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In the last lecture I want introduce the problem of statistical inference. In the problem of 

statistical inference, we try to convey something about the parameters of a population - 

parameters of a statistical population. So, our modal is the following.  
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So, we consider for example, X is a random variable with probability distribution say P 

theta, where theta belongs to parametric space a script theta. And X 1, X 2, X n is a 

random sample from this population. (No audio from 00:59 to 01:11) I have told that, we 

can consider the problem of making inference on certain parametric function of theta; 

that is g theta. I told that there are three types of major ways in which we can make the 

inference. One is the problem of a specifying a value for the unknown parametric 

function, we call it the problem of point estimation, and in the previous class we have 

discussed the criteria for judging the goodness of a good point estimator, and also the 

methods for finding out the point estimator. Many times it is desirable, not only to 

specify a single value, but rather interval of values for the parameter. 



For example, we say that the expected amount of rain fall during this monsoon will be 

say 150 centimeter to 170 centimeters, rather than a specifying a value saying it could be 

160 centimeters, we may say 150 centimeter to 170 centimeters, we may say that the 

average growth rate of the economy will be between 6.5 to 7 percent, rather than saying 

it will be 6.75 percent or 6.8 percent, we may give an interval; this is called the problem 

of interval estimation. Now, in a statistics we handle the problem of interval estimation 

by associating a probability statement with that; that is called confidence interval.  

So, let me introduce the confidence interval, so let us consider T 1 X and T 2 X so here 

X is denoting X 1, X 2, X n the random sample. So, T 1 X and T 2 X be two a statistics, 

such that probability of T 1 X less than or equal to say g theta less than or equal to T 2 X 

is equal to 1 minus alpha, for all theta belonging to theta. Then T 1 X to T 2 X is said to 

be 101 minus alpha percent confidence interval, for g theta when X is equal to X is 

observed that, this is the sample then on the basics of that, I calculate T 1 X and T 2 X 

and we say this is 101 minus alpha percent confidence interval for g theta. Now, 

naturally the problem of finding out the confidence interval, reduces to the problem of 

finding out short test length confidence interval be the given confidence coefficient, so 

this 1 minus alpha is called confidence coefficient; that means, given 1 minus alpha we 

should find out T 1, T 2 such that T 2 minus T 1 is the shortest length on the other hand, 

if we fix the length we should try to find out that T 1, T 2 for which fixed; even fixed 

distance T 2 minus T 1, 1 minus alpha is the maximum.  

So, the problem is that shortest length with fixed confidence coefficient or fixed length 

and highest confidence coefficient. Now, the problem cannot be solving by finding both 

the things simultaneously, what we do we try to find out the shortest length intervals for 

the fixed confidence coefficient. Now, this problem of finding out the shortest length 

confidence interval is closely associated to the problem of finding out the most powerful 

test; in the testing of hypothesis. In this particular lecture, I will introduce the method of 

pivoting, where we use a function of the sufficiently statistics to derive the confidence 

interval, and they turn out to be letter on that they are actually the best confidence 

intervals for those situations. So, let us consider say confidence intervals for parameters 

of a normal population, so we have say X 1, X 2, X n a random sample from say normal 

mu, sigma square distribution. So, we want to find out confidence interval for say mu, 

for the mean mu. 
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I will consider two different cases; first case is that the variance sigma square is known; 

in the case when the variance sigma square is known, we may consider the sufficiently 

statistics X bar and the sufficiently statistics X bar follows normal mu, sigma square by 

n, therefore, X bar minus mu by sigma by root n this follows normal 0, 1.  

So, I am actually using the method of pivoting, what we have done I have consider the 

sufficiently statistics based on the sufficiently statistics. I have considered a quantity 

which is having the distribution free from the parameters, and this quantity which I call 

pivoting quantity; it is having the variable as well as the parameter for which we need the 

confidence interval.  

