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Lecture No # 10
Spectrum of Special Matrices
Positive / Negative Definite Matrices
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So the final lecture in this series is on this spectrum of special matrices spectrum of
special matrices and positive definite and negative definite with matrices, are this is
positive or negative definite matrices. So here, we shall discuss about this spectrum of
some special matrices; spectrum of a matrices means that is a set of all Eigen values of
the matrix. So, for any square matrix for any square matrix A the spectrum of A usually

it is denoted by sigma A, is the set of all Eigen values of A.

So, here we shall discuss about the nature of spectrum of some special matrices like
Hermitian matrices, unitary matrices etcetera. So, first recall that a symmetry matrix this
square matrix, a square matrix A is call symmetric if a transpose is equal to a and a
square matrix with complex entries or in other words a square matrix A in ¢ n cross n
that is a is a matrix of size n by n with complex entries is called Hermitian if a conjugate

transpose is equal to A that we have already seen before remaining on this conjugate



transpose that we take conjugate of complex conjugate of entries in a and then we take it

transpose.

Further this A is called skew Hermitian a is called skew hermitian if this A conjugate
transpose is equal to minus A. is Also we are again other kind of matrices that will
discuss, but before that let us see on one example that real matrix is Hermitian if and

only if it is symmetric but the this is not true for complex matrices.
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So let us see one example that this matrix A with entries is that 1 i i 1. This is symmetric
matrix this is a symmetric matrix, but not Hermitian that one can check easily, because
this A conjugate if we take, then we get 1 minus i minus 1 1 and A conjugate transpose
that is also we get 1 minus i minus i 1. So, this is not equal to matrix A, therefore it is not
a Hermitian matrix. On the other hand, let us take this matrix b with entries that 1 i
minus i 1. So, this is a Hermitian matrix this is a hermitian Matrix. Hermitian, but not
symmetric so in in complex case matrices may be symmetric but they there not
Hermitian and matrices may be Hermitian some matrices and then not to be symmetric.
So, we will have also different kind of special matrices that that is called unitary matrix.
So a matrix A in ¢ n cross n that means n by n square matrix with complex entries is
called unitary; unitary matrix if a conjugate transpose times a is equal to a times this A
conjugate transpose is equal to this identity matrix n by n identity matrix or that is same

as that is same s a conjugate transpose is equal to a inverse.



Further, these real unitary matrices there called orthogonal matrices. real unitary matrices
unitary matrices are called orthogonal matrices. So, here we discuss the property of
Eigen values or spectrum of Hermitian matrices and unitary matrices. So, in this case
matrices we consider this since we are dealing with Hermitian matrices they are complex
matrices with complex entries and unitary matrices are also with complex matrices. So,

we consider the inner product the standard inner product this ¢ n.
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So re recall that standard inner product on ¢ n the standard inner product on ¢ n is given
by this x y inner product of x y is equal to summation i equal to 1 to n x i y i bar, where
this x is consist of this x 1 x 2 to x n and this y its components arey 1 y 2 up to y n are
vectors n ¢ n. So this standard inner product can also be expressed in this way. So here
we write this x and y we can take their less transpose or in other words let us take, so if
we take x as this vector, x one column vector basically x 1, x 2 to X n and y as this
column vector y 1, y 2 to y n then this inner product of x and y can be represented x y
conjugate transpose times this vector x. So, we shall use this inner product in this form.

So, let us have n result for matrices, so that we shall use frequently.

So consider this for any matrix A in ¢ n cross n we have a x inner product of A x with y
that is that will be equal to inner product of x and conjugate transpose of a multiplied
with y. So, this is true for every x and y in this ¢ n. So, this is quite useful of course, not

difficult to check this easily one can verify like this.
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Let us start with this inner product x and a conjugate transpose times y so from the
definition of standard inner product in ¢ n we can write this a conjugate transpose Yy this
whole conjugate and transpose this multiplied with x. So, if we consider conjugate
transpose of this quantity, then we get conjugate transpose of y and this conjugate
transpose of conjugate transpose of A, this will be a again. So, we get this A x and this
exactly the inner product of A x with y. So, this is quality useful. That means it says that
if we consider this inner product of A x y and mean a is multiplied with x this matrix A
is multiplied with x and inner product of A x y this will be equal to that we like to take
the matrix a to the second component then, we have to consider its complex conjugate
transpose, conjugate transpose of this matrix A.

