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So, we shall start today about this Jordan canonical form Jordan canonical form. (No 

audio from 00:32 to 00:47) So, remember that, a square matrix of size n by n is similar to 

a matrix B of size n by n, if and only if there exist an invertible matrix invertible matrix 

P of size n by n, such that P inverse A P is equal to B. So, in the previous lecture, we 

have seen that not all square matrices are similar to diagonal matrices; or in other words, 

not all square matrices are diagonalizable. But here we shall see that every square matrix 

is similar to a matrix that is nearly diagonal.  

So, nearly diagonal means; it is of the form that the diagonal entries besides the diagonal 

entries, the super diagonal entries are not zero, and they are equal to 1. At the most that 

is, we are talking about that every square matrix is similar to a matrix that is in Jordan 

canonical form. So, here we shall define a Jordan block that for any scalar alpha, a 



Jordan block of size k denoted by J k alpha is a matrix is a k by k matrix of the form; this 

J k alpha, it is of the form that the diagonal entries are alpha and the super diagonal 

entries they are equal to 1 that is, the super diagonal entries are equal to 1. So, this called 

a Jordan block. And the next, we shall define a Jordan block matrix or a Jordan canonical 

form. 
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Our next definition is this, that a square matrix a square matrix A is called a Jordan block 

matrix  Jordan block or in Jordan canonical form Jordan canonical form, if it is it is a 

diagonal matrix diagonal matrix or any one of any of the following part that is, here this 

is a diagonal matrix, and this J k 1 alpha 1; like this J k r alpha r or it is of this form that j 

k 1 alpha 1 up to this J k r alpha r. where this D is a diagonal matrix of course, the half 

diagonal entries, or this blocks  half diagonal blocks, they are all zero blocks. Basically 

this is, this two are block matrices that the diagonal blocks are like this and half diagonal 

blocks are zero. And here D is a diagonal matrix. So, we shall show that here we shall 

show that every square matrix square matrix is similar to a Jordan block matrix 
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So, let us see some example of Jordan block matrices; that look at this example. Here we 

consider the matrices consider the matrices A 1 is like this, it is of size 5 by 5, and entries 

are 2 1 0 0 0 0 2 1 0 0 0 0 2 0 0 0 0 0 2 1 and this 0 0 0 0 and this 2. So, here this matrix 

A 1 is in Jordan form, that is a Jordan block matrix, or it is in matrix or it is in Jordan 

canonical form canonical form because it is of the form A 1 is of the form that, here we 

can say this as first this 3 by 3 sub-matrix that forms j 3 2 and this this one 2 by 2 sub-

matrix that forms j 2 2, and the remaining are zero blocks. 

 But this matrix, if we consider A 2 be like this, this is 2 0 1 0 0 2 1 0 0 0 2 1 0 0 0 2 is 

not in Jordan canonical form in Jordan canonical form, because of this entry that because 

of because of the third entry in first row. So, this is not a super diagonal entry and this 

not equal to zero. So, therefore, this is not in Jordan canonical form. So, here we shall 

discuss that how to find Jordan canonical form of every square matrix. And for that, we 

shall define another terminology that is called generalized eigenvector. 
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 So, here we define generalized eigenvectors of square matrices. So, here all we 

Consider, let A be a square matrix over a field F and let lambda be an eigenvalue of A, 

then non-zero vector or a non-zero vector x in F n is a generalized generalized 

eigenvector of A corresponding to lambda corresponding to lambda, if of course this x is 

a generalized eigenvectors of we take type m type m of A corresponding to lambda, if 

this A minus lambda I whole to the power m into this x, this is equal to zero but A minus 

lambda I whole to the power m minus 1 x is not equal to zero. So, this is called type m 

generalized eigenvectors of A corresponding to lambda. 