So, if we consider the standard normal distribution; in the standard normal distribution. If 

I consider say the point z alpha by 2 and minus z alpha by 2, then this probability is 1 

minus alpha. If this is z and this is 5 z, the standard normal pdf, then the probability that 

let me call it z. Then probability; that minus z alpha by 2 less than or equal to z less than 

or equal to z alpha by 2 is equal to 1 minus alpha. Now, this is the statement we can 

simplify; this is equivalent to minus z alpha by 2 less than or equal to root n X bar minus 

mu by sigma less than or equal to z alpha by 2, that is equal to 1 minus alpha; which is 

equivalent to saying that, we can consider minus sigma by root n, z alpha by 2 less than 

or equal to X bar, minus mu less than or equal to sigma by root n z alpha by 2 is equal to 

1 minus alpha X bar minus sigma by root n z alpha by 2 less than or equal to mu less 



than or equal to X bar plus sigma by root n z alpha by 2 is equal to 1 minus alpha. If we 

compare this, with the definition of the confidence interval that I introduced. Here, if I 

take T 1 X as X bar minus sigma by root n z alpha by 2 and T 2 X as X bar plus sigma by 

root n z alpha by 2 than this gives as a confidence interval for the parameter mu.  
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So, X bar minus sigma by root n z alpha by 2 2 X bar plus sigma by root n z alpha by 2; 

this is known 100 1 minus alpha percent confidence interval for mu. Naturally, here 

sigma is known, but when sigma is unknown, than we cannot utilize this as the 

confidence interval.  
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So, let us consider that case now, let us consider the case1: sigma square is unknown, 

when sigma square is unknown, then X bar and S square are the sufficiently statistic. So, 

we should use them for deriving the confidence interval. So, let us consider now, X bar 

following normal mu, sigma square by n and also we observe that n minus 1 S square by 

sigma square follows chi square n minus 1, and also we note that X bar and S square are 

independently distributed, here S square is actually the sample variance 1 by n minus 1 

sigma x i minus X bar whole square.  

So, we consider root n X bar minus mu by sigma; that is a standard normal variable, 

divided by a square root of n minus 1 S square by sigma S square into n minus 1; that is 

equal to root n X bar minus mu by S. This follows t distribution on n minus 1 degrees of 

freedom, note here that this quantity it is dependent up on the sufficiently statistics X bar 

and S, and it is having the pivot the parameter for which we need the confidence interval 

mu.  

So, this can be treated as a pivot quantity, let me call it T. Now, again notice here, that 

the distribution of t is also symmetric about 0; this is T, this is the density function of T. 

So, if I consider the point t alpha by 2 n minus 1 and minus t alpha by 2 n minus 1, then 

this probability in the intermediate region it is equal to 1 minus alpha. So, we can 

consider the statement probability of minus t alpha by 2 n minus 1 less than or equal to T 

less than or equal to t alpha by 2 n minus 1; it is equal to 1 minus alpha. So, this is 



statement; we can simplify this value of t root n X bar minus mu by S less than or equal 

to t alpha by 2 n minus 1; this is equal to 1 minus alpha; this is equivalent to probability 

of minus S by root n t alpha by 2 n minus 1 less than or equal to X bar minus mu less 

than or equal to S by root n t alpha by 2 n minus 1; that is equal to 1 minus alpha.  
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This is equivalent to X bar minus S by root n t alpha by 2 n minus 1 less than or equal to 

mu less than or equal to X bar plus S by root n t alpha by 2 n minus 1.  

So, X bar minus S by root n t alpha by 2 n minus 1 to X bar plus S by root n t alpha by 2 

n minus 1; this is 100 of 1 minus alpha percent confidence interval for mu. Note here, the 

similarity with the known sigma case; in the known sigma case the confidence interval 

was X bar minus sigma by root n z alpha by 2 2 X bar plus sigma by root n, z alpha by 2. 

In the unknown case, if you look at sigma has been replaced by S, and z value has been 

replaced by the corresponding t value on n minus 1 degrees of freedom of course, when n 

is large then z and t value will be almost the same, and also S converges to sigma in 

almost surely are you can say with probability; then these two values will also the almost 

same. 

