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Finite Difference Approximations to Parabolic PDEs 
 

Hello, welcome back after introduction with the first order and second order PDEs 

classification etcetera. Now, let us proceed for the numerical discretization and the 

various techniques to compute partial differential equations. So, if you recall the 

classification with respect to the second order, in general we classify as parabolic 

hyperbolic and elliptic. So, though it is I mean nice to start with first order and then 

second order, but in general in particular when you deal with partial differential 

equations numerically, normally we start with second order. So, let us start with second 

order and then see how we proceed further. 
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So, the title I gave is finite difference approximations. So, two parabolic because I would 

like start with parabolic, but before we start with parabolic, so what is the general 

assumption? So, the general assumption is the functions and derivatives are single 

valued. Single valued finite and continuous of the independent variables say x, y, z, t, 

etcetera. So, why this assumption is required?  



So, this is a concern. So, this assumption is required because as you can see when we 

deal with the partial differential equations, so you get derivatives with respect to all the 

independent variables. Now, when we approximate these derivatives we need to expand 

them and tell us a reason, so we need these assumptions. So, let us start how we 

approximate. 

So, consider say u of x plus h, so x is the independent variable and u is dependent 

variable. So, this we go for Taylor series expansion and h is increment, so h u dash of x 

plus u double dash of x plus u 3 of x plus. So, I am not writing the reminder term 

because in first order when we are doing O D E S, we have discussed thoroughly the 

Taylor series method. Therefore, I just write the remainder term. So, let us call this 1. 
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So, then similarly let us consider x minus h and expand in Taylor series. So, this will be 

so alternate signs so plus the remainder, now we had one this term. So, this expression 

then 2 is alternate signs, so say we add 1 and 2. So, this implies left hand side, then right 

hand side, so since it is alternate signs so u will be so we can see u and this u 2 times and 

this 2 times get cancelled. So, it is like that, so the first term will be and h coefficient 0, 

since h square by 2.  

So, this will be this, so third will be cancelled, so then I am putting order h 4 which 

means the first non zero term which we are throwing it is starting from h 4. Now, from 

here we can obtain approximation for, so this u doubles of x is approximately by so this 



coefficient is h square and this term, this is a plus sign here and this goes to the left hand 

side. So, then since I have divided by h square, now this becomes so this is typical 

approximation. So, generally we write it as so this is an approximation for the second 

order derivative. So, remember we have added it. 
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So, now let us see what would happen if we subtract, subtract 1, subtract 2 from 1. So, 

then we can see so if you so the first term is u, so that get cancelled and we get 2 times h 

and second derivative get cancelled, so we get h cube by 3. So, again from here we get 

approximation for the first derivative. So, since we divide by h this is so in by adding we 

approximated second derivative and by subtracting we approximated first derivative. So, 

what is happening? So, geometrically what is happening? Geometrically star 

approximates the slope of the tangent. So, in what sense let us see. 
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So, geometrically suppose the function like this and say this is x minus h and this is x 

and this is x plus h, say this is point P, say this is A, this is Q and the cord this is P Q. So, 

the function value here u of x minus h and the function value here, so this is u of x and 

the function value here u of x plus h. So, geometrically what is happening? So, the 

formula which we have obtained u dash of x, u of x plus h x minus h by 2 h. So, this 

approximates the slope of the tangent at A because there is x.  

So, what is x? x is the point A therefore, approximate the slope of the tangent at A by 

slope of the chord P Q. So, slope of the tangent at A has been approximated by the slope 

of the chord P Q. So, slope of the tangent at A has been approximated by the chord slope 

of the chord P Q. So, this typically is known as central difference approximation, this is 

because you are approximating slope here by the slope of the chord. So, you are using 

pass point here and the previous point here. So, the difference is so this is for equidistant 

so the same star can be generalised. 
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So, the star can be generalised. So, say this is x, some x i minus h, then this is x i. So, this 

is x i plus h so this is for equal spacing. Suppose, we denote it by x i plus 1 and this need 

not be equal spacing, unequal spacing. So, this approximation can be generalised u at x i 

is so this is so delta x i increment square. So, this is a generalisation, okay? So, now let 

us see how the general approximations are done for first derivatives etcetera.  

