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Hello, welcome back so, we have come to the end of this course and today will be the 

last lecture. So, as such we started our journey from numerical solutions of ODEs and 

then we have moved to PDEs and we discussed various methods etcetera. So, I would 

like to mention few remarks and before that maybe, we just briefly summarise how this 

course has proceeded. And then some appendices, which are kind of useful tools in 

addressing these numerical solutions. So, we started with single step methods for initial 

value problems so, I will just put the summary quickly and then, we move to the 

appendices. 
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So, initial value problems so, here we have single step methods and multistep methods 

then, in multistep methods we have predictor corrector methods. So, then we move to 

boundary value problems, boundary value problems so, where we discussed finite 

difference methods and shooting methods. So, in initial value problems the single step 

methods and multistep methods, they are based on the principle of approximation by 

weighted average of slopes.  



So, this is by and large the principle whereas, in boundary value problems then, finite 

difference the principle is approximating at various grid points. That means, to compute 

a past value we need, I mean to compute at a particular grid point, you need past several 

values. So, this is a boundary value problems so, this is with respect to ordinary 

differential equations. So, this is within the framework of ordinary differential equations. 
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Then, we move to partial differential equations so, here we considered finite difference 

methods for parabolic, then elliptic, then hyperbolic. So, while we have done this kind of 

so, this is method of characteristics for both first and second order hyperbolic. So, this is 

how we proceeded then, we have to focus somewhere on iterative methods for sparse 

systems. So, this is typically when we deal with elliptic equations so, we have discussed 

how each approximation occurs and then, how the error comes into play and then, 

convergence stability aspects etcetera. 

So, the aim of this course is that at the end of it, atleast you get a better idea of what are 

finite difference methods for both ODEs and then PDEs. And to get little advanced 

knowledge so that, you try to pick up and then maybe you concentrate on any advanced 

topic, you can do on your own. So, atleast you will be in such a position so, with this 

definitely you are at advantageous position. Because, once you are done on your own 

and practice some examples, definitely you can pick up any advanced book, covering 

advanced topics and numerical methods.  



As I mentioned for example, how to solve problems on staggered grid, alternate direction 

and multi dimensions. And moreover, if you, if you come across problems dealing with 

fluid mechanics, as you know most of the studies these days are done numerically. So, 

you have to, definitely have a fundamental knowledge on various numerical techniques 

and then definitely the advanced techniques.  

So, we come across some tools so, throughout the course as and when we met some 

technique and then, we had a brief discussion about them. And then proceeded further, 

but there are certain issues which I thought these topics should be put it as appendices so 

that, these are helpful. 
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So, the first one is computing say appendix A, computing Eigen values. So, computing 

Eigen values is general issue, which for stability aspects we have been doing. In fact I 

have given this matrix and then these are the Eigen values, but sometimes it is easy to 

compute. You can do it, but sometimes you have no clue, but there are methods, one of 

them which does iteratively is called power method.  

Power method to find Eigen values of a matrix of course, this is iterative then, when I 

say Eigen values of matrix, we should put some because, we can get only some of them. 

So, what is the idea, the idea is given a matrix A, n cross n start with an arbitrary vector x 

and compute A x say, A x equals to Y. So, then what we do normalize Y by the largest 

entry say, here Y is y1, y2, yn. So, then you have to normalize by the largest entry, that 



means 1 over max of yi so, call this so, y1 max so, this is y1, y2 we normalize so, you 

get some y star. 
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So, then when you get y star compute A y star equals to say, y1 then normalize y1 by the 

largest entry. When I say largest entry, largest entry in y1 so, this we do and then, when 

do we stop, when. So, this process continues and then stops when, the difference of 

normalizing factors, the difference of two successive normalizing factors is up to the 

accuracy so, for example.  
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So, let us take an example so, consider so, this is a matrix then let us say random we start 

with this. So, this is arbitrary so, when we compute we get 4 3 minus 8, now the 

maximum entry in magnitude definitely is 8. So, we normalize so, we take it common 

minus 0.375 1 so, this is our y. What was the notation I have given, this is our y star 

because, we have normalized so, this is our y star. Then we compute so, we do this then 

we get 0.125 times so, this time the normalizing factor is minus 5. And this is our say, y1 

star so, then again compute A y 1 star so, this would be something like. So, if we do we 

get after a few iterations. 
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So, after a few iterations A on some y k star equals so, this is differing with the previous 

one so, we stop here. So, that means we declare that is the largest Eigen value and 

corresponding Eigen vector is when we stop, when I say we stop, assuming the 

difference with the earlier factor is up to 3 decimal accuracy. You can compute and 

check it so, we declare this is the Eigen value so, this is an interesting method. Of course, 

there are proof, why this works out and all that, but this is an iterative so, this gives 

maximum because, every time you are normalizing by maximum and then we get that. 

