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Implicit Methods for Parabolic PDEs 
 

Very good morning, in the last lecture we had a introduction about finite decimals 

approximations to parabolic PDE's, and also we have discussed implicit method. So, that 

means considering the time levels to compute the values at a particular time level, we 

need the data the past time level. Further the values at the next time level are obtained 

explicitly in terms of the past time levels. So, today let us see about implicit nature of a 

finite difference approximation for a parabolic PDEs. Still we are considering the heat 

conduction equation. So, that is the reason I kept the title as implicit method for 

parabolic PDEs. 
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So, we consider the heat conduction equation. Now, in order to obtain in the last we have 

for a explicit, we made central and then this is forward. Now, what we do is backward 

for this and central for this. So, accordingly we obtain, now when you approximate 

backward, there is non zero leading coefficient starts k, when you approximate central 

this starts at. So, I am not talking about this right now, because we learn about this in 

detail in the coming lectures. 



So, now even though we have written see for example, this is backward right j j minus 1, 

but for a convenience what we do for convenience, let us write down the same formula at 

j plus 1 in a. because this formula contains j and j minus 1, but it is a general notion that 

we represent using j plus 1 and j. So, it is just a convenience. 
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So, let us write down this at level j plus 1. So, writing the above approximation at level j 

plus 1 we get. So, that means j j plus 1 that means j minus 1 will be j. You can see now 

you can see two levels involved j plus 1 and j. So, this can be simplified, so lambda is 

our grid parameter. So, left hand side you have terms at level j plus 1 right hand side we 

have terms at level j. So, this is some sense two levels involved, but more terms of level 

above. So, this is an important remark, more terms of level above than the level below. 
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So this is an important remark. So, this shows the implicit nature of the scheme, so how 

this is going to give us the implicit nature. So, let us have a look, the formula we have 

which means suppose this is u i j. So, this is in contrast to the explicit scheme which we 

have derived in the last lecture, you can see more terms at level j plus 1 compared to the 

level below. So, how this is going to bring up the implicit nature we will see. So, this 

corresponds to say T equals to 0 and this is nothing but j equals to 0. Then when T is 

delta T j is 1. 
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So, let us run through it with a with a specific case then see how the implicit nature 

comes into picture. So, we need the equation again this is the equation u i minus 1. Now, 

for example, let us say this is t, so if you see let us say these are the boundaries. So, this 

is x 0 this is x 1 x 2 x 3 and x 4, see this is our boundary and this is our boundary. So, 

essentially we need to solve at the internal grid points these are the grid internal grid 

points because these boundary points we know the solution. Now, let us run the solution 

at consider j equals to 0. So, what we get 1 1 1. 

So, this is our equation if you consider j is 0. So, that means in this expression we know 

only u i 0 values because these are at higher time level. Now, still we have to realize the 

implicit nature. Now, we start the what will be the first value of i for which we can run 

this equation see because of this term if you put i equals to 0. So, you get u minus 1 

which is outside therefore, the first value of i for which we run the equation is i equals to 

1. 
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So, let us run this equation for i equals to 1. So, the equation we have for j equals to 0. 

Now, if you run equation for i equal to 1. So, what is this doing so u 0 1. So, this is x 0, x 

1, x 2, x 3 say. So, u 0 1 will be this, then u 1 1, u 2 1. So, this is connecting. So, that 

means out of four quantities you know only this value, so these two are the unknowns 

involved in this equation. So, what are the unknowns, so these are the unknowns. So, 

now let us run the equation at i equals to 2. So, then we get here what are the unknowns 



and assuming this is boundary in this case. So, this is u 3 1, this should be known 

quantity. Now i 3, if you if you run i 1, i 2, i 3 is on the boundary, this will introduce 

fictitious values so we do not go for i equals to 3 right. 

So, what happened in this case we get one equation where you have two unknowns in 

second equation we have two unknowns and this is unknown. So, let us give some other 

color. So, this is known quantity this is known quantity and this should be known this 

should be known, so two equations and two unknowns. So, you can see the implicit 

nature, the implicit nature of this scheme is visible because it involves two time levels, 

one is j and j plus 1 of course, in a explicit method also the same. However in the explicit 

method you have one quantity at level above and you have more quantities at level below 

to the right hand side. 

So, for each value of a time step you get explicitly the values at each nodal point. 

However, in the implicit what happened we have seen we get a system of equations. So, 

how do we get systems of equations because we have more quantities at level above than 

level below. So, this brings a implicit nature of the scheme. So, let us see in detail. So, I 

would like to explain with more in detail.  
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Suppose these are the boundary points, first time when you run these are the three points 

connected to this point and we get equation one. So, next time when we run the equation. 

this is another boundary point. So, then this is another grid point let us say. So, then next 



time, then what will happen for these, you get equation 2, then next time these three 

points are connected and you get equation three. So, we march past along the nodal 

points this. So, we get in equation however one boundary point is removed two at end 

points. You have two unknowns this and this whereas, in the second equation we have all 

three unknowns then we do like this. 

