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Here, I have introduced the concept of random variables. So, the concept of random 

variable is defined in the way that it is a real valued function on the sample space; that 

means, we are interested in a single characteristic which is a reflected from the sample 

space single probability or one value we want to take, but many times from the random 

experiment we want to extract more values. Suppose we are considering certain 

examination.  
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And we are looking at marks of a student. Then we are we may be looking at the marks 

of the student in say five different subjects. So, marks in 5 papers. So, it could be like 

X1, X2, X3, X4 and X5. If a patient goes to a doctor and doctor take certain 

measurements on him. For example, the doctor may ask his age, the doctor will take his 

weight; the doctor may record called his say blood pressure. So, we may right say for 



example, in X 1 as the weight. The age X 2 has as the weight; X 3 has as the blood 

pressure or we may also look at says sugar level his pulse rate may be his height also. In 

that case from the single random experiment we are extracting 6 dimensional vectors. 

So, in general we say that X1, X2,…Xn is a random vector let me denoted by X random 

vector. Then X is actually a function from omega into R^k and we keep the condition of 

measurable that is a measurable function. Now like in the case of random variable we 

may have a discrete or continuous random vector. We may also have in a various type of 

cases for example, when we are according age. Age may be recorded in the rounded of 

years. In that case it will be a discrete random variable. Weight may be recorded as a 

continuous variable blood pressure, sugar level etcetera etc. may be recorded as the say 

continuous variables. 

So, it could be that some components of the random vector are discrete, some 

components are continuous or all of the components are discrete and all the components 

are continuous. So, in that case the distribution of the random vector is described 

differently. Let us take two it’s a special case one is when all the components are discrete 

and second one when all the components are continuous. So, we consider a discrete 

random vector. So, X is equal to now I will restrict my attention to two dimensions n is 

equal to 2. let us consider. So, (X, Y). So, this is also called as bivariate bivariate random 

variable. 

So, if we are saying, it is a discrete we can consider the probability mass function 

probability mass function of X,Y is described by p X,Y(Xi,Yj) that is equal to 

probability. X is equal to Xi and Y is equal to Y j for X i, Y j values belonging to 

summer some space of values of in X cross Y. we have two conditions. one condition is 

that p (Xi,Yj) is greater than or equal to 0. And second condition is that when we some 

over all the possible values of Xi, Yj in this a space then this is equal to 1.   
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Let we explain through one example here, From a box containing two defective, three 

partially defective and three good fuses, a random sample of 4 fuses is selected. Now let 

us consider X is the number of in defective fuses in the sample and Y is the number of 

partially defective fuses in the sample. We want the distribution of X, Y what is the 

distribution of X, Y. So, we assume that all the selections are equally likely in that case 

we can evaluate this probability distribution in the following fashion. 

First of all what are possible values are that X and Y can take? Since there are maximum 

2 defectives. X can take values 0, 1 and 2. And Y can take values zero 1, 2, 3.  And let us 

consider, what is the probability that X is equal to say 0 and Y is equal to 0. Now so, this 

is actually p X, Y (0 0). Since the maximum number of good fuses is three 3 and we are 

selecting 4 four fuses therefore, at least one will be either defective or partially defective 

it is not possible that all of them are good. Because X is equal to 0, Y is equal to 0 

corresponds to the case when all the fuses which have been selected in the sample are 

good, but that is not possible.  

So, this probability is, Let us consider another one probability that X equal to 1, Y is 

equal to 0. In notational form will write us p X, Y (1, 0). Now these mean that out of our 

selection from two defectives. one has been selected and from partially defective none or 

selected and all other good ones are selected. So, basically it is like 2 c 1, 3 c 0 and 3 c 3 

divided by 8 c 4. So, we can simplify this turns out to be 1 by 35 or we may write it as 2 



by seventeen 70. If we consider say probability X is equal to 0, Y is equal to 1 that is       

p X,Y (0, 1) then this turns out to be 2 c 0, 3 c 1 and 3 c 3  divided by 8 c 4  and this 

value can be evaluated as 3  by 70. 
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Now likewise we can calculate all other terms that is p X, Y (X, Y) for X taking value 0, 

