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Welcome to this lecture. So, as before, let us quickly recall what we have done so far. So, in this

week, we have been looking at the measures of sets, which allows us to look at how likely

certain events are in some random experiment or how large or important is one subset, some

certain subsets in your measurable space.

So, far we have studied many examples of such measures and in particular probability measures.

And we have also looked at many interesting properties of measures, which we called as

algebraic properties involving many inequalities or equalities and involving usual algebraic

operations like addition and subtraction. Now, in this lecture, we start looking at certain

continuity properties of these measures.
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So, let us start by moving on to the slides. So, in the previous lecture, we have discussed these

algebraic properties. Now, we start by looking at a slightly different type of properties. So, as

before let us fix the notation first is a measure space. So, here is a measure on the(Ω,  ℱ,  µ) µ

measurable space . Now, what we are interested in limiting behaviors of this measure.(Ω,  ℱ)

What do I mean by that?

We look at this quantity. Since a measure is a function defined on this fields, someµ σ −

collection of subsets, then we can take sequences of sets and look at the corresponding sizes{𝐴
𝑛
}

or measures of these sets, which is . So, original collection, original sequence that wasµ(𝐴
𝑛
)



there that was from the field. And now, correspondingly we are looking at the sizes of theσ −

sets and that allows us to construct a sequence of non-negative numbers, which of course could

be , which of course could include .∞ ∞

Now, we are interested in the limit values of these measures of An. Now, these type of results

may also be thought of as continuity properties of . Since, we have already discussed certainµ

limiting notions for the sets An. So, therefore, we would like to connect the notions of limits of

the sets with the notions of and that is why we are going to think of all these𝐴
𝑛

𝑙𝑖𝑚 µ(𝐴
𝑛
)

properties as continuity properties of or limiting behaviors of .µ µ
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So, in this regard, so this is the result we are going to study continuity properties. The first part

says that a measure is continuous from below. What is this? It is like this. So, take a increasingµ

sequence of sets and call the complete union, call the countable union of Ans as capital A.𝐴
𝑛

This is the usual notation used earlier. Then we claim that increase, an increase to thisµ(𝐴
𝑛
)

limit value which is nothing but the . So, this is continuity from below. So, if increase toµ(𝐴) 𝐴
𝑛

the set A, then also increase to the . So, that is the continuity property.µ(𝐴
𝑛
) µ(𝐴)
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The second property says it is also continuous from above, but with certain restrictions. What is

this? We start with a decreasing sequence of sets going down to the complete intersection, going

down to the countable intersection, which we have used, this notion we have used earlier. So, A

denotes the countable intersections of . Now, we have this additional condition that at least one𝐴
𝑛

of the sets Ak should have finite mass.

Now, remember we are dealing with a general measure. So, could be . The sequence thatµ(𝐴
𝑛
) ∞

you have taken may have infinite sizes. The sequence of sets that you have taken may have

infinite sizes. What we want is that at least one of the sets should have finite mass. Then we

claim that this limit also holds that decrease to the . So, if s decreased to , thenµ(𝐴
𝑛
) µ(𝐴) 𝐴

𝑛
𝐴

decrease to .µ(𝐴
𝑛
) µ(𝐴)

So, now, just to quickly clarify, here in the statement it is written in terms of a limit. So, that is

the second part again. And in the first part, it is also in terms of the limit. But I have mentioned

that this is an increasing limit. These measures increase here and in the second part the measures

decrease here.

So, why is that? This is because of the fact that when you are looking at increasing sequence of

sets, then by the monotonicity property that was proved in the previous, that was discussed in the

previous lecture, we have must increase. Similarly, if ’s are decreasing, then mustµ(𝐴
𝑛
) 𝐴

𝑛
µ(𝐴

𝑛
)



decrease. This is again by the monotonicity properties that was discussed in the previous lecture.

Using that, we are now going to continue and talk about the actual limit value.
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So, for the first part, there was no restriction. We are going to consider increasing sequence of

sets and we are going to show that s increase to A). But here we, here for simplicity,𝐴
𝑛

µ(𝐴
𝑛
) µ(

we split it into two parts. First, assume that is for some k. So, if it so happens thatµ(𝐴
𝑘
) ∞

for some k, then since already contains , then by the monotonicity propertyµ(𝐴
𝑘
) = ∞ 𝐴

𝑘+1
𝐴

𝑘

that was proved in proposition 7, you immediately claim that is also , becauseµ(𝐴
𝑘+1