 Let us consider, confidence interval for confidence interval for sigma square, now in 

order to find out the confidence interval for sigma square; again we may have two cases; 

mu is known, now if mu is known in the normal squared distribution; in that case the 

sufficiently statistics terms out to be sigma X i minus mu square. So, we may consider 



here, sigma X i minus mu square by sigma square that follows chi square distribution on 

n degrees of freedom. Let me denoted by say W 1, if you note the chi square distribution 

it is a positively skew distribution however. So, in fact we need to take two values; one 

value say chi square say 1 minus alpha 1 and say chi square alpha 2, such that these 

value should be equal to 1 minus alpha, however for convenience we generally take this 

value as alpha by 2 and this value as 1 minus alpha by 2. So, we take it this as chi square 

alpha by 2, and this value as chi square 1 minus alpha by 2; in that case this probability 

will become equal to 1 minus alpha.  

So, this is only a compromise solution; one may actually get separate different solutions 

for the confidence interval with the same confidence they will here. This is different 

from the case of confidence interval for mu, where because of the symmetry the 

confidence intervals that we obtained this actually the shortest length confidence 

interval, but here we may have some variations, but for convenience we take alpha by 2 

and 1 minus alpha by 2 as the two point cf.  
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So, consider the statement (No audio from 18:36 to 18:43) and now again we simplify 

this; this statement is equivalent to chi square 1 minus alpha by 2 less than or equal to 

sigma X i minus mu square by sigma square less than or equal to chi square alpha by 2 is 

equal to 1 minus alpha. And this is statement is an equivalent to we take the reciprocal 

and then consider a multiplication by sigma X i minus mu square.  



So, we get sigma X i minus mu whole square divided by chi square alpha by 2 less than 

or equal to sigma square, less than or equal to sigma X i  minus mu square by chi square 

1 minus alpha by 2; it is equal to 1 minus alpha. So, here we get sigma X i minus mu 

square by chi square alpha by 2 2 sigma X i minus mu square by chi square 1 minus 

alpha by 2 as the 100 of 1 minus alpha percent confidence interval for sigma square. 

Now, here mu is the assumed to be known when mu is unknown then we cannot utilize 

this.  
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So, let us consider the case1: mu is unknown; when mu is unknown, then n minus 1 S 

square by sigma square follows chi square n minus 1 can be used, and let us write it as W 

2. So, probability of once again we see, now we will be considering the points of chi 

square alpha by 2 n minus 1 and chi square 1 minus alpha by 2 n minus 1. So, probability 

of chi square 1 minus alpha by 2 n minus 1 less than or equal to W 2 less than or equal to 

chi square alpha by 2 n minus 1; this is equal to 1 minus alpha. As before, if we simplify 

we get the statement as n minus 1 S square by chi square alpha by 2 n minus 1 less than 

or equal to sigma square less than or equal to n minus 1 S square by chi square 1 minus 

alpha by 2 n minus 1; that is equal to 1 minus alpha. 

So, the confidence interval turns out to be n minus 1 S square by chi square alpha by 2  n 

minus 1 to n minus 1 S square by chi square 1 minus alpha by 2 n minus 1(No audio 

from 21:36 to 21:45) for sigma square when mu is unknown. Now, we also notice that, if 



we want to write from here we can write down a statement for sigma also here. If we 

take the square root here on because all the quantities are non negative, therefore we may 

also write a statement like.  

So, if we consider the square root of sigma X i minus mu square by chi square alpha by 2 

2 sigma X i minus mu square by chi square 1 minus alpha by 2, this is n. So, this is then 

confidence interval for sigma in a similar way here, if I take this square root I will get 

square root n minus 1 S square by chi square alpha by 2 n minus 1 2 root n minus 1 S 

square by chi square 1 minus alpha by 2 n minus 1.  

So, this will be again 100 of 1 minus alpha percent confidence interval for sigma. Let me 

also give you one large sample formula for the variance here, we may consider the 

asymptotic distribution of chi square is also normal. So, in case we are getting the value 

n to be quite large, then we may approximate root of 2 n into chi square minus I am sorry 

let us not take this one.  
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Now, let us take the examples for this (No audio from 23:43 to 23:56) so a new vehicle 

has been designed, and the metal part of the front portion the breaking strength of that 

has to be checked. So, breaking strength of the front part; a new vehicle is normally 

distributed in 10 trials the breaking strengths were found to be say 578, 572, 570, 568, 

572, 570, 570, 572, 596 and 584 we want to say 95 percent confidence interval for mu 

say. 