1, 2. Y taking value 0, 1, 2, 3.  This p X, Y can be calculated. We can represent it in a 

tabular form like; on this side we can show the values of X, on this side value of Y 0, 1, 

2 and 0, 1, 2, 3. So, this table will represent the probability distribution of X, Y. So, this 

is zero 0.  p zero (0,1) we have calculated it is 3 by 70, p (1,0) we have calculated that is 

equal to 2 by seventy 70 and in a similar way other values can be calculated. I am 

substituting this values 9 by seventy70, 3 by 70, 18 by 70, 18 by 70, 2 by 70 and then 

you have 3 by 70 and 9 by seventy  70 and 3 by 70 and 0.  

Because X equal to 0 Y is equal to X is equal to 2 and Y is equal to 3 is not possible. 

Because total number of selections is only 4. Now we also introduce a concept of 

marginal and conditional distributions. So, marginal distribution of X is defined as p 

X(x) as the summation over all the values of Y. similarly the marginal distribution of Y 

that is defined as p Y(y) if we some over all the values of X. We can also define. So, in 

this particular case for example, the marginal distribution of X p X(x) it is obtained by 

summing the probability distribution of X, Y over Y. So, p probability X is equal to 0. 



That is obtain by summing over Y is equal to zero 0, Y is equal to 1, and Y is equal to 2, 

and Y is equal to three 3. So, that is equal to 15 fifteen by seventy 70, forty 40 by 

seventy 70 and 3 plus 9 plus 3 that is equal to 15 by 70. So, this right most column gives 

the marginal distribution of X. Similarly if we add with respect to X we get the marginal 

distribution of Y. for example, if we yet the first column we get the probability of Y is 

equal to zero 0. So, this is equal to 5 by 70. If we add the values in second column we get 

30 thirty by seventy 70. 

If we add in the column corresponding Y is equal to 2 we get 30 by 70 and if we add in 

the column corresponding to Y is equal to 3 we get 5 by 70. So, this is denoting the 

marginal distribution of Y. We can also talk about the conditional distributions. 

Conditional probability mass function of X given Y is equal to Y. That is defined by p X 

given Y is equal to say Y j, Xi given Y j that is equal to the joint distribution of Xi, Y j   

X and Y divided by the marginal distribution of Y add the point Y j. Similarly we can 

define conditional distribution of Y given X is equal to X i say that is p Y given X is 

equal to X i, Y j that is equal to p X,Y(xi, yj) divided by PX(xi). So, once we are having 

the conditional and the marginal distributions we can answers any questions regarding 

the probabilities of X,Y or X given Y are the joint distributions of X and Y.  
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For example, what is the probability here; say we want to find what is the probability that 

X plus Y is equal to 2 then this is equal to probability of X,Y is equal to say (0,2), to plus 



probability of X,Y is equal to (2,0), plus probability X,Y is equal to (1,1 one). So, that is 

equal to 0 to probability is given by 9 by 70, Probability of X equal to 2 and I Y is equal 

to 0 that is given by 3 by seventy 70 and probability of X equal to 1 and Y equal to 1 is 

given by 18 by 70 that is equal to 30 by 70 are or 3 by 7.  

We can answer any question regarding say Y what is the probability say that Y is greater 

than or equal to 2 then its equal to probability of Y is equal to 2 plus probability of Y is 

equal to 3 that is equal to thirty 30 by seventy 70 plus 5   by seventy that is equal to half. 

Similarly suppose I want to answer, what is the question regarding X is equal to 1 given 

Y is equal to two 2. So, these is equal to probability (1, 2) divided by probability of Y (2) 

is equal to 2 now p (1, 2) that is equal to 18 by 70 divided by probability of Y (2) is equal 

to 2 30 by 70. So, that is equal to 3 by 5.   

We can answer probability statement. So, regarding the joint marginal and conditional 

distributions. Now let me also define the probability density function for a continuous 

random variable bivariate continuous random variable. So, let us consider X, Y a 

bivariate continuous random variable say and the probability density function it is called 

the joint probability density function of X, Y. So, this will satisfy the properties that f (X, 

Y) has to be greater than or equal to zero 0. For all (X, Y) the integral over the whole 

region over R 2 of f (X, Y) must be 1. 

