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So, in this lecture we shall study linear transformations, isomorphism and matrix 

representation of linear transformations. Actually, when we compare mathematical 

structures of same type that I am we study some order preserving mappings. And such 

order preserving mapping in case of a linear algebra are called linear transformations. 
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So, let us define this linear transformation. So, let V and W be vector spaces over same 

field F, A mapping T from V to W is called a linear transformation. If the following that 

first condition is that T of u plus v is equal to T u plus T v for any vectors u and v in the 

vector space v here of course. This plus operation in the left hand side represents plus 

operation in the vector space v and this plus operation in the right hand side represents 

plus operation in the vector space w. Or in other words this first condition means that this 



mapping T preserves addition operation of the vector space. Here T of alpha u is equal to 

alpha times T u for u belongs to the vector space v and alpha comes from this field F. 

The second condition is also means that the this mapping T preserves scalar 

multiplication combining this first and second can also be written like this. So, 

combining first and second can be written as for u v belongs to vector space v and alpha 

beta belongs to F, T of alpha u plus beta v is equal to alpha times T u plus beta times T v. 

One can check this condition also for mapping T is linear transformation or not. So, let 

us see one example that let us check so, let T 1 and T 2 be mappings from R 3 to R 2 

defined as defined as T 1 of x 1 x 2 x 3 is equal to x 1 plus x 2 and x 3, T 2 of x 1 x 2 x 3 

is equal to x 1 x 2 here x 3. We shall check whether T 1 and T 2 are linear 

transformations or not. 
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 So, this T 1 is a linear transformation because it preserves addition and scalar 

multiplication like T 1 x 1 x 2 x 3 plus y 1 y 2 y 3 is equal to t of x 1 plus y 1 x 2 plus y 2 

x 3 plus y 3 and according to this is T 1. So, according to definition of T 1 it is like this x 

1 plus y 1 plus x 2 plus y 2 x 3 plus y 3 and this can be written as x 1 plus x 2 x 3 plus y 

1 plus y 2 y 3 and that is equal to T 1 of x 1 x 2 x 3 plus T 1 of y 1 y 2 y 3. So, T 1 

preserves addition operation and similarly, T 1 also preserves scalar multiplication 

because T 1 of alpha times x 1 x 2 x 3 that is equal to T 1 of alpha x 1 alpha x 2 alpha x 3 

and according to definition of T 1 this is equal to alpha x 1 plus alpha x 2 alpha x 3 and 



this can be written as alpha times x 1 plus x 2 x 3 and that is equal to alpha times T of x 1 

x 2 x 3. 

So, therefore T 1 is a linear transformation, but one can said that T 2 is not a linear 

transformation because it does not preserve addition scalar multiplication also. So, 

because T 2 of x 1 x 2 x 3 plus y 1 y 2 y 3 this is equal to T 2 of x 1 plus y 1 x 2 plus y 2 

x 3 plus y 3 and according to the definition this is equal to x 1 plus y 1 into x 2 plus y 2 x 

3 plus y 3 and of course, this is not equal to x 1 x 2 x 3 plus y 1 y 2 y 3. So, therefore this 

T 2 is not a linear transformation. 
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 So, linear transformations are very useful and here we have one specific type of linear 

transformation that is called isomorphism. So, that here we consider again vector spaces 

V and W be vector spaces over the same field F a linear transformation T from V to W is 

called an isomorphism. If T is one to one and onto, if there is an isomorphism from V to 

W, then V and W are called isomorphic. So, isomorphic means that V and W have same 

structure algebraically they are the same structure. So, for every algebraic structures we 

consider this concept of isomorphism this verifies whether given vector spaces same 

structure or not. 

So, we can have some examples of isomorphism so, this the first is condition is that V is 

isomorphic to itself because the identity map is an isomorphism from V onto itself. So, 

every another example is that every finite dimensional n dimensional we can say every n 



dimensional vector space is vector space over R is isomorphic to R n of course, we will 

see some more example of isomorphisms later on. So, here we will see some properties 

of an isomorphism, that properties of an isomorphism. So, if properties are like this if T 

from V to W is an isomorphism then T inverse from W to V is also an isomorphism. 
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 So, for any linear transformation we have for any linear transformation T from V to W 

that is T 0 with 0 vector again and further if T is an isomorphism then T of V equal to 0 

implies that V is the 0 vector. And third property is like this and that an isomorphism 

third property says that an isomorphism maps are linearly independent set to a linearly 

independent set. That is if T from V to W is an isomorphism and S is consist of a set of 

linearly independent vectors S is consist of vectors V 1 V 2 to V k is a linearly 

independent set. Then this inverse of S T S that is T of V 1 T of V 2 T of V k is a linearly 

independent set. 