 So, notice that type one generalized eigenvectors are ordinary vectors. So, notice that 

type one generalized eigenvectors are ordinary eigenvectors. So, this is why this name 

generalized is their. Then we shall see here a chain generated by a generalized 

eigenvectors. So, that is important here for finding Jordan canonical form. So, we get this 

chain generated by a generalized eigenvector. And here we consider that, we consider x 

m let x m be a generalized eigenvector of type m of a matrix, square matrix A with 

respect to eigenvalue lambda. Then we get a chain that is generated by x m; this 

generalized eigenvector x m. And here we define the chain be like this. 
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 Let x m minus 1 is equal to A minus lambda I x m. x m minus 2 is A minus lambda I 

whole square times x m, and that is equal to A minus lambda times x m minus 1. In this 

fashion we get this x 2 be A minus lambda I whole to the power m minus 2 x m, or this is 

equal to A minus lambda I times x 3. And finally, we get this x 1; x 1 is equal to A minus 

lambda I whole to the power m minus 1 times x m, and that is equal to A minus lambda I 

times x 2. So, this set S consisting of vectors x 1, x 2 up to  x m minus 1, x m is called 

the chain generated by x m. 

 So, this chain generated by x m satisfy some properties. And we shall list those 

properties here. So, properties of this chain are like this: First Properties is that every x j 

well every x j is non-zero every x j, j from 1, 2 up to m is non-zero vector is non-zero 

vector. This follows from definition of this generalized eigenvalue x m, because x m is a 

generalized eigenvalue of type m. So this is important. And this second property is that 

every x j here this x j x j is a generalized eigenvector of type j of the matrix A; type j 

corresponding to lambda. So, every x j is a generalized eigenvector of type j 

corresponding to lambda. 
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 So then another important property here is this one that, this sequence consisting of this 

sequence of vectors x 1, x 2 to x m or this set S, this is a linearly independent set. The 

chain S of vectors of x 1, x 2 up to x m is a linearly independent set linearly independent 

set and this property one can also check easily. Then next, we shall see using this 

generalized eigenvectors, how to get a basis for a matrix A. That is called canonical basis 

for a matrix. So, here we shall write those results, known results; we shall use these 

results for finding Jordan canonical form of a matrix. So, it says that every n by n matrix 

A possessed n linearly independent generalized eigenvectors, n linearly independent 

generalized generalized eigenvectors and in short forms we write them as liges - linearly 

independent generalized eigenvectors. This liges this liges is called a canonical basis for 

A a canonical basis for this matrix A  

So, let us take this be first result. Then the second result is like this. A generalized 

eigenvectors corresponding to distinct eigenvalues are linearly independent. So, it says 

that generalized eigenvectors corresponding to corresponding to distinct eigenvalues 

distinct eigenvalues are linearly independent. This property is like this properties of 

ordinary eigenvectors. So, another important property is that if lambda is an eigenvalue 

of A with algebraic algebraic multiplicity multiplicity k, then A will have k liges or k 

linearly independent k linearly independent generalized eigenvectors or liges. So, 

corresponding to every eigenvalue; that means, if the algebraic multiplicity of lambda is 

k, then we get k linearly independent generalized eigenvectors corresponding to lambda 



here this independent generalized eigenvectors corresponding to lambda. So, this is very 

useful. 
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 So, next let us see how to find a canonical basis for a matrix a square matrix and this is 

important method to it find a canonical basis for square matrix A. So, here we consider 

that A be a matrix of size n by n. So, here first step is, we find all the eigenvalues of A 

find all the eigenvalues of A, say lambda 1, lambda 2 up to lambda k with algebraic 

multiplicity  algebraic multiplicity m 1, m 2 up to m k respectively. So, then next for this 

every i from 1, 2 up to k, we find find the smallest positive integer p i, such that this A 

minus lambda i I whole to the power p i has rank n minus m i, so after getting this p i for 

every k, or for every l from 1, 2 up to this p i. 

 Let row l be defined like this that row l is defined like this this is the equal to rank of a 

minus lambda i multiplied by I whole to the power l minus 1 minus rank of A minus 

lambda i I whole to the power l. of course, here we consider this we take this A minus 

lambda i I whole to the power zero be the identity matrix. So, this row l we have defined 

this plays important role, that this then this matrix A; then in the canonical basis 

canonical basis of A. There are row l liges - linearly independent generalized 

eigenvectors of type l corresponding to corresponding to eigenvalue lambda i.  
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Then next we explain next we explain the method for finding a canonical basis for A by 

taking an example by taking an example below, and this example in this example we 

consider, find a canonical basis for this matrix A is like this: 4 0 1 0 2 2 3 0 minus 1 0 2 0 

4 0 1 2, so this is zero. So, here we find a canonical basis for A in the following manner. 