(Refer Slide Time: 14:48) 

 

So, let me consider this, so this is so generally we consider equispacing for the 

simplicity. However, for more complex problems one has to go with unequal spacing. 



Now, this is x, this is u, now one can approximate the slope, slope of the tangent at so P 

A Q, let us call at A by slope of the chord here P Q. So, instead of that A Q so this is u of 

x plus h u of x and u of, sorry this is x minus h x plus h. So, this is so if we do this then 

the corresponding approximation which we are going to get is what will be the distance 

this here to here. It is just h, so x plus h by h so this is called forward approximation, 

okay? 

Similarly, if you approximate so dot dot dot by chord P A, then we have u. So, this is 

backward, so this is a general technique of approximation. So, having done the 

approximation, let us see consider maybe a first order P D E where you have a simple 

situation, one two independent variables and one independent variable and see how the 

corresponding discretization leads to the corresponding difference equation, okay? 
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So, let us start with a simple example, so we are considering a first order P D E, say so x 

and t are the independent variables, u is the dependent variable, a is some constant and 

when we define a P D E it would be better to completely define it by prescribing the 

corresponding boundary conditions. If it is only space dependent boundary and initial 

conditions, if it is both space and time dependent. So, since in this present case it is 

dependent on both the space and time so it would be better to completely define the 

problem. So, with respect to space, it is one derivative so we need initial condition say u 

0 of x. So, this is our initial condition, so this is nothing but at t equal to t naught.  



So, generally this is taken as 0 because you can see here, so then it is one dimensional 

with respect to space and the derivative is also only first order involved. So, here with 

respect to time first order involved so we need to supply only one boundary condition, 

say u of t. So, this is boundary condition, so this is at x equals to some x naught, in this 

case taken as 0, okay? 

So, now the problem is defined. So, let us say we would like to start discretizing say 2, 

say 2.1, so 2.1 and give 2.2 2.3, now if we discretize 2.1. So, first we have to discretize 

this, that means first order with respect to time. We would like to discretize so since this 

is a P D E which involves two dependent variables. So, we have to define how x is being 

discretized. So, x is being discretized as x i plus 1 equals to x i plus h equispaced. So, i 

equals to 0, 1, etcetera. So then t t j plus 1 t j plus k so we discretized, this is the notation. 

Accordingly, u of x t at a particular point x i t j we are going to denote it by u of x i t j, 

this is u i j, so this is our standard notation, okay? 
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So, now with this notation let us approximate the first derivative as follows, dou by dou t 

u x t. Of course, at a point x i t j so this will be forward time by delta t. So, this is 

forward time, then minus by 2 delta x. So, this is the central space, so I have used earlier 

h and delta t as k. Now, if you substitute this in so we get what is you can see this is with 

time plus constant times with space. So, what you get u i plus 1 j minus u i minus 1 j by 



2 delta x, this is a times plus u i j plus 1 u i j by delta t. So, I just swapped the terms, so I 

put this first and then this. 
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So, this is the corresponding discretized version. So, this further can be simplified u i j 

plus 1 j plus a delta t by delta x by 2 u i plus 1 j minus u i minus 1 j. So, this equals 0 so 

this is the corresponding discretized equation. However, if you recall the original 

equation, we have initial condition and boundary condition. So, it is our duty to 

discretize these as well, so let us consider the initial condition. So, initial condition u of x 

0 is u 0 of x. So, this correspondingly it will be discretized as u of x i 0 u 0 of x i. So, 

further in our notation u i and this is for all t j t j equal to 0, right? For all j t j is 0, so we 

this is usual notation. So, u 0 of x i so we should not get confused with this notation, so i 

retain this, okay? 

So for example, if we say this is a function of x then this would be f i. So, this is for all i 

which depends on the increment similarly boundary condition. So, the boundary 

condition we have u 1 of t, so say some g of t. So, this is 0 t j equals to g of t j, so this 

will be the corresponding discretization of initial and now if you look at carefully given 

the initial and boundary conditions, given the initial and boundary conditions we have to 

solve. So, it depends on the boundary and depending on at which time step, okay? 

So, let us go to higher dimensions, not higher dimensions, the higher order derivatives. 