Of course, here the order of integration is not important. Whether we do dx dy or dy dx 

both should give the same answer. And for any set say A in R 2 of course, this should be 

a measurable set.  
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Probability X, Y Belongs to A is given by the integral of the joint density over the region 

A. Let me explain through one example. Let us consider say f (x, y) is equal to x plus y 

for x between zero 0 to 1, y between 0 to 1. Suppose I want to calculate what is the 

probability of x plus y less than 1. Then let us determine the region in the 2 two 

dimensionally space here x and y both are line between zero 0 to 1 and when we are 

saying a x plus y is less than one 1. Then this region is so, the region of integration than 

becomes for x it is from 0 to 1 minus y, this line is x plus y is equal to 1 and for y it will 

be from 0 to 1. So, 1 one can easily evaluate this integral this values are some to be 1 by 

3.  

Like in the case of discrete random variable here also we can define the marginal and 

conditional distributions. For example, marginal probability density function of x is 

given by integrating the joint distribution with respect to y over the appropriate region. 

Similarly the marginal distribution of y that is given by f Y (y) is equal to integral of the 

join density with respect to x over the given region. 

For example, in this particular case f X(x) in this case this will be equal to integral of x 

plus y dy from 0 to 1 that as give as x plus half. Similarly if we consider say here f Y(y) 

that will be y plus half for 0 less than y less than 1 and 0 elsewhere.  
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We can also talk about the conditional densities conditional probability density function 

of X given Y is equal to y. So, that is defined by f x given y is equal to y. It is equal to 

the join distribution of f X,Y(x, y) divided by the marginal distribution of fY(y). In a 

similar way we can talk about the conditional probability density function of y given x 

that is equal to the join distribution of f X, Y(x, y) give divided by the marginal 

distribution of f X(x). 

For example, in this case this value will turn out to be the join distribution is equal to x 

plus y divided by the marginal of y that is y plus half for 0 less than x less than 1.  And 

here Y is any value fix between 0 and 1. Suppose I say find the conditional probability 

say probability that say X lies between 0 to1/2. Given that Y is equal to half in that case i 

need the conditional probability distribution of X given Y is equal to half. So, from here 

we can substitute the value of y is equal to h i will get X plus half divided by Y plus half. 

So, now y is equal to half so, this will become one 1. So, that is t simply X plus half to 0 

less than X less than one 1. So, now if I want the conditional probability here of 0 less 

than X less than half given y is equal to half then I will be integrating this density that is 

x plus half from 0 to half that is equal to x square by 2 that will be 1 by 8 plus 1 by 4 that 

is equal to 3 by 8. So, if we have the joined distribution of X, Y. We can find out the 

marginal distributions we can find out the conditional distributions and we can answer 

any probability statement regarding the join probability, the marginal probabilities of x 



or y or the conditional probabilities of x given y or y given x. Now in the case of 

univariate random variable we have introduced the concept of moments. Now in a 

similar way in the case of vicariate bivariate random variable also we can talk about 

moments, we will talk about a slightly original concept we call it product moments.  
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So, in general we define expectation of X to the power r, Y to the power s. I will use the 

notation mew crime r,s this is called r s the (r,s)th no central moment. And it is evaluated 

by xi to the power r, yj to the power s over all x i, yj into the joint probability mass 

function if f(x, y) is discrete provided these double summation is absolutely convergent.  

Similarly if we have continuous then we can write it as x to the power r, y to the power s 

f (x,y) d x d y and of course, it could be d y d x also. If f (x, y) is continuous provided 

this vicariate integral is absolutely convergent. Provided the series or the integrals or 

absolutely convergent. In particular mew 1, 1 one prime that is equal to expectation of x 

into y, that is called the first product moment. We can also define the central product 

moments. So, mew r, s that is defined as expectation of x minus. So, let me use a 

notation expectation of X is equal to say mew x. 

