Measure Theoretic Probability 1
Prof. Suprio Bhar
Department of Mathematics & Statistics
Indian Institute of Technology, Kanpur
Lecture No. 09
Properties of Measures — 11

Welcome to this lecture. So, as before, let us quickly recall what we have done so far. So, in this
week, we have been looking at the measures of sets, which allows us to look at how likely
certain events are in some random experiment or how large or important is one subset, some

certain subsets in your measurable space.

So, far we have studied many examples of such measures and in particular probability measures.
And we have also looked at many interesting properties of measures, which we called as
algebraic properties involving many inequalities or equalities and involving usual algebraic
operations like addition and subtraction. Now, in this lecture, we start looking at certain

continuity properties of these measures.
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So, let us start by moving on to the slides. So, in the previous lecture, we have discussed these
algebraic properties. Now, we start by looking at a slightly different type of properties. So, as
before let us fix the notation first (), F, p) is a measure space. So, here | is a measure on the
measurable space (£, F). Now, what we are interested in limiting behaviors of this measure.

What do I mean by that?

We look at this quantity. Since a measure p is a function defined on this o —fields, some

collection of subsets, then we can take sequences of sets {An} and look at the corresponding sizes

or measures of these sets, which is u(An). So, original collection, original sequence that was



there that was from the 0 — field. And now, correspondingly we are looking at the sizes of the
sets and that allows us to construct a sequence of non-negative numbers, which of course could

be oo, which of course could include oo.

Now, we are interested in the limit values of these measures of An. Now, these type of results
may also be thought of as continuity properties of p. Since, we have already discussed certain
limiting notions for the sets An. So, therefore, we would like to connect the notions of limits of

the sets An with the notions of lim u(An) and that is why we are going to think of all these

properties as continuity properties of p or limiting behaviors of p.
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So, in this regard, so this is the result we are going to study continuity properties. The first part

says that a measure p is continuous from below. What is this? It is like this. So, take a increasing

sequence of sets An and call the complete union, call the countable union of Ans as capital A.
This is the usual notation used earlier. Then we claim that u(An) increase, an increase to this
limit value which is nothing but the pu(4). So, this is continuity from below. So, if An increase to

the set A, then u(An) also increase to the u(A). So, that is the continuity property.
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The second property says it is also continuous from above, but with certain restrictions. What is
this? We start with a decreasing sequence of sets going down to the complete intersection, going
down to the countable intersection, which we have used, this notion we have used earlier. So, A

denotes the countable intersections of An. Now, we have this additional condition that at least one

of the sets Ak should have finite mass.

Now, remember we are dealing with a general measure. So, u(An) could be co. The sequence that

you have taken may have infinite sizes. The sequence of sets that you have taken may have
infinite sizes. What we want is that at least one of the sets should have finite mass. Then we

claim that this limit also holds that u(An) decrease to the p(A). So, if Ans decreased to A, then

u(An) decrease to pu(4).

So, now, just to quickly clarify, here in the statement it is written in terms of a limit. So, that is
the second part again. And in the first part, it is also in terms of the limit. But I have mentioned
that this is an increasing limit. These measures increase here and in the second part the measures

decrease here.

So, why is that? This is because of the fact that when you are looking at increasing sequence of
sets, then by the monotonicity property that was proved in the previous, that was discussed in the

previous lecture, we have u(An) must increase. Similarly, if An’s are decreasing, then u(An) must



decrease. This is again by the monotonicity properties that was discussed in the previous lecture.

Using that, we are now going to continue and talk about the actual limit value.
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So, for the first part, there was no restriction. We are going to consider increasing sequence of

sets An and we are going to show that u(An)s increase to (L(A). But here we, here for simplicity,
we split it into two parts. First, assume that u(Ak) is oo for some k. So, if it so happens that
u(4 k) = oo for some k, then since A i1 already contains A o then by the monotonicity property
that was proved in proposition 7, you immediately claim that u(Ak+1) is also oo, because

u(Ak_H) must be at least pu(4 k) and u(Ak) is taken to be oo as per the assumption here.



Likewise, you can repeat this argument and claim that measures of An = oo for all n > k,

because the sets are increasing. So, if one of the sets has infinite mass, then all the next sets will
also have infinite mass. But then what happens to the limit value. The limit value is nothing but

. So, lim (u(An)) is .

But on the other hand, if you are looking at U An C A, the complete union, now p(A) must also

be oo, because it contains the set A r Therefore, u(A) is also oo. Thus, the required equality holds,

because the limit value is oo and p(4) is also oo.