So, here the unknown variance formula has to be applied so we will consider x bar plus 

minus S by root n t alpha by 2 on 9 degrees of freedom. So, if we calculate here x bar, x 

bar turns out to be 575.2, here, n is 10 and S turns out to be 8.7024. So, we look at the 

value of t on alpha by 2; that is 0.025 on 9 degrees of freedom, from the tables of t 

distribution this value is found to be 2.262, so we calculate x bar minus S by root n t 

alpha by 2, 9 that value turns out to be 568.9751 and x bar plus S by root n t alpha by 2,  

9 that turns out to be 581.4249. So, here in this particular problem 568.9751 to 581.4249 

is 95 percent confidence interval for mu. 
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(No audio from 26:58 to 27:13) A random sample of say 100 items give a sample 

standard deviation that is S is equal to 0.01 millimeters, and we want say 95 percent 

confidence interval for sigma. Now, we can apply the formula for the unknown mu case, 

the formula for the a standard deviations confidence interval is square root n minus 1 x 

square by chi square alpha by 2, 99 here and similarly this value here so we calculate this 

here; here the value of S 0.01. 

And we calculate chi square 0.02599 from the tables; this values approximately 129.561 

and chi square 0.975; that is 1 minus alpha by 2, 199 square root degrees of freedom; that 

is approximately 74.2219. And here, n is equal to 100. So, a 99 S square divides by 

129.561; that turns out to be 0.00874. Similarly, root 99 S square by 74.2219 this turns 

out to be approximately 0.01155 so 0.00874, 2.01155 is 95 percent confident interval for 



sigma here. (No audio from 29:28 to 29:40) Let us consider another problem here, x bar 

here, x size are the measurement errors and the precision in measuring the errors turns 

out to be 1 here, and a random sample of 9 observation give us x bar is equal to 1 we 

want to the confidence interval for mu. 

Let us consider here; so, the confidence interval will be x bar minus sigma by root n z 

alpha by 2 2 x bar plus sigma by root n z alpha by 2 suppose we want to consider, say 

alpha is equal to 0.1 than alpha by 2 is equal to 0.05. So, z 0.05 is equal to 1.645 so this 

value turns out to be 1 minus 1 by 3, 1.645 to 1 plus 1 by 3 into 1.645. So, this can be 

easily evaluated we get the value S equal to 1 minus (No audio from 31:03 to 31:12) that 

is equal to 0.4522, 1.548. So, this is 90 percent confidence interval for mu. Here, I 

assume the sigma to be known. 
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(No audio from 31:29 to 31:41) Let us take one more example here X 1, X 2, X n denote 

the weights of certain packed food, and for 10 items; the weights where taken and then it 

turns out that the sum of the weights is equal to 159, and sum of the squares of the 

weight is equal to 2531 we want the confidence interval for say mu, and we want say 90 

percent confidence interval for mu.  

So, here n is equal to 10 so we need to look at the value of t at 0.059. Now, this value 

from the tables of the t distribution terms out to be 1.833, now from the given data x bar 

can be calculated it will turn out to be 15.9 and the value of S; that is square root 1 by n 



minus 1 sigma X i minus X bar whole square; that is equal to 1 by n minus 1 sigma X i 

square minus n X bar square that can be calculated to be equal to 0.5676. So, we get the 

confidence interval X bar minus S by root n, t 0.059 this the over limit turns out to be 

15.57 and x bar plus S by root n, t 0.059 terms out to be 16.23. So, 15.57 to 16.23 is 90 

percent confidence interval for mu. Now, there may be situations where we will have to 

find out the confidence interval regarding the difference between two populations.  