So, because as I mentioned this is just to give you an idea, first order we have taken and 



then we have shown the discretization. But now let us proceed to the first class of the 

second order P D E which is the parabolic case. So, let us start with the parabolic case, so 

this involves several variables. Therefore, functions of several variables so before we 

proceed to the parabolic. 
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So, here assume u is u of x t 2 variable which I have already shown. Now, we can have a 

little better picture, so you can see so this is x and this is t. So, do not get confused, 

earlier I have plotted graph x with u, but here we are trying only the discretization of the 

domain. What is our domain depends on the x range and depends on the t range, so this 

is our domain. 

So, now this is the discretization of the domain it goes like this, so you can see this is a h 

which is our delta x. So, then this one is k which is our delta t. So, if you take any point, 

so this p point this is at some x i t j. Now, depending on the boundary this depending on 

the step size the i will be decided. So, let us say this is x naught typically 0. So, if you 

start x naught is 0 so then depending on the step size x 1 is h, so on, right? 

So, let us go for the second order discretization, so I have already shown in the beginning 

we would like to approximate. So, this is given u of i plus 1 j, so this I have shown in the 

beginning, how do we get it to consider the u of x plus h. So, then consider u of x minus 

h expansions then add them we get this. So, this is remembered this is the derivative with 

respect to x. Suppose, the derivative is with respect to t. So, this is approximate so this 



will be u i j plus 1 by k square plus order of k square. So, this is typical second order 

approximation. Why we are calling second order?  

So, we will discuss more on this little later, the leading term which we are throwing 

starts at h square, that means h square will be the coefficient and the coefficient 

evaluated at x i t j that will be multiplying h square. Similarly, here some other 

coefficient evaluating at x i t j will be multiplying k square. So, this is for the general 

case. So, we are proceeding along this, so how long we proceed? Until we reach the 

boundary. Similarly, at different time levels, so this time level corresponds to say t 

equals to 0, then this is t 1, t 2. 
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So, let us parabolic equations, so the first one I am going to consider is heat conduction 

given by, so where k is thermal conductivity, k is thermal conductivity which is 

supposed to be a constant. Now, we can go ahead with this, but typically from applied 

math point of view when you solve such problems, this will be non dimensionalised. So, 

we can do that even though this is not part of numerical solutions, I would like to just 

mention. That means see each k has dimensions, assume this is temperature; this is time 

and then thermal conductivity. So, it would be better to non-dimensionalise so that the 

solutions are uniformly valid, universally valid, okay? 

So, how do we do it? We have to introduce new variables x is space, so we have divided 

by a length scale and the u is temperature. So, by something and these are called L and u 



naught some characteristic quantities which are supposed to be known. So, if you 

introduce this definitely with respect to x prime and u prime, these are non dimensional, 

right? So, that is how we do it, okay? 
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So, if we proceed like this, we get remember I have not non dimensionalised t. So, in 

order this to be non dimensionalised, we go for this the corresponding non dimensional 

time. So, when we go for this by dropping the primes, so you would have seen in many 

books with k, without k. So, that means you can arrive at such situation in with respect to 

non dimension variables, okay? 
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Now, we are ready to discretize this. So, let me give the heading explicit method. So, I 

want to give the heading and proceed, so consider the heat conduction equation, say this 

is star, then let us approximate star by forward time and central space. So, forward time 

central space by doing so u i j plus 1 forward time minus u i j equals this is central space. 

for the second derivative, h square. So, if I do not mention anything, it is not nice. So, 

better we also mention this, what are these for this approximation of the first derivative. 

This is the leading non zero coefficient and correspondingly for the second order space, 

okay? 
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So, now this leads to j, so I can take it k plus h square. So, we will talk about this 

definitely, so I do not want to use the term, right? Now, what is this? So, by doing so we 

get this however we further can simplify, so u i j plus 1 equals to lambda u i minus 1 j 

plus 1 minus 2 lambda u i j plus lambda, remember? I am not doing any trick, just 

algebra. Look carefully why did we pull j plus 1 to the left hand side, the reason is 

straight forward. So, the first order approximation we have used for the time it is 

forward, so which involves two time levels that is j plus 1 and j and the second order 

approximation for the space involves only one time level, that is j.  