So, if we do continue like this, at the boundary point what we will have this and this so 

they will be connected with. So, here this is a known. So, at the equations where we run 

corresponding to corresponding to i equals to 1 and corresponding to i equals to n minus 

1, we get one known quantity here and one known quantity. So, the remaining so this 

forms implicit and this is nothing but system of equations. So, let us see with an 

example.  

(Refer Slide Time: 18:05) 

 

So, the same example which we took in last lecture. So, 0 1 this is 1 by 3 and this is 2 by 

3. So, this is x 0, x 1, x 2, x 4 now we want to run the scheme. So, the unknown points 

the internal grid points are this two. So, let us consider the formula right. So, consider the 

case where we have lambda equals to 1 by 4, now j equals to 0, so this is 1. So, this we 

are going to run i equals to 1 and i equals to 2. 
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So, corresponding to i equal to 1, we get corresponding to i equals to 2, now if we use 

the values of lambda the system becomes, so lambda is 1 by 4. Now, let us identify the 

unknowns so these are the unknowns and so these are the known quantities. So, then 

solve for u 1 1 and u 2 1. So, this is can be done very easily by substituting the 

corresponding values. So, we have seen both explicit and implicit methods for the 

parabolic PDE. So, the explicit and implicit nature is coming because of the 

discretization corresponding to the time levels. 

So, for example, if you do forward we have seen forward with respect to time, we have 

seen we obtained explicit, whereas if you use backward we obtain implicit. Now, I have 

been postponing to address one of the issues what is that the issue is, when you 

approximate a given PDE with suitable finite differences scheme, you are throwing away 

terms from certain order right.  

So, what is this and then how do we conclude that whatever we have thrown is up to this 

order and what is this called. So, definitely you are true this is called local truncation 

error because when you approximate any particular scheme. For example, forward a time 

when you have done it what is happening, the difference and then the non 0 leading 

coefficient. If you consider that is multiple of k that is delta t.  

So, that means it is a first order whereas, if we use the second order derivative 

approximation with central you are getting leading non 0 coefficient is a order of h 



square that is order of delta x square. So, that means this is a second order with respect to 

space. Now, combining this you have order of k plus h square. So, that means the error 

term is of this order. So, our next aim is to study about local truncation error in detail. 

So, let us talk about this. 
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So, while discussing numerical solutions of CDE, we talked about local truncation error. 

Now, again the equation we consider, still the same. Now, let us say this has been 

approximated by f i j u equals to 0. So, that means this is the approximated operator. So, 

this is our original operator and this is the approximated operator. So, in some sense l u 

equals to 0 has been approximated by l i j u equals to 0. So, I have given f i j u, now let 

us say u bar be the exact solution. So, then what do you expect, exact solution satisfies 

this, but when you substitute exact solution in the discretized version the approximated 

version, we are not sure whether u this will be exactly 0.  

So, the remark is l i j u is approximately 0. So, that means this implies l u minus l i j u 

should be approximately 0, which we call T i j. So, this is our local truncation error. So, 

let us see what will happen, how do we compute. So, we are going to compute. Our l i j u 

is, consider the explicit scheme. So, we are considering the explicit scheme, now this is 

approximately 0. So, whatever I have mentioned we are going to realize that what is that, 

earlier we were mentioning this is order of k and this is order of h square. Now, we are 



trying to realize that indeed the error which is involved in this approximation is in this 

order. 
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So, how do we do that by Taylor's expansion. So, consider error is nothing but you 

replace by the true in the discretized version. So, that is what I am going to do you take 

the discretized version and replace the true value. So, I have considered the discretized 

version and replaced by the true value that is u bar. Therefore, this should be the error. 

Now, we go for expansion as follows, u bar i plus 1 j is equal to this is nothing but u bar 

of xi plus 1 T j. So, if we expand I am using h notation instead of delta x. 

So, h of course, this is evaluated at plus h square by 2 factorial this is evaluated at T j. 

Similarly, this is not component this we can keep it as a x actually indeed this you can 

leave it as x i or x because we are writing this notation. So, u i plus 1 we have computed i 

minus 1 and we have a with j plus 1. So, better we write this term as well. So, this is with 

k and the derivative is with T.  

So, I am not writing the third term we can write it because we may use it later on. So, I 

hope you can see so this is by 6 and here with a minus sign and here. So, now all this we 

substitute in this. So, let us substitute then we get T i j is equal to, so let us write down 

the scheme so that we do not make any mistake. So, this is the scheme now we have to 

substitute the Taylor series expansion which we have done previously.  
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Therefore, this reduces to, I keep 1 over. Then j plus 1 this is u bar. So, I am not writing 

evaluated at x i T j that is understood please, then the next term will be k then u bar i j. 

So, this is we write it minus u bar, so this because there is no expansion u bar. So, I have 

already mentioned this is a evaluation at x i T j, if you want here you can write down for 

all the terms. Now, minus 1 over h square u i minus 1 j, this will be u bar minus h plus h 

square by 2 minus. So, it is a little lengthy algebra, but we enjoy at the end of it. So, this 

is plus I am going one more term. So, then minus 2 u bar, then the next term plus u bar 

plus h, everything evaluated at. 