 

 

 



(Refer Slide Time: 25:53) 

 

And expectation of Y is equal to mew y that is the mean of X and mean of Y inters in 

terms of that we define the expectation of x minus mew x into y minus mew y to the 

power r and this is to the power s this is called r s the central product moment. In 

particular if i take r is equal to 1, s is equal to 1 that is called expectation of X minus 

mew x into Y minus mew y that is defined as covariance between x and y covariance 

between x and y. Infect this as a simplified version also we can write it as expectation of 

x y minus mew x mew y or expectation of x y minus expectation of x into expectation of 

y. Using this we define Karl Pearson’s coefficient of correlation between x and y is a rho 

x,y that is defined to be covariance between x,y divided by a standard deviation of x into 

a standard deviation of y. 

Now this correlation coefficient is actually a measure of linear relation this is a measure 

of linear relation between X and Y a linear relationship. Infect one 1 can prove that 

minus 1 less than or equal to rho X, Y is less than or equal to 1 and rho X, Y is equal to 1 

If a non leaf x and y are perfectly positivel, linearly related with probability 1 and equal 

to minus 1. If a non leaf X and Y are perfectly negatively linearly related with 

probability 1. Actually this positive relationship means that X is equal to aY plus b 

where a is positive. And negative relationship will mean X is equal to aY plus b, a is 

equal to 1 where a is negative.  
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I will explain this concept through calculation in one case, let us consider say f (x, y) is 

equal to say 6xy of 2 minus x minus y for x between 0 to 1 and y between 0 to 1. Now 

for this distribution let us can calculate the covariance and correlation etc. So, if you look 

at the marginal distributions f X(x) that is equal to integral of 6xy into 2 minus x minus y 

dy from o to one 1.  Then this is simplifying to 4x minus 3x square for 0 less than 1 and 

0 elsewhere. 

And i, i look at f Y(y) that is also of the same form because of the symmetric. So, we can 

calculate expectation x expectation y etcetera etc. So, expectation x terms out to be 7 by 

twelve 12 that is same as expectation y.  

If we calculate expectation of x square that is equal to 2 by 5 that is equal to expectation 

of Y square. And if, we calculate variance of  x that terms out to be forty 43 by 720 that 

is variance of y. We also calculate expectation of x into y that is equal to double integral 

6x square y square of 2 minus x minus y dx dy 0 to 1 0 to 1. So, 1 one can evaluate this 

is turns out to be 1 by three 3. So, covariance between X, Y that is equal to expectation 

of x y minus expectation x into expectation y terms out to be minus 1 by 144 and 

therefore, the coefficient of correlation that terms out to be that is covariance of x, y 

divided by a square root of variance of x into a square root of variance of y the terms out 

to be minus 1 by 144 divided by forty 43 by 720 that is equal to minus 5 by forty 43 



which is a very low negative value. So, if x, y are if rho x,y is equal to 0 we say that x 

and y are uncorrelated.  
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Now there is a related concept that is of independence. We say x and y are independently 

distributed random variables. If the joint probability mass function is equal to the product 

of the marginal probability mass functions. And similarly when we are considering the 

continuous case it should be the joined probability density function is equal to the 

product of the marginal probability density functions. For example, let us take f (x, y) is 

equal to say 4xy e to the power minus x square plus y square. 

x is positive y is positive it is equal to 0 elsewhere. Let us look at say f (x, y) f x. So, here 

I will integrate with respect to y from 0 to infinity. Now if you look at the term y e to the 

power minus y square if will have integral e to the power minus y square by 2. So, at 

infinity it will become 0 at 0 it will become one 1. So, you will get twice 2x e to the 

power minus x square for x greater than 0. Similarly phi look at f y(y) then it will turn 

out to be 2y e to the power of minus Y square. So, note here that if i multiply f X (x) and 

f Y(y). I will get f (x, y) therefore, x and y are independent here. Now like in the case of 

univariate one can talk about joint moment generating function of x, y. As M x, y (s, t) 

that is equal to expectation of e to the power of s t s x plus t y. Notice here that if i put t 

is equal to 0, then I will get the moment generating function of s. And if i put to s is 

equal to 0, then I will get the moment generating function of Y.  
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We have powerful results connecting the independence to the moment generating 

function. We have the following theorem x X and y Y are independent. This implies and 

implied by the Joint mgf is equal to the product of marginal mgf’s. We have another 

consequence also that if the random variables are independent. If x and y are independent 

then the moment generating function of the sum is equal to the product of the individual 

moment generating functions.  