So, of course this property we have already given in the example so, this theorem gives a 

result which checks whether I mean one two finite dimensional vector spaces are 

isomorphic. So, the result is like this two finite dimensional vector spaces over the same 

field F are isomorphic if and only if they have the same dimension. So, this gives a 

criteria for checking whether finite dimensional vector spaces over the same field are 

isomorphic or not. So, next we shall see another important point that we defined some 



spaces associated with a linear transformation they are called Rank’s spaces and Null’s 

spaces. So, they play an important role. 
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 So, let us have this definition that let T from V to W be a linear transformation. Then the 

Kernel we define the Kernel of T denoted by Ker T is the set Kernel of T is consist of all 

vectors in the vector space V such that T of V is equal to 0. And the set that is T of V 

that is consist of T of V such that v belongs to V is called the range of T. And if this T is 

so, if for any linear transformation T we have this result one can check easily that for any 

linear transformation T from V to W. Kernel of T is a subspace of V and second result is 

that range of T is also a subspace of is a subspace of W that you can that one can check 

easily by using the definition of a linear transformation and it is not hard to check. 

In fact, we can also give briefly group of this the first one is say we have to consider that 

vectors u and V in kernel. So, let u and v belongs to Kernel of T and alpha beta they 

comes from the field F. So, this T of alpha u plus beta v that is equal to alpha times T u 

plus beta times T v this is equal to 0. So, this implies that alpha u plus beta v belongs to 

this Kernel of T and hence Kernel of T is a subspace of V. Similarly, one can also prove 

this range of T is a subspace of the V. 
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So, let w 1 w 2 belongs to this range of T then there exist vectors v 1 v 2 in the vector 

space v such that T of v 1 is equal to w 1 and T of this v 2 T of v 2 is equal to w 2. So, 

we will we shall show that this for any scalars for any scalars alpha beta in F we show 

that alpha w 1 plus beta w 2 belongs to range of T. So, now the inverse of that alpha v 1 

plus beta v 2 is equal to alpha w 1 plus beta w 2. So, since this alpha v 1 plus beta v 2 is 

an element of v we get that alpha w 1 plus beta w 2 that belongs to this range of T hence 

this range T is a subspace of w. So, here we give this another definition that the 

dimension of this dimension of Kernel of T is called nullity of T and dimension of range 

of T is called the rank of T. 

So, here we are having an important result that relates this nullity and rank and 

dimension of the vector space of course, the dimension of the vector space has to be 

finite. So, that result is known as this rank nullity theorem so, this is there is (( )) theorem 

called rank nullity theorem. So, let V be a finite dimensional vector space with 

dimension of V be equal to n. Then for any linear transformation T from V to W we have 

the following relation, we have this following relation. 
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That nullity of T plus rank of T is equal to dimension of V. So, of course one can prove 

this theorem easily it is a not difficult you will keep your outline of proof of the theorem. 

So, we have one considers that since dimension of V is finite, that dimension of Kernel 

of T is also finite let dimension of Kernel of T that is also nullity of T be equal to k. This 

is that is k is the nullity of T and v 1 v 2 to v k be a basis for Kernel of T of course, this k 

is less than or equal to n. So, now this basis of kernel of T can be extended to a basis the 

this basis can be extended to a basis for v say v 1 v 2 v k v k plus 1 up to v n. Then one 

checks that this T of v k plus 1 of these vectors v k plus 1 v k plus 2 up to T of v n is a 

basis for range of T. 

Hence rank of T is equal to n minus k and we get the result so, this rank nullity theorem 

is also very useful. So, next we shall see matrix representation of a linear transformation 

that is matrix representation of a linear transformation. So, here we see that every linear 

transformation can be expressed as a matrix and every matrix gives a linear 

transformation there is some set of correspondence among matrices are linear 

transformation. So, some time people refer therefore, people refer of matrices linear 

transformations also so, first we shall see from matrix to linear transformation. So, this 

matrix to linear transformation so, if we have we are having a matrix m by n matrix. 



So, say A the entries a i j be an m by n matrix over let A be a matrix over a field F then 

find a linear transformation associated with this matrix. So, here we cal that an m 

dimensional of vector space over F. 
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 So, we consider that so, let V be n dimensional vector space over F then elements in V 

can be written as n (( )) of elements in V or that is n minus 1 matrices over F that is x 1 x 

2 of 2 x n here x i s they come from F and similarly, let W be an m dimensional vector 

space over F consisting of elements of the form x 1 up to x n x m with x i comes from F. 