So, now similar method can be used to get smaller because you get the larger one and 

then inward. 
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So, it is slightly in a different way so, this is called inverse power method so, our aim is 

this. So, this implies A inverse A x is A inverse lambda x, this is lambda A inverse x so, 

this implies x is lambda or 1 over lambda x. Now this is, see you are you are normalizing 

every time, but inverse computing, inverse could be expensive. So, before power method 

is applied, before power method is applied, inverse has to be done efficiently. For 

example, maybe LU equivalent of A so, this is one suggestion. So, this is one appendix I 

want to just give a brief idea on power method. 
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So, then there is other one appendix B so, this is Routh Hurwitz criterion so, many times 

in order to get the stability we are ending up with a polynomial. And then, we have to 

find the roots of this polynomial or sometimes the range so, many times finding all the 

routes is quite complicated. So, atleast if we can get the region where the roots lie then, 

atleast we can conclude the corresponding stability. So, Routh Hurwitz criterion is very 

popular and then it indicates how to compute the region of stability so, let us have a look 

at it. 

Let Pn zeta is n minus 1 equals to 0 be a polynomial of degree n where, mu I maybe 

constants or functions of some parameters. Now our aim is, for stability we have to 

compute all roots so, this is difficult. Now what we are looking for, aim, interval of 

stability or values of the parameters for which it is stable. 
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So, now this is done via transformation, define transformation so, if you define this 

transformation what this does so, real z and imaginary z. So, this part that means interior 

of the unit circle onto left half of so, we can write so, interior of unit circle to left half 

plane then, this is ticked. So, the boundary, this is to imaginary axis then point eta equals 

to 1 to z equals to 0. 
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So, now under this transformation under the polynomial Pn zeta defined in 1, becomes 

so, it becomes this. Now, what we need is condition for the roots of 3 to have negative 

real parts and hence. So, this is we are looking for so, Routh Hurwitz criterion ensures 

this. 
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So, what is Routh Hurwitz criterion, let P z is and so, determinant where a j greater than 

or equals to 0 for all j. Then the real parts, all the roots of P z equals to 0 are negative if 

and only if, the leading principal minors of D are positive. So, this is the Routh Hurwitz 



criterion so, then accordingly we have suppose, k is 1 a 0 greater than 0, a 1 greater than 

0, then k is 2, then k is 3.  

So, these are the necessary and sufficient conditions for the real parts of, star real parts 

of, I mean roots of star real parts of roots of star, to be negative. And hence, for stability 

as well so, this is a general concept, which is very popular for checking the stability 

regions, one uses Routh Hurwitz criterion it is very standard practice. So, now the next is 

on bit on errors so, because this is very important sometimes what we do, an 

approximation could be a function and sometimes the approximation could be value grid 

points. So then maybe one expects a kind of a correlation between, a correlation with the 

behaviour of errors, with the function notation, as well as the grid notation. 

(Refer Slide Time: 29:38) 

 

So, let us have a look at this so, now consider suppose, we have a solution of a numerical 

method is function u of x over some interval. So, this is suppose, suppose solution of a 

numerical method is function then, let numerical method be approximated by this. Then, 

we define error function, then we define max norm, then we define one norm, then we 

have square norm or ((Refer time: 31:55)) norm and p norm. Now these are errors with 

respect to functions so, solution of, solution of the equation, when I said numerical 

method, then numerical method is approximated by this. So, these are the errors with 

respect to functions. 
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Now errors in grid, errors in grid so, for example say finite difference, finite difference 

methods give u i at x i. So, for example if you have a uniform grid, uniform grid with N 

plus 1 equi spaced points with h equals to b minus a by N and x i equals to a plus i h, 

where x 0 is a. So, we have u x approximately u0, u1, un now, this we need to compare 

with a set of discrete values, with the function.  
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So, that means these uis are nothing but so, these are approximating point wise. Now 

define a vector e to be e0, e1, en by ei equals to ui minus, I could have used capital so 



that, no confusion, I am using small ones please understand the. So, if you define this 

then, how do we talk about error so, sometimes maybe averaging so, u i is just point 

wise, but sometimes averaging. 

So, now since this is a vector, since e is e0, e1, en is vector one may be tempted to define 

the error function like this. But however, what will happen at each grid point this one, ei 

is the error so, this will spoil the whole calculation that means, if you consider this way. 

Because, this is N times the error at single grid point in some sense therefore, this is 

misleading.  