So using this property we shall studied about the nature of spectrum of Hermitian
matrices, and that is given in this theorem. So, it says that we consider a Hermitian
matrix A, belongs to this ¢ n cross n ¢ n by n square matrix with complex entries be a
Hermitian matrix be a hermitian matrices, then we have the following results; first one is
the Eigen values of a are real. the eigen the eigen values of values of a are real (()) with
the matrix a is a complex matrix all its Eigen values are real, so the Eigen vectors
corresponding to distinct values of A are orthogonal with respect to the standard inner
product in ¢ n. Earlier we have seen that Eigen value corresponding to distinct Eigen
vectors corresponding to distinct values are linearly independent but here Eigen vectors

corresponding to distinct values are Hermitian matrices are orthogonal.



So this second is this Eigen vectors corresponding to distinct Eigen vectors, distinct
Eigen values of A are orthogonal with respect to the standard inner product in ¢ n. inner
product of ¢ n So, to prove this, we consider Eigen values. Let alpha and beta where
Eigen values of A with Eigen vectors u and v respectively.
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So, the next we consider here this inner product of course, this means that that is this a
times u is equal to alpha u and this a times v is equal to beta v. Next we consider here
this inner product say alpha times inner product of u and v that is from this property of
inner product we can write inner product of alpha u and v and this alpha u is equal to a u
and this is v. So, this can be written as from the lemma that inner product of u a
conjugate transpose times v and this equal to inner product of u and inner product of this

a v because a is Hermitian.

This we get because A is Hermitian and then this inner product is equal to u and a v that
is equal to beta v. So, if e take this scalar out then we get its complex conjugate beta bar
times inner product of u and v. So, this whole thing implies that we get alpha minus beta
bar times inner product of u and v. That is equal to 0. So, let us say this equation one. So,
if we check alpha equal to beta then, u equal to v and one will be this alpha minus alpha

bar multiplied with inner product of u with itself that is equal to 0.

But u is a non zero vector. So, since u is not equal to 0; we get this alpha minus alpha bar

is equal to 0 and this implies that alpha is equal to alpha bar. So, this says that alpha is a



real number. So, from here we get that, all Eigen values of a Hermitian matrix are real
numbers. So, next if alpha and beta are distinct they are different Eigen values then, this
alpha minus beta bar is not equal to 0 and from one will get this inner product of u v we
get to zero that is u and v are orthogonal. u and v are orthogonal So, it says that the Eigen
vectors corresponding to the distinct Eigen values are orthogonal. so And this how we
prove this result. Next, since we are discussing about the nature of Eigen values of
Hermitian matrices here, we can also see the nature of Eigen values of skew Hermitian

matrices.
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So, the theorem says the nature of Eigen values of skew hermitian matrices so the eigen
values of skew Hermitian matrices are O or pure imaginary skew hermitian matrices are
zero or pure imaginary purely imaginary numbers. So, this can be checked in the
following way. This is analogous to the proof of the previous theorem. So, let us
consider A be a skew Hermitian matrix skew hermitian matrices and this alpha be an
Eigen value of a alpha be an Eigen value of a with an Eigen vector u with an Eigen

vector u.

Then we get in this similar way that alpha u, u is equal to this alpha u, u and that is equal
to u, u is inner product and from that lemma we get inner product of u A conjugate
transpose times u and since a is skew Hermitian. That we get minus a times u and this we

get u and this A u is equal to alpha u u minus alpha times u and that is equal to, we get



this minus alpha its conjugate u, u. So, from here we get since this u is not equal to 0, we
get this alpha is equal to minus alpha bar or complex conjugate of alpha that is alpha bar
is equal to minus alpha. That means another we are taking complex conjugate, we are

getting the negative of that complex number that is minus alpha.

So, this says that this says that alpha is either zero or pure imaginary. So, this how we
prove that the Eigen values of skew Hermitian matrices are O or pure imaginary numbers.