(Refer Slide Time: 34:21) 

 

So, we consider now two sample problem, two normal populations. Now, the we 

consider that there are two normal populations; in normal mu 1 sigma 1 square, and 

normal mu 2 sigma 2 squares we want to make certain inference on say mu 1; minus mu 

2 are sigma 1 square by sigma 2 square etcetera.  

So, we consider random samples from this population. Let us consider say X 1, X 2, X m 

to be a random sample from normal mu 1 sigma 1 square. And similarly let Y 1, Y 2, Y n 

be random sample from normal mu 2 sigma 2 square, and we assume that the two 

samples are taken independently, now if we want to compare the means; we can consider 

the confidence intervals for mu 1 minus mu 2. Now, then there can be several cases; the 

first case is that sigma 1 square and sigma 2 square are unknown are known: when sigma 

1 square and sigma 2 square are known, then the sufficiently statistics is only X bar Y 

bar, and therefore we can consider here based on that itself. So, we can consider X bar 

following normal mu 1 sigma 1 square by n, and y bar following normal mu 2 sigma 2 is 



square by n so if we consider X bar minus Y bar then that follows normal mu 1 minus 

mu 2 sigma 1 square by n plus sigma 2 is square by n.  

So, we can consider X bar minus Y bar, let we denote this difference by eta, minus eta 

and then we denote this by dou square; then we get divided by dou follows normal 0, 1. 

Note this quantity here, the denominator is known; these are the sufficiently statistics and 

eta is the parameter for which we need the confidence interval. So, we write down the 

statement once again from the standard normal distribution here which is symmetric 

about the 0, 0, so we consider minus z alpha by 2 2 plus z alpha by 2; this probability is 1 

minus alpha.  
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So, we can write down the statement probability of minus z alpha by 2 less than or equal 

to X bar minus Y bar minus eta by dou less than or equal to z alpha by 2 less than or 

equal to sorry this is equal to1 minus alpha. So, this is equivalent to X bar minus Y bar 

minus dou z alpha by 2 less than or equal to eta less than or equal to X bar minus Y bar 

plus dou z alpha by 2 the probability of this is equal to 1 minus alpha.  

So, we can say x bar minus y bar minus square root of sigma 1 square by n plus sigma 2 

square by n into z alpha by 2 x bar minus y bar plus square root of sigma 1 square by n 

plus sigma 2 square by n z alpha by 2; this is 100 of 1 minus alpha percent confidence 

interval for mu 1 minus mu 2; in this case when the variance is are known. Now, when 

the variance is are not known; then we cannot use this formula, in that case we consider 



some special case; sigma 1 is square is equal to sigma 2 square is equal to sigma square, 

but this is unknown; if this is unknown, then we consider first of all X bar, Y bar, S 1 

square and S 2 square. If we consider then they are all independently distributed the 

sufficient statistics X bar Y bar and then of course, this one will get combine, but I write 

it like this write itself.  

So, you consider here, X bar as the mean of the first sample, Y bar as the mean of the 

second sample, S 1 square is the sample variance of the first sample and S 2 square is the 

sample mean of the second sample. Now, we apply the distribution theory of this 

quantity is here. 
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X bar follows normal mu 1 sigma square by n, Y bar follows normal mu 2 sigma square 

by n, so if I consider the difference X bar minus y bar, follows normal mu 1 minus mu 2 

that we are writing as eta sigma square 1 by n plus 1 by n. So, this of course, we can 

write as m plus n by mn. So, X bar minus Y bar minus eta divide by sigma root mn by m 

plus n; this follows a standard normal distribution. Similarly, if we consider m minus 1 S 

1 square by sigma square, that follows psi square distribution on m minus 1 degrees of 

freedom, and n minus 1 S 2 square by sigma square; follows psi square distribution on n 

minus 1 degree on freedom. 

Once again these are independent; because this is based on the first sample and this is 

based on the second sample and the two samples of have been taken independently. So, 



by the additive property of the psi square distribution, we can conclude that m minus 1, S 

1 square plus n minus 1 S 2 square by sigma square, follows psi square distribution on m 

plus n minus 2 degrees of freedom, we define S p square as m minus 1 S 1 square plus n 

minus 1 S 2 square by m plus n minus 2; this is the pooled sample variance, then what 

we are saying here is that m plus n minus 2 S p square by sigma square follows psi 

square distribution on m plus n minus 2 degrees of freedom. Now, let us consider this 

quantity and this quantity, this is z and this is a W; then z and W they are also 

independent; because X bar Y bar are independent of S 1 square S 2 square and therefore 

this z and w are independent. 