Let B be a canonical basis for A. So, first we compute the eigenvalues the eigenvalues of 

this matrix A are lambda 1 is 3, lambda 2 is 2 with multiplicity with multiplicities that is 

algebraic only algebraic multiplicity m 1 is 2, m 2 is 2. 
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Here we shall find out this generalized eigenvectors x 1 and x 2. So, in this manner, well 

x 1 is actually A minus 3 I times this x 2 and this A minus 3 I whole square  x 2 that is 

equal to zero; this x 2 is a generalized eigenvector of type 2 this. So, therefore, this x two 

satisfies this equation. And here we consider x 1 be this eigenvector generalized 

eigenvector of type 1. Then for finding this x 2 we get this or we get this A minus 3 I 

whole square, one can compute is like this it is the matrix first row is all zero , second 

row is minus 3 1 minus 4 0 then 0 0 0 0 minus 1 0 2 1. And here for x 2 we consider the 

entries from x 1 x 2 x 3 x 4, this is equal to zero. 

 Here we are considering this x 2 is this vector x 1 x 2 x 3 x 4, or we get this system is 

like this or we get two equation in this system that: minus 3 x 1 plus x 2 minus 4 x 3 is 

equal to zero, and this minus x 1 plus 2 x 3 plus x 4 is equal to zero. So, x 2 is a solution 

of this system. So, we can take or also we can find x 2 can be taken as this x 2 satisfies 

these two equations, and we can consider this or we can solve for this also. So, let us take 

this x 2 be like this, that it is the vector 1 3 0 1. 
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So, next we can find this X 1 is from X 2 and it is like this X 1 is A minus 3 I times X 2, 

so, one compute it well. We are considering this for X 2. So, we get this X 1 be the 

vector 1 minus 1 minus 1 3. So, now we have got this X 1 and X 2. So, next we shall find 

out generalized eigenvectors for the second eigenvalue; consider the eigenvalue lambda 

2, and that is 2. So, for this we can see that one can check this value of p 2 is equal to 



1and value of rho 1 is equal to 2. So, this means that; there are generalized eigenvectors 

of this means that, there are two generalized eigenvectors of type 1 corresponding to 

lambda 2 corresponding to lambda 2 and since the generalized eigenvectors are type 1, 

they are ordinary eigenvectors corresponding to lambda 2.  

So, we find two linearly independent eigenvectors corresponding to lambda 2, so two 

linearly independent two linearly independent corresponding to lambda 2 one can find 

this is., Say, one is Y 1 and one may take this Y 1 as 0 1 0 0; say this one is Y 1, and this 

Z 1 that one take as 0 0 0 1. So, now this canonical basis corresponding to A be like this;  

this B consisting of Y 1, Z 1, X 1, X 2 is a canonical basis for the matrix A; of course,,, 

there may be several canonical basis corresponding to a matrix A .  
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So the next we find Jordan canonical form of a square matrix. Now we are ready to find 

Jordan canonical form of a square matrix. So, the method is like this; method to find 

Jordan method to find Jordan canonical form of a square matrix A of size n. So, this 

steps are like this; first step is, we find a canonical basis S or may be B we can say; find 

a canonical basis B of this matrix A. Second step is that, we form a matrix M that we say 

model matrix form model matrix M for A taking vectors in B as columns, such that of 

course, the chains consisting of single vector appear at the beginning at the beginning at 

the beginning of A at the beginning of this matrix M. And second condition is that, each 

chain appears in M in order of increasing type. We take an example and explain this of 



course, so now this M inverse A M is the Jordan form of this matrix A. This is the Jordan 

this is the Jordan canonical form of matrix A. 
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So, next, we take one example. For example, we consider consider the matrix in the 

previous example that is, A is the matrix this one that: 4 2 sorry 4 0 1 0 2 2 3 0 minus 1 0 

2 0 4 0 1 2. So, for this matrix you recall that we have already got a canonical basis. So, 

remember that that the canonical basis we have got. So, now we can form model matrix 

from the canonical basis canonical basis B of A, we form the model matrix M as M is 

consist of that Y 1 because this is consist of this chain is consist of only one vector that is  

Y 1. So, Y 1 also only one vector in this chain, and then X 1 and X 2. So, here this X 1 

and X 2 form a chain and we have to write in their increasing type; that means, X 1 is 

type 1 and X 2 is type 2. 