So, next we shall discuss about the nature of Eigen values of unitary matrices.
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So, that that again we write as a result that it says that Eigen values of Eigen values of
unitary matrices unitary matrices have unitary matrix matrices have absolute value one
absolute value one. That is if alpha is the Eigen value of a unitary matrices then absolute
value of alpha is equal to 1. So, let us consider let A belong to ¢ n cross n be unitary, be a
unitary matrix and alpha be an Eigen value of a with Eigen vector x say. So now, we
have this a x is equal to alpha x taking conjugate transpose on both sides that A X its
conjugate and then transpose similarly, on the right hand side conjugate transpose so we
get that x conjugate transpose times X its conjugate transpose of A. This is equal to this

alpha bar and conjugate transpose of x.

Since alpha is scalar, it transposes itself. So no point of taking transpose of this scalar
guantity or we can write this as X conjugate transpose of x and conjugate transpose of a

that is equal to A inverse because a is a unitary matrix. So, conjugate of alpha, conjugate



transpose of t. So, this is true because A is a unitary. So, the next we shall multiply both
sides by A x. So multiply by both sides by A x we get this a conjugate transpose of x a
inverse multiplied by A x is equal to alpha bar conjugate transpose of x times A x or this
a inverse a that is equal to identity. Therefore, we get this conjugate transpose of X,
conjugate transpose of x times x is equal to this A X, the value of equal to alpha x. So, we
get this alpha, alpha bar conjugate transpose of x times alpha x. This is because a X is

equal to alpha x.
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Now, this alpha, alpha bar is equal to mod alpha square or we get this X conjugate
transpose of x times X is equal to mod alpha square times conjugate transpose of x times
x of this is equal to norm of x square or we get this norm of x square is equal to mod
alpha square norm of x square. So, since this x is a non zero vector we get mod alpha
square is equal to 1 or mode alpha is equal to 1, and this proves that result that the Eigen

values of unitary matrices have absolute value equal to 1.

So, another important result that we can prove for Hermitian matrices is that the
Hermitian matrices are diagonalizable. So, this is an important property of Hermitian
matrices that Hermitian matrices are diagonalizable diagonalizable. So in this case, we
saw that for any Hermitian matrices no generalized Eigen value of type two or more will
exist. So let us consider so let A be a Hermitian matrix. So our claim is that a has no

generalized Eigen value of type two a has no generalized eigen value of type two. So, if



this claim is true, then we cannot have generalized Eigen values of type k, k greater than
or equal to three. So, if the claim is true then A cannot have a generalized Eigen value
generalized eigen value of type k, k greater than or equal to 3, because that if this
matrices a has a generalized Eigen value of k, k greater than or equal to three then the

chain.

Generated by the corresponding Eigen vector will contain an Eigen vector. This this will
be Eigen vector, this we can write this Eigen vector. So, cannot have generalized Eigen
vector of type k for k greater than or equal to 3. So if this has a generalized Eigen vector
of type k k greater than or equal to 3, then the chain generated by this generalized Eigen
vector will contain an Eigen vector generalized Eigen vector of type two and that will

can contradict to claim can have cannot have generalized Eigen vector of type k.

Therefore, so let us prove this claim. Once, so we prove this claim is true, then this
matrix a will have only a generalized Eigen vector of type one. So, they are those
generalized Eigen vectors of type one are nothing but ordinary Eigen vectors. So, this
matrix a will have therefore, n number of Eigen vectors, their distinct Eigen vectors and
they are all linearly independent and hence this will be diagonalizable. So, let us prove

this claim.
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So to prove the claim consider that, to prove the claim let us consider that let x be

generalized Eigen vector of A of type 2. So, that is this A minus lambda i whole square x



is equal to 0 but A minus lambda | x is not equal to 0, where lambda is an Eigen value
and x be an Eigen vector corresponding to an Eigen vector, corresponding to this
generalized Eigen vector generalized Eigen vector corresponding to this lambda. So, here
we get that this zero is equal to inner product of x and 0 and in place of this 0, we can
write a minus lambda | whole square x or from that lemma, we can write this a minus
lambda | its conjugate transpose times x A minus lambda i times this inner product and
this is same as that A minus lambda | x and this inner product a minus lambda 1 x,

because the conjugate transpose of A minus lambda i is equal to A minus lambda I.

