is 13 and 0; so this value as reduced. So, this path 

will remain as it is this whereas the path; this path was there if you see if you move from 

this to this the distance was 140; now distance is 130. 

So, now this sub path is not the shortest one sorry I have to write down the new shortest 

path; in new shortest path will become 20 and this is 70 and 60 that is 130. So, arrow 

actually will be on this direction this is on this direction. So, this is this basically I 

wrongly wrote. So, this is 70 plus 60 that is equals to 130. So, this is the shortest path 

over here. 
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Now, let us go to the step 5; in step 5 what happens if you see in step 5 what happens 

you are having here only u and v. So, between u and v which one is the minimum; 

obviously again u is the minimum 80 and 130 and who is the adjacent; adjacent of u and 

v; one is u is x, another one is v. And, if you see adjacent of u is v that value will be 

more. 

So, it will not be it will x will remain unchanged over here. Because you are not able to 

reduce it this is more 80 plus 30 whereas for this case if you see this 130 your d [v] what 

is your d [v] now; d [v] initially if you see your d [v] is 130. But if you calculate this will 

be distance is 80 plus 10 that is 90. So, 80 plus 10 which is greater than this. So, this 

distance 80 plus 10 this is 90. So, if I travel from here to here then my distance will be 

less; so this 130 has to be changed. So, since in that case your value of distance of v will 

be changing to 90 and all other values will remain as it is that is 0, 80, 50 and 70 whereas 

for u it is x, for v it is now u, for x it is x, for y it is x. 

So, you see your S will now become a s, x, y and u your Q is v. What is the value over 

here then it is 0, it is 80, this is 50, this is 70, this is 90. So, now the arrow will be one is 

50 plus 30; 80 plus 10; 90 to move on this direction and you can move on this direction 

also. So, 20 and now sorry if you move from here to here it is 50 plus 20this sub path 

shortest. But now this sub path is not shortest because this sub path was having 130 

distance 70 plus 60. So, this is not a shortest distance. 



So, earlier someone may be shortest path now it may not be the shortest path. So, now 

this is the figure over here; this in the step 7 what is happening you are in step 7. Now, if 

you see you are having only one case that is only v is remaining. So, what is the neighbor 

of v? Neighbor of v is only y. And, in that case the value will be if you see over here 

itself it is in that case 90 plus 40 130 which is greater than 70. So, this 70 will remain 

unchanged or in other sense in step 6; in step 6 there is no change we can say that in step 

6 there is no change. So, since there is no change over here in step 6 because the in step 6 

there was adjacent was only mu equals v; only one vertex was there, adjacent was y and 

the was cost more 90 plus 40. So, there will be no change. 

So, this is the final graph because now your Q in this case your S will be now in step 6 

your s will be x y and u and your Q will be equals to null. So, we are stopping the 

algorithm now; once we are stopping the algorithm so now you can say from here what 

will be the path? 
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I will say it I will write it S that is the source from u if you want to move. If you want to 

move from s to u then what will be the path s to x, x to u I am writing this s to u, u to x 

what is the distance or cost? Your distance is 80 it is written over here. So, your distance 

is 80. If you consider v I want to go to move to v; if I want to move to v then s to x s to x 

x to u u to v and the distance is 90. So, if you want to move from here then s to x, x to u 

and u to v; and this value will be d equals 90 I have written this one wrongly this should 



be s to x and x to u. Because x to u and x to u, for u s to x, x to u, for v s to x, x to u, u to 

v minimum distance is 90 for x if I want to move there is only one case that s to x, s to x 

and the distance is 50. So, distance is 50 and for the y if you see if I want to move to y; s 

to x, x to y and the minimum value is 70. So, I am moving from s to x, x to y and your d 

is equals to 70. So, like this way if I want what is the minimum path then shortest path; 

the shortest path is s to u sorry shortest path is s to x, x to u and u to v this is your 

shortest path s to x, x to u, u to v this will be the shortest. 

So, the beauty of this algorithm is that not only your finding out the shortest path from 

one from the end vertex. But you can find out any shortest sub path; if you want to move 

from one vertex to another vertex. Suppose I want to move from x to v then in that case 

the path may be s to u, u to v like this way. And, there is another problem which you 

solve of your own also on. 
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And, the same way the only difference is the it is undirected graph; if you see the graph 

is undirected graph. That means there may be I may go from o to a or I may go from a to 

o also; you can solve it of your own.  

Thank you. 