) ∞

must be at least and is taken to be as per the assumption here.µ(𝐴
𝑘+1

) µ(𝐴
𝑘
) µ(𝐴

𝑘
) ∞



Likewise, you can repeat this argument and claim that measures of for all ,𝐴
𝑛

= ∞ 𝑛 ≥ 𝑘

because the sets are increasing. So, if one of the sets has infinite mass, then all the next sets will

also have infinite mass. But then what happens to the limit value. The limit value is nothing but

. So, is .∞ lim (µ(𝐴
𝑛
)) ∞

But on the other hand, if you are looking at , the complete union, now must also⋃ 𝐴
𝑛

⊂ 𝐴 µ(𝐴)

be , because it contains the set . Therefore, is also . Thus, the required equality holds,∞ 𝐴
𝑘

µ(𝐴) ∞

because the limit value is and is also .∞ µ(𝐴) ∞

Now, in the second part, now we look at the other case. So, in the first case we assume that one

of the sets has infinite mass. But now you assume the contrary, the opposite condition that all the

sets has finite mass. So, this is an interesting case. So, if all the sets has finite mass, now look at

the complete union A once more, but then you apply your familiar disjointification. So, you

construct these sets , but since these sets Ans are increasing, you can actually𝐵
1
,  𝐵

2
,  .  .  ., 𝐵

𝑛

simplify it and write it using this pairwise disjoint union.

So, this construction was done earlier. But for the case, for the special case of increasing

sequences, you get this decomposition. What is this? So, the complete union, unions of A is

nothing but first then then and so on. So, earlier recall it was like then𝐴
1

𝐴
2
\𝐴

1
𝐴

3
\𝐴

2
𝐴

1
𝐴

2
\𝐴

1

, but the third set was . But since the sets are increasing, is nothing but𝐴
3
\(𝐴

1
∪ 𝐴

2
) 𝐴

1
∪ 𝐴

2
𝐴

2

itself. That is why you get this simplified relation.

Therefore, so by this earlier construction, these sets , and so on, these are pairwise𝐴
1

𝐴
2
\𝐴

1

disjoint. So, you apply now, you would like to apply now, the countable additivity of the

measure. But then note that by the corollary of the proposition 7 that we have discussed again by

the monotonicity properties, you also have this relation that measures of this thing is𝐴
𝑛+1

\𝐴
𝑛

nothing but the subtraction.

This is also true, this is true, because, this is true, because of these two reasons; first is the𝐴
𝑛+1

union, is the disjoint union of and . Repeat, just to repeat is the disjoint union of𝐴
𝑛

𝐴
𝑛+1

\𝐴
𝑛

𝐴
𝑛+1



and . So, you have these two sets pairwise disjoint, apply finite additivity, you get𝐴
𝑛

𝐴
𝑛+1

\𝐴
𝑛

that is nothing but the addition of the individual sizes of and .µ(𝐴
𝑛+1

) 𝐴
𝑛

𝐴
𝑛+1

\𝐴
𝑛

But then, since you are dealing with sets with finite mass, we have made that assumption, you

are allowed to subtract and get this relation that of the that is on the left hand sideµ µ(𝐴
𝑛+1

\𝐴
𝑛
)

is equal to . So, now, all you have to do of the countable additivity of theµ(𝐴
𝑛+1

) − µ(𝐴
𝑛
)

measure on this complete union A. Since you have written it as a countable disjoint union,µ

what you get is that you get this relation that is nothing but the addition of all theseµ(𝐴)

measures, additions of these sizes. But then, you have proved that is obtained byµ(𝐴
𝑛+1

\𝐴
𝑛
)

subtracting from .µ(𝐴
𝑛
) µ(𝐴

𝑛+1
)

Now, look at this series. This series has the partial sum given by a

of this telescoping sums. If you are looking at the -th partialµ(𝐴
𝑛
) +

𝑛=1

𝑚

∑ µ(𝐴
𝑛+1

) − µ(𝐴
𝑛
)( ) 𝑚

sum of the series, you will simply get of this thing. But then,µ(𝐴
1
) +

𝑛=1

𝑚

∑ µ(𝐴
𝑛+1

) − µ(𝐴
𝑛
)( )

for the finite sum you can easily compute that this is becomes a telescoping sum many of the

terms cancel off and the remaining term is .µ(𝐴
𝑛+1

)

But since this countable additivity holds, you are basically saying that is nothing but theµ(𝐴)

limit of this series or the summation of the series, but nothing but, that is nothing but the limit of

the partial sums. But the partial sums themselves are nothing but measures of and therefore,𝐴
𝑛+1

you immediately get that is nothing but the limit of partial sums which is nothing but thisµ(𝐴)

quantity.