Infect these is one which is use to prove the additive properties of various distributions. 

Like I give example of the binomial distribution additive geometric distribution adds up 

to them. Negative binomial distribution, exponential distribution adds up to the gamma 

distribution, the linearity property of the normal distribution etcetera etc. All of those 

things where proved using the moment generating functions approach only. Now using 

the moment generating functions if the random variables are independent one can find 

out the distributions of the sum, but many times we may be interested in the distribution 

of functions of random variables. 

 Distributions of functions of random variables For example, I have (x, y) and I define u 

is equal to say g1 of x, y and v is equal to g2 of x, y. Say if g1, g2 is a measurable 

function then u, v is also a random vector. And 1 one can find out the distribution of u 

and v. I am not going to discuss in detailed the distribution here. Like in the case of 1 one  

variable when we had the x as a discrete random variable and g (x) also for a discrete 



there was direct way of obtaining the distribution of g; however, if the distributions 

where continuous in that case we had differential formula; that means, we are f (x) return 

at g inverse y and then we multiplied by dg inverse y by dy or you can say dx by dy 

when you have dealing with more than 1 one variable then the d term is represented or 

placed by a Jacobin term.  

I will state in the form of the following theorem. So, Jacobin approach for finding 

density functions of joint random variables. Let x X is equal to x X1, x X2,…x Xn be a 

continuous random vector with joined joint probability density function say f X(x) here x 

is denoting the vector here xX1, xX 2,…xX n. And let us define ui I is equal to gi I of x 

bar, for I i is equal to 1 to n 1…n and this u is equal to uU1,U2,…uUn it say 1 to 1 

mapping from rRn to r Rn.  

And we also have the inverse transformation say X x i is equal to hi I of u bar, for I i is 

equal to 1 ton 1…n. Let these be the inverse Transformations and if the partial derivates 

Del xi I over Del u j exist and we define the Jacobin of the transformation as Del x1 by 

Del u1, Del x1 by Del u2 and Sso on, Del x1 by Del Un and Sso on. Del x n by Del u1 

and so on, Del xn by Un. 
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And we assume that this is non-zero over the range of the transformation. In that case the 

joint pdf of u U is equal to u U1, u U2,… uU n is given by f (u)that is equal to f of now 

xi’s I are replaced by H h1 of u and Sso on. hn of u multiplied by the Jacobin the 

absolute value of the Jacobin. For example, let us consider say let x and y be independent 

uniform (0, 1) random variables; that means, the joined distribution of this is given by 1. 

0 less than x less than 1, zero 0 less than Y less than 1 and 0 elsewhere. Let us define say 

uU is equal to xX plus yY and vV is equal to xX minus Yy then if you see this you can 

find out the inverse transformation. 

X x is equal to u plus v by 2, y is equal to u minus v by two2. So, if I look at the Jacobin 

the derivatives of Del x by Del u is the half, dDel x by dDel v is half, dDel y by dDel u is 

half, dDel v by dDel y by dDel v is minus half. So, this is equal to minus half. So, 

modulus of Jacobin is equal to half. So, the join distribution of uv then is equal to half, 0 

less than u plus v less than 2. 0 less than u minus v is less than 2 and of course, if you 

write down the absolute. Regions of uU and Vv are from 0 to 2 and v is from minus 1 to 

1 and 0 elsewhere. So, this is the joint probability density function of UV. 
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I introduce the concept of sampling distributions. Now so firstly, let us consider say x1, 

x2 and Sso on be a sequence of independent and identically distributed random variables 

with mean mew and variance sigma square. Let us use a notation x Xn bar is equal to 1 

by n sigma x I Xi since. There is a sequence if I i consider the first n of these 



observations i take the mean as Xn bar. Then the distributions of root n (Xn bar minus 

mew) by sigma converges to normal (0, 1) as an n tense to infinity. Now this is the very 

powerful statement. 