Now, in the second part, now we look at the other case. So, in the first case we assume that one
of the sets has infinite mass. But now you assume the contrary, the opposite condition that all the
sets has finite mass. So, this is an interesting case. So, if all the sets has finite mass, now look at
the complete union A once more, but then you apply your familiar disjointification. So, you

construct these sets B,B,...B, but since these sets Ans are increasing, you can actually
simplify it and write it using this pairwise disjoint union.
So, this construction was done earlier. But for the case, for the special case of increasing

sequences, you get this decomposition. What is this? So, the complete union, unions of A is

nothing but first A1 then AZ\A1 then A3\A2 and so on. So, earlier recall it was like A1 then AZ\A1
, but the third set was A 3\(A Y A 2). But since the sets are increasing, A LY A 5 is nothing but A 5

itself. That is why you get this simplified relation.

Therefore, so by this earlier construction, these sets Al, Az\A1 and so on, these are pairwise

disjoint. So, you apply now, you would like to apply now, the countable additivity of the
measure. But then note that by the corollary of the proposition 7 that we have discussed again by

the monotonicity properties, you also have this relation that measures of this thing An+1\An is

nothing but the subtraction.

This is also true, this is true, because, this is true, because of these two reasons; first An+ L is the

union, is the disjoint union of An and An+1\An. Repeat, just to repeat An+1 is the disjoint union of



An and An+1\An. So, you have these two sets pairwise disjoint, apply finite additivity, you get

that u(A ) is nothing but the addition of the individual sizes of A and A \A .
n+1 n ntl' n

But then, since you are dealing with sets with finite mass, we have made that assumption, you

are allowed to subtract and get this relation that p of the u(An+1\An) that is on the left hand side
is equal to u(AnH) - u(An). So, now, all you have to do of the countable additivity of the

measure W on this complete union A. Since you have written it as a countable disjoint union,
what you get is that you get this relation that p(A) is nothing but the addition of all these

measures, additions of these sizes. But then, you have proved that u(An_H\An) is obtained by

subtracting u(An) from }L(AnJr 1).

Now, look at this series. This series has the partial sum given by a

m
u(An) + ) (u(An+1) - u(An)) of this telescoping sums. If you are looking at the m-th partial
n=1

m
sum of the series, you will simply get u(A 1) + ) (u(An+ 1) - u(An)) of this thing. But then,
n=1

for the finite sum you can easily compute that this is becomes a telescoping sum many of the

).

terms cancel off and the remaining term is “(An+ )

But since this countable additivity holds, you are basically saying that u(A4) is nothing but the
limit of this series or the summation of the series, but nothing but, that is nothing but the limit of

the partial sums. But the partial sums themselves are nothing but measures of An+ ) and therefore,

you immediately get that u(A) is nothing but the limit of partial sums which is nothing but this
quantity.

So, here we have used the fact that a series is equal to the limit, the series value is equal to the
limit of the partial sums and that allows us to claim this equality. So, that proves the case when

the sets are increasing.
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But when the sets are decreasing, you also have that assumption that there is at least one set Ak

for which the measure is finite. So, you start with that. Then observe this that the sets A k\An, SO
here you fix k and vary n. You look at these sets Ak\An. Since An's are decreasing, you will get
that Ak\An will increase and increases to Ak\A. But then, here you can apply the first part
because this sequence now is an increasing sequence. So, if you apply that then p(A k\A) that is

the limit value of the pu(A4 P An) asn — oo,

But then, since you are dealing with sets with finite mass, since A , you will have finite mass
then A P An also has finite mass. Then you can rewrite this equation equality as u(A k) - n4)
, because A was a subset of Ak, so 1(A) is also finite. So, you can write the left hand side as the

difference of pu(4 k) - n4).

On the right hand side, again you will apply the same fact. Since p(A4 k) is finite, p(4 p An) is

also finite, and you can write it as a subtraction of these quantities. Therefore, you get this

relation. But then u(Ak) is finite. So, you can cancel off u(Ak) from both sides. And that
required result follows. So, you get a limit of u(An) is nothing but p(A ). But this is using the

fact that at least one of the sets as finite mass.



But now we are going to ask that what happens if you are considering a decreasing sequence and
all of the sets has infinite mass. What happens there? So, for this case, we have to, for this case,

there are counter examples.
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So, now, if you are dealing with finite measures, then this condition is automatically satisfied.
So, you do not have to worry about it. So, in particular for probability measures this condition is
automatically satisfied. So, therefore, what you actually have proved from that proposition is the
fact that finite measures including probability measures are both continuous from above and

continuous from below.

So, take any increasing sequences or decreasing sequences, then the appropriate limit holds. So,
that is what I mean by continuous from above and continuous from below. So, for finite

measures and in particular for quality measures, you have this fact.
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But then, for an infinite measure you can find examples where the all the measures of the sets
that you are considering have infinite mass the sets decrease to that countable intersection and

then you can try to show that p(4) # Ilim u(An) . So, you have to nstruct such an example
n—oo

explicitly. Please work this out. So, this will give you a counter-example to the fact that when
there are infinite measures, there can be some sequences which are decreasing, but the equality
does not hold. So, the measure need not be continuous from above in that case. So, please work

out, please find such an example.
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Now, we restrict our attention to familiar collection that was considered earlier in the previous

lecture. What is this? So, consider two probability measures P L and P 5 and look back at the
collection of subsets where the probabilities match. So, probability of A under ]P’1 and IPZ must be

the same. So, look at those special subsets and call that collection as €. Earlier, we had proved
that this collection is non-empty and closed under complementation, finite disjoint unions and

countable disjoint unions.