So, now let us see what is going to happen. So, we have this term cancels with this term 

then we have this cancelled. Then if we look at here these are the only terms which with 

respect to time derivatives. So, nothing from here may get cancelled, the first observation 

first look, but later on when we use the equation there may be some tricks can be done. 

So, but before we do that let us see the straight forward terms. So, these are straight 

forward, then this term goes away with this term.  

So, the first term which we are going to get see k gets over, then this is the first term we 

are going to get. From here you see h square by 2, so h square by 2. So, we get h square 

dou square u bar by dou x square, then h square also get cancelled. So, the first term 

which we are going to get is dou u bar by dou T minus dou square u bar by dou x square. 

So, this is the first term, let us write down. 
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So, T i j reduces to of course, evaluated at x i T j, then to have a remark this is done. So, 

now what is the next term as I mentioned time derivative is only in this. So, may be let us 

put down the next term this one. So, I am putting a tick. So, k square by 2 dou square u 

bar by dou T square. So, let us write down the next term plus. So, it is not k square 

because there is 1 k there so it is k by 2.  

So, this is done then these terms again get cancelled cube terms. So, they get cancelled, 

the next term we have in hand. So, this is this term with a negative sign and h square 

goes off. So, I am putting a tick. So, next term we are going to put down is these two. So, 

h square goes off and this is twice of it. So, the next term will be minus h square by 12. 

Now, next term k goes off, so I am going to put down this. So, the next term I am going 

to put then what would happen to the h 5 coefficient, here h 5 would get cancelled.  
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So, the next term should have been h 5 so that get cancelled. So, what is the next term. 

So, the next term here h 6 and here also h 6. So, h 6 by something that get cancelled h 

square cancelled. So, h 4 remain with the corresponding coefficient twice of it. So, let me 

put down that. 
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So, next term minus, we have written terms up to this T 4, the next term is T 4. So, I did 

not write down the T 4. So, this is what now let us observe closely what is this 

combination having observed that u bar is exact solution u bar is exact solution. So, what 



is this, since u bar is the exact solution of we have this box equal to 0. Obviously 

therefore, what will happen the leading non zero term, the same is called principal part of 

the local truncation error is leading non zero, because this becomes 0. Now, leading is 

coming from here. So, this becomes, a leading term, let us observe this carefully.  

(Refer Slide Time: 45:15) 

 

So, T i j reduce to, so I am putting k there half minus h square here, evaluated at x i T j 

then we have remaining terms. Now this quantity when we evaluated this they reduce to 

some specific value. So, the leading lead term becomes some c 1 k plus c 2 h square, 

assuming this is c 1 and c 2. So, this is nothing but is the local truncation error which we 

have seen. So, since this is the leading order we say therefore, T i j is this is what we 

have realized. So, this is what we have been writing when we have discretized. Now, 

having obtained this error, definitely our aim is to reduce the error, to minimize the error 

as much as you can. 

So, here in this case we have obtained non 0 leading term. Then we have computed the 

estimate on that and we declare that the local truncation error is of this order, but 

however we are interested in minimizing the error as much as you can. So, this is what 

you should look for in general for any numerical method in general. So, now in this case 

is there a possibility to reduce the error further. So, let us observe closely and see 

whether there is a possibility.  



So, if you observe closely, if this term is 0 somehow so then we can realize the next non 

0 term will be this, so where you have a k square and h 4. So, that means you are going 

to minimize. So, the question is can we minimize the error further. So, can we minimize 

the error further. So, in this case at least the answer is yes in this case how let us see.  
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So, if you consider our T i j, so this is k times half we have this right. So, this is 

particular term is order of k square h 4. So, this you can write plus order of, so you can 

write. Now, let us play a trick, the trick is we have dou by dou T equal to this is from our 

equation right, hope you are this is just our equation with dot is u. Now, consider this is 

nothing but see 1 dou by dou T is square of it, right hand side already you have. So, this 

term is equal to this term right therefore, Y i j becomes k by 2 minus h square by 12, you 

can plus order. 
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Hope you are able to follow right, this is the trick we did then this term I am writing I 

have taken substituted, for this term I have substituted this and taken common. This is 

the next non 0 term. So, now force this to be 0. So, this is 0 if 6 k by h square equal to 1. 

So, in other words T i j is of order k square plus h 4, for k equals to h square by 6. That 

means if you choose your discretization such that k is h square by 6, then we improve 

because the next non 0 it has gone 1 step further right. 

So, the error is getting minimized therefore, there is an improvement. So, when you 

discretize, you should make sure that this choice of a step size is chosen such that the 

error is minimized. Now, this depends on the method, this depends on the corresponding 

approximation and for sometimes we may not be able to get exactly this kind of scenario. 

So, there you have to use your intuition and then come up with a some other technique.  

So, what we have learnt so far, is we have learnt explicit implicit methods for parabolic 

PDE in particular we have considered the heat conduction equation, how to compute the 

local truncation error, estimate on the local truncation error. Now, there are serious 

concerns about these approximations. So, these concerns we will discuss in the coming 

lectures until then bye. 