Now, z is normal 0, 1 and this is psi square so we can write z divided by root W by m 

plus n, minus 2; this will follow t distribution on m plus n minus 2 degrees of freedom. 

Now, this quantity is nothing but, let me call it t is star, this z by square root W m plus n 

minus 2; this terms out to be root mn by m plus n X bar minus Y bar minus eta divided 

by S p so this is follows t distribution on m plus n minus 2 degrees of freedom.  
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So, if we consider here, the density function of t distribution on m plus n minus 2 degrees 

of freedom. And let us take this point as minus t alpha by 2 m plus n minus 2, and this 

point as t alpha by 2 by m plus n minus 2, then this intermediate probability is 1 minus 

alpha so we get probability of minus t alpha by 2, m plus n minus 2 less than or equal to t 

star less than or equal to t alpha by 2 m plus n minus 2; that is equal to 1 minus alpha. 



This is equivalent to after simplification, probability of X bar minus Y bar minus root mn 

by m plus n S p into t alpha by 2 m plus n minus 2 less than or equal to mu 1 minus mu 2 

less than or equal to X bar minus Y bar plus root mn by m plus n t alpha by 2 m plus n 

minus 2; so, this probability is equal to 1 minus alpha. So, when sigma 1 square, sigma 2 

square are unknown, but they are assume to be equal then the confidence interval is 

obtained based on the pooling of the sample variances; that is x bar minus y bar plus 

minus root mn by m plus n S p t alpha by 2, m plus n minus 2; this gives the confidence 

limits for mu 1 minus mu 2, however when sigma 1 square and sigma 2 square are not 

equal. And they are unknown; then the case becomes even more complicated, the reason 

is that; this pooling which we use for the additive property of the psi square distribution 

will not be possible, in the case of unknown, unequal and unknown sigma 1 square sigma 

2 squares, here we will get sigma 1 square; here we will get sigma 2 square.  

So, when we had we will not have a common denominator, unfortunately the problem of 

finding optimal confidence interval in this case is un dissolve; based on the fix sample 

sizes so an approximate procedure is obtained using an approximate t distribution. And 

that is sigma 1 square is not equal to sigma 2 square; this is the case three and unknown. 

In this case, there is known shortest length fixed with fixed confidence coefficient 

confidence interval for mu 1 minus mu 2 based on this sample, however we have an 

approximate procedure.  
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The approximate procedure is given by it is based on let me call it T 1 X bar minus Y bar 

minus eta divided by square root of S 1 square by n plus S 2 square by n. So, if we 

remember the case of sigma 1 square, sigma 2 square known; in that case we had written 

the exactly the same statistic, but here we have it return the sigma 1 square and sigma 2 

square and that head normal 0, 1 distribution. So, when they are unknown, we place them 

by their unbiased estimators here. However, this as approximately t distribution on p 

degrees of freedom, where p is equal to S 1 square by m plus S 2 square by n whole 

square divided by S 1 to the power 4 by m square into m minus 1 plus S 2 to the power 4 

by n square into m minus 1, and now this value need not be an integer.  

So, we take integral part of p for the degrees of freedom so based on T 1 the 100 of 1 

minus alpha percent confidence interval for mu 1 minus mu 2; is than obtained as x bar 

minus y bar, minus square root S 1 square by n, plus S 2 square by n, t by 2, t alpha by 2, 

p, 2 x bar minus y bar, plus square root S 1 square by n, plus S 2 square by n T 1, t alpha 

by 2 p, there is yet another case, where these samples themselves need not be 

independent; the situation where rise in the following for example, we are considering 

the effect of certain drug on patients of a tablet pressure.  