 I am considering a side to be sequence of any independent and identically distributed 

random variables, but mean is mew and variance sigma x square is given to us. Then the 

distribution of the sample means that is xXn bar is approximately normal. So, this 

famous result is known as a Central limit theorem. This result as further generalizations 

for example, we may have independent, but none identically distributed random 

variables are or we may not even have independent random variables. So, then under 

certain conditions the distribution of the sample mean or the sample some still can be 

approximated by a standard normal distribution.  

So, this is 1 one of the first results in the case of sampling distribution. What you mean 

by sampling distribution, if we are considering several observations for the same 

population or with the same distribution then if I i consider any characteristic of that.  

For example, mean variance etc. the distribution of that is known as the sampling 

distribution. So, we can say normal distribution itself is a sampling distribution we define 

some more sampling distributions 1 one is the well-known chi square distributions or chi 

square distributions. Let xX1, x X2…xXn be independent normal (0, 1) random 

variables. And let us define w is equal to sigma x I Xi square I i is equal to 1 to n 1…n. 

Then the distribution of w is said to be a chi square distribution on n degrees of freedom. 

n degrees of freedom that terminates used here and we user notation w follows chi square 

n. So, 1 one can actually derive this distribution because I i can derive the distribution of 

X1 one Square from normal (0, 1). xX2 is square x Xn is square and then we use an 

identity property to prove this we can show that each of the x I Xi square follows by the 

chi square 1. And chi square is additive therefore, sigma x I Xi square will follow chi 

square n.  
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And actually the density is nothing but a gamma density. The distribution of w is 1  by 2 

by to the power n by 2, gamma n by 2 e to the power minus w by 2, w to the power n by 

2 minus 1. Which is actually a gamma distribution with parameter n by 2 and half, but 

this is specific form is known as a sampling distribution. Because it is a rising in a 

sampling from a normal distribution.  

In fact we have a general result that if I i consider X1, X2…Xn a random sample from 

normal mew sigma square population. And let us consider xX bar as the mean and 1 by n 

minus 1 sigma x I Xi minus xX bar whole square as the sample variance this is called the 

sample variance. And this is known as the sample mean.  

Then the result is that X bar and S square are independently distributed further the 

distribution of x X bar of codes we have seen earlier it will be normal mew sigma square 

by n and the distribution of n minus 1, s S square by sigma s S square that follows chi 

square on n minus 1 degrees of freedom. Therefore, when we have doing sampling from 

a normal distribution we can answer probability statements, regarding the sample mean 

or the sample variance we have some properties of W. For example, expectation of w W 

is equal to n variance of w W is equal to 2n etcetera etc. The since gamma distribution is 

positively skew distribution. Chi square distributions will also the positively skew 

distribution. The tables of chi square distribution are given if this probability is alpha this 



point chi square n alpha is tabulated in the tables of a chi square random variable. I will 

show you here. 

 The tables of a chi square distribution they are given in this particular fashion. So, here 

you see if this point is l chi square alpha on n degrees of freedom. Then the probability 

beyond this on the curve of probable, chi square probability density functions. This 

probability will be equal to alpha. So, for different values of alpha like .995, .999, .95   

point zero .05,   point zero.005   etcetera  zero .25  etcetera etc. And for different values 

of n the point chi square n alpha are tabulated here we talk about some further sampling. 
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Distribution another 1 one is called the famous student’s t-distribution. Let X and Y by 

are independent random variables. Let X follow normal (0, 1)  and Y follow chi square n 

and let us define t T is equal to X divided by root Y by n that we can write as X into root 

n by Y. Then this is set to have t distribution on n N degrees of freedom. The probability 

density function of t is obtained as 1 by root n beat beta n by 2 half. 1 by 1 plus t square 

by n to the power n plus 1 by 2.  