So, therefore, we get this model matrix M be like this; Y 1 we have taken as  0 1 0 0 ; Z 

1 we have taken that 0 0 0 1; and X 1 is 1 minus 1 minus 1; and X 2 is 1 3 0 1. So, now 

one can check that, now one checks that this M inverse A M is consist of the matrix of 

the form that it is consisting of 2 0 0 0 0 2 0 0 0 0 3 1 0 0 0 3, and this is the this matrix is 

the Jordan canonical form of the matrix A that is, A is similar to a Jordan block matrix. 

So, here we have shown that every square matrix is similar to a nearly diagonal matrix or 

a matrix in Jordan canonical form. 
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So, next, we will discuss an important theorem of this linear algebra; and in particular, 

this is an important theorem theorem of matrix theory to complete this vector space part. 

So, here we discuss about this Cayley-Hamilton theorem Cayley-Hamilton theorem. So, 

this is an important theorem in matrix theory this is an important theorem in matrix 

theory. So to complete this vector space part, we discuss about this theorem this is an 

important theorem in matrix theory. So, this Cayley-Hamilton theorem states like this, 

this is Cayley-Hamilton theorem that every square matrix every square matrix satisfies 

its own characteristic equation that is, if the characteristic equation of this matrix A of 

size n pie A lambda is a 0 plus a 1 lambda up to a n minus 1 lambda to the power n 

minus 1 plus lambda to the power n is equal to 0, then this A(A) is equal to 0.  

This pie A(A) will be a 0 times identity matrix plus a 1 A up to a n minus 1 a to the 

power n minus 1 plus a to the power n is the 0 matrix; this is n by n 0 matrix. So, let us 

see one example. If let A be the matrix 1 2 4 3 at characteristic equation is pie A lambda; 

characteristic equation is lambda square minus 4 lambda minus 5 is equal to zero.  
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So, now, we shall find out pie A(A), and that is equal to A square minus 4 A minus 5 I, 

and it is the matrix that: 9 8 16 17 minus 4 8 16 12 minus 5 0 0 5, and one can check that 

this is equal to the 0 matrix of size two. So, using this Cayley-Hamilton theorem we can 

find higher power of matrices; we can also compute inverse of a matrix. So, this Cayley-

Hamilton theorem is very useful. Let us see one example in support of this. So using, 

here we consider A be the matrix 1 1 minus 1 3. 

 So, using Cayley-Hamilton theorem Cayley-Hamilton theorem of determined A inverse 

if exists, and also sixth power of A. So, we can use this Cayley-Hamilton; note that, 

determinant of A is not equal to 0. So, A inverse exists. So here, characteristic 

polynomial of this matrix A is lambda square minus 4 lambda plus 4. So, from Cayley-

Hamilton theorem from Cayley-Hamilton theorem, we get that pie A( A), that is equal to 

A Square minus 4 A plus 4 times identity matrix is 0. 
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Or form here we get that, this A square minus 4 A is equal to minus 4 times identity or 

on simplifying we get that I is equal to A times I minus 1 by 4 A or this A inverse is the 

matrix I minus 1 by 4 A. So now, we know the matrix A and we know this identity 

matrix. So, we can find the inverse of A. And it is, one can compute like this: 3 by 4 

minus 1 by 4 1 by 4 1 by 4. So, equate both the value of A in place of lambda, we get 

this first term equal to 0, and therefore, we get the A to the power 6 is equal to 192  times 

A minus 320 times identity. And one can compute that this matrix is like given by minus 

128 192 minus 192 256. This is how we have computed sixth power of this matrix A. 

And using in this way that mean; we can use Cayley-Hamilton theorem in this fashion, 

and find higher power of matrices and also inverse of matrices. And this is lots of 

application.  

So, we stop this lecture here. 

And that is all thank you. 

 

 