Then we define a say T from V to W as T of any element x 1 x 2 to x n is this matrix A 

this is m of size m by n and that is multiplied by this matrix x 1 x 2 to x n. So, this is a 

matrix multiplication and it is resultant will be an ten by one matrix or that is an element 

of W then easily one can verify that T is a linear transformation. Then T is a linear 

transformation this can be checked by (( )) a properties of this matrix A also and this is 

how we linear transformation T from given m matrix n notice. That if A is a matrix of 

size m by n then we get a linear transformation from a m dimensional vector space V to 

an n dimensional vector space W. 
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So, next we shall consider the converse of this that is from linear transformation to a 

matrix that converse of this from linear transformation to matrix or in another words we 

see matrix representation of a linear transformation. So, here we consider this linear 

transformation let T from V to W be a linear transformation where dimension of V is 

equal to n and dimension of W is equal to m. And we consider bases in the vector space 

V and W. So, let this v 1 v 2 v n and w 1 we 2 w n be basis for V and W respectively. 

Actually we find matrix representation of linear transformation T with respect to this 

bases; that means, we fix a bases in the vector space V and a bases in the vector space W. 

And with respect to these two bases we find matrix representation of this linear 

transformation. So, here we find this matrix corresponding to this linear transformation 

like this so, T of v 1 we shall see images of the vectors v 1 v 2 to v m with respect to this 

linear transformation. So, T of v 1 is a is an element in the vector space W so, therefore 

T of v 1 can be written as a linear combination of the basis vectors w 1 w 2 to w n. So, 

let us consider that linear combination be like this T of v 1 is equal to a 1 1 w 1 a 1 2 w 2 

plus a 1 m w m and T of v 2 is a 2 1 w 1 a 2 2 w 2 plus a 2 m w m like this T of v n of v 

n is equal to a n 1 w 1 plus a n 2 w 2 a n m w w m so, this is the w m. So, here the all 

these a i j where all these a i j they are in the field F i from 1 to 2 n and j from 1 2 to m 

they all belongs to this field F. 
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 So, now from this expression this we find the matrix corresponding to the linear 

transformation T and it is like this. That now the matrix corresponding to the linear 

transformation is, this is matrix that here we consider the coefficients of first linear 

combination as first column that a 1 1 a 1 2 and this a 1 n a 2 1 a 2 2 a 2 n and like this a 

n 1 a n 2 a n m. So, this is this matrix here we are having this basically and one this is 1 a 

1 n so, this 1 m 2 n a n m so, this is basically an m by n matrix. So, size of this matrix is 

m by n so, here we will consider an example how to find this matrix representation of a 

linear transformation. We notice that if we consider different bases for the vector spaces 

V and W then we may get different matrix corresponding to this linear transformation. 

Of course those matrices are not totally different they are also related and they are in 

fact, similar and that we are not going to prove. So, let us see one example so, we 

consider this example first example is that we shall consider a matrix and from there we 

get a linear transformation. So, that is find the linear transformation associated with or 

corresponding to the matrix say that is 1 3 minus 2 0 4 1. So, here this matrix is of size 

two by three so, we get a linear transformation from R cube to R square. So, the 

corresponding linear transformation so, let T be the corresponding linear transformation 

this is given by. 
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 So, T is basically a linear transformation from R cube to R square and T of any x 1 x 2 x 

3 that is given by 1 3 minus 2 0 4 1 that we multiply with this x 1 x 2 x 3 and we get this 

as x 1 plus 3 x 2 minus 2 x 3 and here we get this 4 x 2 plus x 3. So, this is the linear 

transformation associated with the given matrix then example two is like this here we 

consider a linear transformation T from R cube to R square defined by T of x 1 x 2 x 3 is 

x 1 plus x 2 twice x 3. We will we shall find matrix representation of this linear 

transformation. So, here we this linear transformation with respect to the bases say that is 

B consistently of 1 1 0 0 1 4 1 2 3 and B prime is consist of 1 0 0 2 of R cube and R 

square respectably. 
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 So, now we shall find image of this of bases vectors that T of 1 1 0 that is according to a 

definition of this linear transformation these values 2 0 and that can be written as linear 

combination of bases vectors in the space is like this 2 into 1 0 plus 0 times this 0 2 

image of the next bases vector that 0 1 4 is 1 8. And this can be written as linear 

combination of bases vectors in R square or in the range of T S 1 times 1 0 plus 4 times 0 

2. Then image of 1 2 3 is 3 6 from the definition of this T and this can be written as 3 

times 1 0 plus 3 times 0 2. 

So, now this coefficients from these coefficients we get the matrix of T now the matrix 

corresponding to T is given by that 2 0 1 4 3 3 or in another words that also we can think 

is transpose of this coefficient matrix. So, this is how we find matrix representation of a 

linear transformation. So, of course, here we are getting this matrix representation of a 

linear transformation with respect to some bases. We change this bases in the range 

space of this T, then we get different matrix that is all for this lecture here we stop thank 

you. 