Now, what is our aim? Given initial condition we want to compute the solution by 

marching past right, because this is in initial boundary value problem. So, in this case 

what we have to compute? We have to compute for all times the solution at various grid 

points. So, that means what are the time levels involved is an important issue because 

your discretized equation contains, let us say 5 time levels then we are lost completely, 

because you unless you know at least 4 of them, you cannot compute. So, with respect to 

time level we are trying to classify this method whether it is explicit or implicit, this is 

very much important, okay? 

So, if you see this particular case this entire discretized formula contains two time levels 

only. What are they? j plus 1 and j which means essentially if you know the values at jth 

time level you can compute at j plus 1 time level. So, hence we call this a two level 

method and explicit because of this nature. So, what is remark this is a two level method 

and this is explicit in nature because of this reason.  

So, two level means two time levels are involved, but in general in literature this may be 

because this is an important remark. So, when I say two level method means this 

involves two levels, otherwise strictly speaking the formula as it stands say this is E. So, 

this E is in some sense one level time, so because two level means the formula contains 

two levels only, but otherwise it just one level. That means is required at one level to 

compute at the other level. So, that is it in that sense you have to take it, okay? 
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So, now this particular formula sits, let us see so this name of the method literature used 

is Schmidt method whatever formula we have obtained. So, this is called Schmidt 

method. So, it shows like this so you take any grid point, so this is x, this is t now. So, 

you have to mark so this is say x I, x i plus 1, x i minus 1 then say this is t j, then this is t 

j minus 1, this is t j plus 1. So, this is at i j this is a point at i j and this is a point i j plus 1. 

So, if you recall the Schmidt method, the formula is u i j plus 1 lambda times plus so this 

involves these points u i j plus 1.  

So, let me mark and this is asking the function values at past time tap at which grid 

points at i plus 1 and i minus 1 so u i j, then u i minus 1 j and u i plus 1 j. So, this is what 

is happening here. So, this one this one and this one so this is explicit, because if you 

know the values at jth time level we can compute at j plus 1 time level. So, this is the 

explicit nature of this method, okay? 
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So, let us see with an example so u of x zero is sin pi x, u of zero t equals to 0. Now, see 

this is a onetime derivative and two space. So, u of we need boundary so this is two 

boundary conditions, why because this is second order with respect to space. So, 1 t this 

is also g 0 and the problem domain is now before we discretize so this is initial 

condition, this is boundary condition. So, let us discretize, so this goes to u of x i 0 u of i 

0 in the present case pi x i and boundary condition u of you should be careful.  

So, in this case what 0 corresponds to so remark x 0 is 0 and x n is 1 and what time step 

etcetera depends on the specifications. So, here x 0 and this is for any t therefore, t j is 

equals to 0 and this 1 x n for any t j equals to 0. So, this is the discretization, now it 

depends on the discretization the step size corresponding to x and then t the index will be 

decided. So, let us say h is given to be one third and k is given to be 1 by 36, then the 

lambda turned out to be, what is this? This is k by h square, the grid parameter, this is the 

grid parameter. 
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So, accordingly x 0 is 0, x 1 is one third, x 2 is two third, x 3 is 1. So, since our domain is 

this so this is x 0 and this is x n, right? So, consider j equals to 0, so then u i 0 is sin pi x 

0, x i sin pi x i u i 0. Now, you start i 1, start with i 0, so u 0 0 then i 1 here. So, this is i 0, 

i 1, i 2, so i 1 so that means we are computing the initial values at each grid point, then i 

equal to 2 similarly 3 0. 
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So, now if you consider your discretized equation u, the discretized equation u i plus 1, u 

i j plus 1 is lambda u i minus one j i j, then put j equals to 0, i equals to 1 because we 



want to compute the solution. The first value will be this lambda u 0 0, u 1 0, u 2 0, so 

this can be computed so this will be so similarly at next grid point u 2 1. So, this is 1 by 4 

u 1 0, u 2 0, u 3 0. So, this also you can compute.  

So, what is happening x 0, x 1, x 2, x 3 so using j equals to 0 values here, we have 

computed at j equals to 1 at each grid point. So, using the values at first time level we 

can compute that second time level because it is explicit. Once we know the values at 

each grid point, at a particular time level you can march past and then compute at the 

higher time level. So, we will discuss more problems so that we get complete idea until 

then good bye.  

Thank you. 