So, here we have used the fact that a series is equal to the limit, the series value is equal to the

limit of the partial sums and that allows us to claim this equality. So, that proves the case when

the sets are increasing.
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But when the sets are decreasing, you also have that assumption that there is at least one set Ak

for which the measure is finite. So, you start with that. Then observe this that the sets , so𝐴
𝑘
\𝐴

𝑛

here you fix and vary . You look at these sets . Since s are decreasing, you will get𝑘 𝑛 𝐴
𝑘
\𝐴

𝑛
𝐴

𝑛
'

that will increase and increases to . But then, here you can apply the first part𝐴
𝑘
\𝐴

𝑛
𝐴

𝑘
\𝐴

because this sequence now is an increasing sequence. So, if you apply that then that isµ(𝐴
𝑘
\𝐴)

the limit value of the as .µ(𝐴
𝑘

− 𝐴
𝑛
) 𝑛 → ∞

But then, since you are dealing with sets with finite mass, since you will have finite mass𝐴
𝑘

then also has finite mass. Then you can rewrite this equation equality as𝐴
𝑘

− 𝐴
𝑛

µ(𝐴
𝑘
) −  µ(𝐴)

, because A was a subset of , so is also finite. So, you can write the left hand side as the𝐴
𝑘

µ(𝐴)

difference of .µ(𝐴
𝑘
) −  µ(𝐴)

On the right hand side, again you will apply the same fact. Since is finite, isµ(𝐴
𝑘
) µ(𝐴

𝑘
− 𝐴

𝑛
)

also finite, and you can write it as a subtraction of these quantities. Therefore, you get this

relation. But then is finite. So, you can cancel off from both sides. And thatµ(𝐴
𝑘
) µ(𝐴

𝑘
)

required result follows. So, you get a limit of is nothing but . But this is using theµ(𝐴
𝑛
) µ(𝐴 )

fact that at least one of the sets as finite mass.



But now we are going to ask that what happens if you are considering a decreasing sequence and

all of the sets has infinite mass. What happens there? So, for this case, we have to, for this case,

there are counter examples.
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So, now, if you are dealing with finite measures, then this condition is automatically satisfied.

So, you do not have to worry about it. So, in particular for probability measures this condition is

automatically satisfied. So, therefore, what you actually have proved from that proposition is the

fact that finite measures including probability measures are both continuous from above and

continuous from below.

So, take any increasing sequences or decreasing sequences, then the appropriate limit holds. So,

that is what I mean by continuous from above and continuous from below. So, for finite

measures and in particular for quality measures, you have this fact.
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But then, for an infinite measure you can find examples where the all the measures of the sets

that you are considering have infinite mass the sets decrease to that countable intersection and

then you can try to show that . So, you have to nstruct such an exampleµ(𝐴) ≠
𝑛→∞
lim µ(𝐴

𝑛
) 

explicitly. Please work this out. So, this will give you a counter-example to the fact that when

there are infinite measures, there can be some sequences which are decreasing, but the equality

does not hold. So, the measure need not be continuous from above in that case. So, please work

out, please find such an example.
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Now, we restrict our attention to familiar collection that was considered earlier in the previous

lecture. What is this? So, consider two probability measures and and look back at theℙ
1

ℙ
2

collection of subsets where the probabilities match. So, probability of under and must be𝐴 ℙ
1

ℙ
2

the same. So, look at those special subsets and call that collection as . Earlier, we had provedℰ

that this collection is non-empty and closed under complementation, finite disjoint unions and

countable disjoint unions.

Now, we are going to show that this collection also has some nice structures like that this is a

monotone class. How do you show this? So, to show this, all you have to verify that this

collection is closed under countable increasing unions and countable decreasing intersections.ℰ

How do you show this?
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So, let us take the first conditions. So, take our increasing sequence with being the union.𝐴
𝑛

𝐴

Then, if s are already in this collection, you would like to show that the union is in the𝐴
𝑛
'

collection . Now, you observe that if s are already in this collection, then the probability ofℰ 𝐴
𝑛
'

’s according to and must match. We want to show that the probability of , the union𝐴
𝑛

ℙ
1

ℙ
2

𝐴

must match under and . To share this you apply continuity from below. Why?ℙ
1

ℙ
2



If , if the sets ’s increased to the set , then by the continuity from below of the probability𝐴
1