So, there is a medicines which those patients have been taking, and it is soon to reduce 

tablet pressure say from the level of 160 by 122, say 140 by 90. Similarly, a new drug is 

introduced; we want to know whether it will reduce further, so now the drug is given to 

the same set of patients for a period of one month or so. And then again we observe the 

readings; it turns out that the blood pressure levels are gone down to 130 by say 85. 

Now, we want to check whether the difference is really effective.  

So, you want to find out a confidence interval for mu 1 minus mu 2; where mu 1 is the 

average reduction in the previous case, and mu 2 is the average reduction in the second 

case. Now, in this case, even if we assume the equal variance formula we cannot apply 

the test; because X bar and Y bar are not independent. If, they are not independent then 

the formula will be invalid, however to overcome this situation a paring formula is 

frequently utilized.  
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Let me introduce that here paired observations, so here we assume then the observations 

coming from a bivariate normal distribution mu 1, mu 2, sigma 1 square, sigma 2 square. 

And here we assume that some correlation coefficient rho is there. If we consider d i is as 

x i minus y I, then from the property of the bivariate normal distribution; this will have 

mean mu 1 minus mu 2, and certain variance which we write as sigma 2 square. Now, 

we can consider here d bar S 1 by n sigma d i and S d square is equal to 1 by n minus 1 

sigma d i minus d bar whole square; then based on this we can create a confidence 

interval d bar minus S d by root n, t alpha by 2 n minus 1 2 d bar plus S d by root n, t 

alpha by 2 n minus 1. So, this is a 100 of one minus alpha percent confidence interval for 

mu 1 minus mu 2, when the observations are paired let me give one example here. 
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So, two kinds of cough medicines are there; which are given to certain patients and we 

want to check there effects in having the effect on the sleep. So, for example, there are 6 

patients let me number thems 1, 2, 3, 4, 5, 6 by giving the first medicine we absorb that, 

how much sleep they are getting 4.8, 4.1, 5.8, 4.9, 5.3, 7.4 supposes sleep as recorded in 

the hours by giving medicine to 3.9, 4.2, 5.0, 4.9, 5.4, 7.1. If we calculate here d bar; 

then d bar turns out to be 0.3 and s D turns out to be 0.45, and therefore we can calculate 

the confidence interval as d bar plus minus 0.45; this is 0.3 divided by root 6 and t value, 

suppose I am considering say 98 percent confidence interval, so we calculate t 0.01 on 5 

degrees of freedom; that is 3.365. So, that is 3.365 one can get this as the confidence 

interval for mu 1 minus mu 2. Let me quickly also introduce, the confidence interval for 

the comparison between the variance S.  



(N0 audio from 55:01 to 55:13)  
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Confidence interval for sigma 1 square by sigma 2 square So, we consider m minus 1 S 1 

square by sigma 1 square following psi square on m minus 1 degrees of freedom n minus 

1 S 2 square by sigma 2 square following psi square n minus 1. If we consider the ratio 

we get sigma 2 square by sigma 1 square S 1 square by S 2 square following psi, F 

distribution on m minus 1 n minus 1 degrees of freedom.  

So, based on this F distribution points, we can construct a confidence interval for sigma 2 

squares by sigma 1 square or sigma 1 square by sigma 2 square. So, f 1 minus alpha by 2 

m minus n minus 1 less than or equal to sigma 2 square by sigma 1 square S 1 square by 

S 2 square less than or equal to f alpha by 2 m minus 1 n minus 1; that is equal to 1 

minus alpha. So, we get S 2 square by S 1 square f 1 minus alpha by 2 m minus 1 n 

minus 1 into S 2 square by S 1 square f alpha by 2 m minus 1 n minus 1, as the 100 1 

minus alpha percent confidence interval for sigma 2 square by sigma 1 square. We can 

also write down the confidence interval for sigma 1 square by sigma 2 square by taking 

the reciprocal of this one.  

Today we have discuss the confidence intervals for the parameters of 1 or 2 normal 

populations, when we are considering non normal population, then also we can use 

certain distribution theory to derive the confidence intervals. In the next lecture, we will 

consider the concept of testing of hypothesis. 