This is true because this A is a Hermitian matrix its conjugate transpose will be a again
and lambda is real. So, this is true, because lambda this is scalar, this is real that a
conjugate transpose is equal to A lambda is a real and its identity matrix is obviously
satisfy that is conjugate transpose, which is again a itself. In other words we get so this
minus lambda | x is equal to 0. So, this is a contraction this is a contraction because our
assumption was that this A minus lambda I x this is not equal to 0. So, this shows that A
cannot have any generalized Eigen value of type two or more; so all generalized Eigen
value are type one, which are exactly ordinary Eigen vectors. Therefore, A will have n

number of linearly independent Eigen vectors, and hence this A is diagonalizable.
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So, next we shall see this positive and negative positive or negative definite matrices; so

for this, we shall define one terminal (()) that is called Hermitian form. So let A belongs



to A ¢ n cross n or the matrix of size n with complex entries. Then the expression the
expression a x X that is equal to a conjugate transpose a times x for x belong to this
complex or this ¢ n is called the Hermitian for associated with the matrix A called the
hermitian form associated with a this associated with a this matrix A with hermitian form
A, | said that with a if A is a Hermitian matrix and this is called quadratic form; if A'is a
symmetric matrix if a is is @ symmetric matrix then this A x x is called quadratic form.
So, this is a symmetric matrix, is a symmetric real matrix in fact, then this is called the

quadratic form associated with A.
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So, next we shall define these positive and negative matrices. So this will define in terms
of these forms. So, let us consider a Hermitian matrix. So, a Hermitian matrix hermitian
matrix a belongs to this ¢ n cross n is the said to be said to way positive definite def if the
corresponding form corresponding form A x x this inner product of A x x is strictly

greater than 0 for every non zero x in ¢ n and this is A is said to be negative definite.

A is sais 0 be negative definite if the corresponding form a x x a x X this is strictly less
than O for every non zero x n ¢ n. We also define that positive semi definite matrices; so
this A is called positive semi definite semi definite if this corresponding form A x x is
greater than or equal to O for every x in ¢ n. So here, this x may be taken as 0 vector. So

similarly, one also define the negative semi definite matrices.
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So, let us see one example of this positive definite matrix. This example shows that here
we consider a matrix, show that this matrix A with entries 2 i minus i 2 is positive
definite. For this we have to verify that if the corresponding form A x X is greater than
zero or non zero Xx. So, let us consider this vector x is x 1 x 2 with of course thisis in c 2
and this x is not equal to 0. Now, consider the form A x x and this can be written in, from
the definition of the inner product that x conjugate transpose times A x or this is equal to
conjugate of x 1 conjugate of x 2 and this matrix A that is 2 i minus i 2 multiplied with x
1x2.

So, this on simplification or on multiplication multiplying this we get that this is equal to
two times x 1 x 1 bar plus i times x 1 bar x 2 minus i times x 1 x 2 bar plus 2 times X 2 x
2 bar or rearranging this term we can write this x 1 x 1 bar plus x 1 plus i x 2 multiplied
with x 1 plus i x 2 its conjugate, one can adjust this term and get like this x 2 x 2 bar and
this is exactly the x one norm square plus x 1 plus i X 2 mod square, because they are
complex numbers plus x 2 mod square. And this is strictly greater than 0, because X is
not equal to O this is strictly greater than zero because this x is not equal to zero x that is
x 1 and x 2 are not equal to 0, simultaneously not equal to O simultaneously so here
whatever may be the values of x 1 and x 2 or whatever the x that is of course, non zero
we can show that this quantity that x bar transpose A x that is always greater than 0.
Therefore, this matrix A is next positive definite matrix. So, similarly, one proves for

that negative definite matrices or positive semi definite matrices.
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So next, let us state that the nature of next let us state that the nature of Eigen values of
positive definite matrices and negative definite matrices. And of course, we shall know
this result states in a nature of Eigen values of positive definite matrices and negative
definite matrices. So, let A be a Hermitian matrix and matrix then we will have the
following; A is positive definite if and only if if and only if its Eigen values are positive
its Eigen values are positive. It says that for a positive definite matrix all its Eigen values
are positive and for any Hermitian matrix if its Eigen values are positive a positive
definite matrix. Similarly, A is this second one is like this; A is negative definite if and

only if its Eigen values are negative Eigen values are negative.

So for negative definite matrices all its Eigen values are negative and on the other way
that if for a Hermitian matrix all its Eigen values are negative then the matrix will be
negative definite matrix. So, one can prove this results are easily and here we skip this

proof and that is all for the lecture and we stop here.