𝐴
𝑛

𝐴

measure , you get the probability of is equal to that was just proved asℙ
1

ℙ
1
(𝐴) lim ℙ

1
(𝐴

𝑛
)

continuity from below. But then if is nothing but , you rewrite it in terms of .ℙ
1
(𝐴

𝑛
) ℙ

2
(𝐴

𝑛
) ℙ

2

And here you apply the continuity from below of the probability measure and you end upℙ
2

having the probability of in terms of .𝐴 ℙ
2

So, therefore, the union has the same probability under and . So, hence is closed underℙ
1

ℙ
2

𝒜

countable increasing unions. And a similar argument involving the continuity from above for this

probability measure and will show you that it is also closed under countable decreasingℙ
1

ℙ
2

intersections. And hence, is a monotone class.ℰ

But here for the increasing, countable decreasing intersections what you have to use is the

continuity from above and just note that any finite measures in particular for probability

measures this property is true. So, for any probability measure, it is continuous from above and

continuous from below. So, this is what implies that this collection is closed under countableℰ

increasing unions and countable decreasing intersections and hence it becomes a monotone class.
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We now consider a concept related to increasingness and decreasingness of sequences of sets.

So, a measure on a measurable space is said to be finite, if you have a sequence ofµ (Ω,  ℱ) σ −

sets increasing to and this first of all must be from your collection from your fieldΩ
𝑛

Ω Ω
𝑛

σ −

and with the additional condition that measures of are finite.Ω
𝑛

So, again we need to, we are considering measures on some measurable space, we would like to

figure out increasing sequence of subsets such that s have finite mass, but s increase toΩ
𝑛

Ω
𝑛
' Ω

𝑛

. So, in this case, we are going to say that is a finite measure space.Ω (Ω,  ℱ, µ) σ −

Now, a quick clarification, here we are not saying anything about the ). We are onlyµ(Ω

restricting that measures of s, those special subsets that you consider must have finite mass.Ω
𝑛
'

So, if there exists one sequence like that, if there exists increasing sequence like that, thenΩ
𝑛

Ω
𝑛

you get that the measure, then you say that the measure is finite and call the correspondingσ −

measures is as finite measure space. But again you are not saying anything about the .σ − µ(Ω)

It could be finite. It could be infinite.
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So, let us first understand what are some examples. So, if you look at a finite measure, then of

course, you can take s to be itself. So, it is a constant sequence of sets. So, all the sets are .Ω
𝑛

Ω Ω

These are, of course, subsets as per our definition. And each of which has finite mass because we

have taken a finite measure. So, therefore, you get an increasing sequence of sets and you get

that this finite measures are finite. In particular, all property measures are finite. Butσ − σ −

then you would like to get examples for the case of infinite measures.
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So, an infinite measure which is finite is discussed here. So, consider the measurable spaceσ −

of integers of natural numbers and the corresponding power set. So, look at the measurableℕ

space given by the, consider the measurable space with the set of natural numbers with the power

set. Here consider the counting measure. So, here the set of natural numbers is countable. So,ℕ

therefore, a set of natural numbers is countably infinite. So, the number of elements there is

infinite. So, , the size of the set is infinite. So, that is already given to us. So, this is anµ(ℕ) ℕ

infinite measure.

But then consider the sets which is like this . So, it has exactly elements forΩ
𝑛

1,  2,  .  .  ., 𝑛 𝑛 Ω
𝑛

each n. Then look at the union. The union is nothing but the set of natural numbers. But then

, because is the connection and .Ω
𝑛

⊂ Ω
𝑛+1

Ω
𝑛+1

1,  2,  .  .  ., 𝑛 𝑛 + 1

So, therefore, and their union is nothing but the set of natural numbers. But hereΩ
𝑛

⊂ Ω
𝑛+1

observed that number of elements in is nothing but n itself, which is finite. So, it is finite forΩ
𝑛

each n, but is infinite. And here, you end up having an example of an infinite measureµ(Ω)

which is finite.σ −

So, you get these pieces where the sizes are finite, but the sets increase to the whole set andΩ
𝑛

gives you the examples of a finite measure. But it is a word of caution that not all infiniteσ −

measures are finite. But in this course, we are not going to consider such measures. We areσ −



not going to consider any infinite measure which is not finite. We are not going to considerσ −

such measures.

But we are going to consider finite measures on the real line. And these will be some veryσ −

interesting examples, which of course, includes probability measures on the real line. So, this we

are going to see in later lectures. We stop here and we are going to continue the discussions about

properties of measures in the next lecture.