So, what is the remedy, we have to normalize, we have not done rather, we are 

magnifying, multiplying it with N. So, this, the remedy is because h, the way it is defined 

so, in some sense we are normalizing by N. So, then similarly, for p norm because, we 

can see h power 1 by p this goes to 0 as p goes to infinity so, this normalization works. 

So, that so, what I am trying to say is, the functions we have defined this kind of norms 

for functions, but when it comes to grid so, similar concept may not be extended. 
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So, this is one issue and the other issue is norm equivalence so, the standard definition is 

two norms are equal, two norms are equal in the sense, if there exists constants. If there 

exists c1 and c2 such that, c1 times with respect to one norm, other norm alpha for every 

x belongs to the corresponding space. So, for example so, if this is the case then we say 



are equivalent so, for example. So, we can, we take c1 to be this, c2 to be this so, then if 

somebody concludes.  

So, this is nothing but root b minus a so, what will happen if somebody, this is equivalent 

therefore, in this norm it is equivalent like this. So, then what would happen, this 

equivalence may not be carried because, these things depend on N and h. So, the remark 

is since the quantities involve N and h, the above equivalence may not carry over, when 

we discuss about error. 
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 So, this can be displayed by an example so, consider and let the approximated is say N 

even. So, if this be the discrete approximation so, this be the approximation on the grid 

with spacing h is 1 over N, on this let us say. Then, define error ei, h by so, this would be 

half i is N by 2, 0 otherwise so, basically the function is like this so, this is approximating 

so, this is.  

So, the approximated is behaving like this, the stars and u of x is behaving like this, but 

even if we refine, even if we refine the grid, we have nor e infinity is half for every h. 

But one is h by 2 and this is big of 2 as h goes to 0 so, which means this converges to 0 

whereas, this is not. So, the norm equivalence one has to be careful so, this converges to 

0 but this does not converge. So, this is a general appendix I thought I would mention 

because, in general we use power methods to compute Eigen values and then, also the 

error etcetera are beneficial to discuss, what kind of norms should be used. 
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So, now some remarks so, the remarks so, we discussed finite difference methods so, that 

is the highest when we started single step, multi step and then we come to finite 

difference. So, there are higher order methods as well, higher order methods what are 

these so, these are typically, they use better approximations to the second derivative. So, 

in what sense better so, for example if we consider u double equals to f of x then, usual 

central what we have been using. Now when we see, this is nothing but the second order 

however, u double x can be approximated by the following, u double can be 

approximated by the following, which is a fourth order approximation.  

So, accordingly if we use this in place of this and then get it so, you can see, we expect 

more accuracy because, it is spread over i minus 1, i plus 2, i minus 2. However, there 

could be difficulties because, we may not be able to run the equation, it is a question 

mark. Because, see you have these points, end points so, they will increase the fictitious 

values. So, one has to take care of the corresponding issues, but however such higher 

order methods are possible. 
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So, then function space methods so, typically we have the finite difference methods so, 

these methods determine an approximation only at discrete grid points. However, these 

function space methods, function space methods they determine a function u of x on the 

entire domain, that approximates the true solution.  
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However, how this is possible, this is via so, this is via a system at a finite set of points 

by searching for the approximation u of x from, a finite dimensional function space, that 

is spanned by a set of basis functions. That means so, these basis functions are such that 



so, it is approximated like this. And these are the base basis functions however, the task 

is how to compute cj so, this is the general task. 

So, then we have finite element methods so, even finite element methods, these are 

nothing but approximate solution, that is a linear combination of some specified basis 

function. However, there is a slight variation compared to function space methods, this 

basis function is obtained something called weak formulation. And also, there are finite 

volume methods, but another method I would like to mention, before we conclude is 

boundary element method. 

So, for example finite difference, these are based on grid so, these are based on some 

triangulations. So, this can be thought of some triangle elements, in case of finite element 

so, this is boundary element method. However, what would happen compared to these 

two so, the dimension would reduce dimension of the computation. Here for example, it 

is 2d you have to completely handle the 2d domain even here whereas, here the 2d means 

a line.  

Suppose it is 3d, you have to completely handle the entire volume, but whereas, here a 

surface however, these are good for linear PDE. What is the reason, the reason is these 

are based on Green’s functions so, if you have Green’s function so, then only this 

boundary element method can be used. Because, one would end up with the boundary 

integral formulation based on the Green’s functions.  

So, then you end up with integral equation on for example, if the problem is 3 

dimensions, you get an integral equation on the surface. If the problem is 2 dimensions, 

you get an integral equation on the line so, then you just discretize using any general 

colocation methods and get the solution. However, there are restrictions of this as well. 

So, this is general idea of little more advanced methods. So, with this we come to end of 

this course. I hope you enjoyed hearing some of this and your valuable feedback would 

definitely help.  

Thank you, bye.  