Where t lies between minus infinity to infinity as you can see this is a symmetric 

distribution around t is equal to zero 0. The mean of this will be zero 0 and the variance 

of this is n by n minus 2 which are valid for n greater than 2. As n tense to infinity as n 

tense to infinity the probability density function of t converges to phi (t) that is the 



probability density function of normal zero (0,1) random variable therefore, for large 

values of n for n greater than or equal to thirty 30. 
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The approximation is very good. Once again on the curve of t distribution suppose I 

consider this probability to be equal to alpha then values of tn alpha that is the point 

beyond which the probability is alpha. Then these values are tabulated in the tables of t 

distribution in this particular fashion. So, this point is t n alpha the probability beyond 

this is alpha. So, for different values of alpha like .005, .01, .025, .05 etcetera etc. And 

for different values of the n degrees of freedom the point’s t n alpha are tabulated here. 

If I consider say x X1, x X2… xXn from normal mew sigma x X square and we define x 

X bar. So, x X bar minus mew by s S then this we can write as this square root and this. 

So, this we can write as because we have seen that x X bar minus mew by sigma into 

root n that will follow normal (0, 1) and we are having n minus 1 s S square by sigma Y 

square following chi square. On n minus 1 degrees of freedom. So, if I ride this as root n 

X bar minus mew by sigma divided by a square root of n minus 1 s S square by sigma s 

S square and 2 n minus 1 then this is same this will follow t distribution on n minus 1 

degrees of freedom. 

Therefore, this is also a sampling distribution then we also consider f distribution. Let X 

and Y are independent and X follows say chi square on m degrees of freedom and Y 

follows chi square on degrees of freedom. Then X by m divided by Y by n that is equal 



to n X by m Y this is set to follow f distribution on mn degrees of freedom. That is we 

write this let me use a notation say v follows f on m n degrees of freedom the probability 

density function of f can also be derived  
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That is equal to m by n to the power m by 2 divided by beta m by 2, n by 2. v to the 

power m by 2 minus 1.  One 1 plus m by n v to the power minus m plus n by Two 2. 

where we as positive the v of this is equal to n by n minus 2 the variance is equal to twice 

2n square into m plus n minus 2 divided by m into n minus 2 a square into n minus 4.  

This of course, valid for n greater than 4 this is valid for and n greater than 2. We can 

actually see that it is a sampling distribution if we consider say a random sample X 1, 

X2… X m from say normal mew 1, sigma 1 X square and say Y1, Y2…Y n is another 

random sample. 

From normal mew to sigma 2x Square and suppose these samples are considered 

independent. Let us define says X square as 1 by m minus 1 sigma Xi minus X bar 

square and Sy square is a 1 by n minus 1 sigma Yj minus Y bar whole square then m 

minus 1 Sx square by sigma 1 square this follows chi square distribution on m minus 1 

degrees of freedom and n minus 1 s Y Sy square by sigma 2 square follows chi square on 

n minus 1. 

Degrees of freedom. So, if I take the ratio if the samples are independent then these 2 

variables are going to be independent these 2 are independent. So, if I consider the ratio 



m minus 1 s X Sx square by sigma 1 square into m minus 1 divided by n minus 1. s Y Sy 

square by sigma 2 square into n minus 1  that is equal to sigma 2 square by sigma 1  

square s X by s Y square, that will follow f distribution on m minus 1  n minus 1  degrees 

of freedom. So, f distribution is a sampling distribution as you can see this is a positively 

is q. 
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Distribution of course, the lay will of scenes of will depend upon the parameters m and n 

here and if I consider F distribution and this probability is alpha then this point is called 

F m,n,alpha. That tables of F m,n,alpha are tabulated for selected values of alpha and 

selected values of m and n.  

For example, you can see here this corresponding to alpha is equal to point 1. On this 

side m is varying on this side n is varying and for these values F m n values are f alpha m 

n values are tabulated these for alpha is equal to point 0.1 and similarly for alpha is equal 

to 0.5 also these tables are given. So, most of the statistical tables contains the tables of F 

variable. There is a relation of F in the terms of reciprocal because if I i take reciprocal of 

F variable then also we get an F distribution. 

 So, actually if I i say f F m n 1 by that. That then this is equal to F n m and therefore, if 

we consider the point f of 1 minus alpha m n that is equal to 1 by F alpha n m. So, these 

are some sampling distributions and they asked used for inference problems particularly 

to find out the confidence intervals and testing of hypothesis problems. In the next 



lecture I will be introducing the problem of inference in particular the problem of point 

estimation. 

 