Now, we are going to show that this collection also has some nice structures like that this is a
monotone class. How do you show this? So, to show this, all you have to verify that this
collection € is closed under countable increasing unions and countable decreasing intersections.

How do you show this?
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So, let us take the first conditions. So, take our increasing sequence An with A being the union.
Then, if An's are already in this collection, you would like to show that the union is in the
collection €. Now, you observe that if An's are already in this collection, then the probability of
An’s according to P, and P, must match. We want to show that the probability of A, the union

must match under [P’1 and P ,- 10 share this you apply continuity from below. Why?



If A1’ if the sets An’s increased to the set A, then by the continuity from below of the probability

measure [P > you get the probability of P 1(A) is equal to lim P L (An) that was just proved as

continuity from below. But then if IP’I(An) is nothing but IPZ(An), you rewrite it in terms of P,.
And here you apply the continuity from below of the probability measure P 5 and you end up

having the probability of 4 in terms of Pz'

So, therefore, the union has the same probability under [P>1 and IPZ. So, hence A is closed under

countable increasing unions. And a similar argument involving the continuity from above for this

probability measure IP>1 and IP’2 will show you that it is also closed under countable decreasing
intersections. And hence, € is a monotone class.

But here for the increasing, countable decreasing intersections what you have to use is the
continuity from above and just note that any finite measures in particular for probability
measures this property is true. So, for any probability measure, it is continuous from above and

continuous from below. So, this is what implies that this collection € is closed under countable

increasing unions and countable decreasing intersections and hence it becomes a monotone class.
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We now consider a concept related to increasingness and decreasingness of sequences of sets.
So, a measure p on a measurable space (£, F) is said to be o — finite, if you have a sequence of

sets Qn increasing to () and this Qn first of all must be from your collection from your o — field

and with the additional condition that measures of Qn are finite.

So, again we need to, we are considering measures on some measurable space, we would like to

figure out increasing sequence of subsets Qn such that Qn' s have finite mass, but Qns increase to

(1. So, in this case, we are going to say that (0, F, p) is a 0 — finite measure space.

Now, a quick clarification, here we are not saying anything about the p(Q). We are only

restricting that measures of Qn's, those special subsets that you consider must have finite mass.
So, if there exists one sequence Qn like that, if there exists increasing sequence Qn like that, then

you get that the measure, then you say that the measure is o —finite and call the corresponding

measures is as ¢ — finite measure space. But again you are not saying anything about the p(€) .

It could be finite. It could be infinite.
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So, let us first understand what are some examples. So, if you look at a finite measure, then of

course, you can take Qns to be Q itself. So, it is a constant sequence of sets. So, all the sets are ().

These are, of course, subsets as per our definition. And each of which has finite mass because we
have taken a finite measure. So, therefore, you get an increasing sequence of sets and you get
that this finite measures are o —finite. In particular, all property measures are ¢ —finite. But

then you would like to get examples for the case of infinite measures.
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So, an infinite measure which is o —finite is discussed here. So, consider the measurable space
of integers of natural numbers N and the corresponding power set. So, look at the measurable
space given by the, consider the measurable space with the set of natural numbers with the power
set. Here consider the counting measure. So, here the set of natural numbers N is countable. So,
therefore, a set of natural numbers is countably infinite. So, the number of elements there is
infinite. So, u(N), the size of the set N is infinite. So, that is already given to us. So, this is an

infinite measure.

But then consider the sets Qn which is like this 1, 2, . . ., n. So, it has exactly n elements Qn for

each n. Then look at the union. The union is nothing but the set of natural numbers. But then

QO cQ ,because ) istheconnectionl, 2,...nandn + 1.
n n+1 n+1

So, therefore, Qn (a Qn+1 and their union is nothing but the set of natural numbers. But here
observed that number of elements in Qn is nothing but n itself, which is finite. So, it is finite for

each n, but p(Q) is infinite. And here, you end up having an example of an infinite measure

which is 0 —finite.

So, you get these pieces Qn where the sizes are finite, but the sets increase to the whole set and

gives you the examples of a 0 —finite measure. But it is a word of caution that not all infinite

measures are ¢ —finite. But in this course, we are not going to consider such measures. We are



not going to consider any infinite measure which is not o —finite. We are not going to consider

such measures.

But we are going to consider o —finite measures on the real line. And these will be some very
interesting examples, which of course, includes probability measures on the real line. So, this we
are going to see in later lectures. We stop here and we are going to continue the discussions about

properties of measures in the next lecture.



