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Welcome to this lecture. So, as before, let us quickly recall what we have done so far. So, in this

week, we are looking at measures which allow us to look at how likely certain events are in some

random experiment or how large or important a set is in a general measurable space. We had

looked at the probability measures, which associates to the whole set the total mass 1 and

therefore, all the other subsets will have mass less than 1.

So, you are looking at such measures in the last lecture and then we had obtained certain nice

properties of probability measures. And in particular, we looked at certain explicit ways of

constructing probability measures like using convex combinations of known measures, known

probability measures.

Now, with those examples at hand, this is the right time to look at the properties of measures or

the set functions. Some of the results that we are going to discuss will be specifically for

probability measures, but otherwise this will be for general measures. Let us start and go through

the slides.

(Refer Slide Time: 1:37)



So, as before we are starting off with a measure space . So, is a measure on the(Ω,  ℱ,  µ) µ

measurable space . And we are going to concentrate on algebraic properties of the(Ω,  ℱ)

measures . So, what do we mean by algebraic properties, that means, we are going to look atµ

certain kinds of inequalities, which involve addition, subtractions and maybe multiplications, and

so on. So, let us look at these inequalities.

(Refer Slide Time: 2:11)

So, just to recall, we have, we already have certain nice properties about measures. So, what are

these? So, let us just quickly go about these facts. Let us first quickly recall these facts about

measures. The measure of the empty set is 0. A measure is a non-negative set function and it is



finitely additive and countably additive. The measures of each arbitrary subset in your -field isσ

dominated from above by the measure of the whole set. So, the measure of the whole set is the

maximum value achieved by the measure .µ

Then, if you add up the measures of and , you get back the measure of the whole set. So, in𝐴 𝐴𝑐

fact, this was proved earlier and by means of this we prove that measures of arbitrary subsets is

dominated from above by measures of the whole set. And finally, we defined probability

measures as measures with the property that . So, with these basic facts aboutµ(Ω) = 1

measures at hand, we are now going towards looking at certain algebraic properties of measures.

But before that, before we start the discussion, we introduced this terminology.
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First, we are going to talk about something called finite disjoint union subsets. So, suppose you

will look at certain collection of subsets, which we call a . So, this is just a collection, arbitraryℰ

collection. We say this collection is closed under finite disjoint unions if for arbitrary positiveℰ

integers n, you look at pairwise disjoint sets coming from the collection , then𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛
ℰ

their union is again in .ℰ

So, again we are not allowing arbitrary subsets , we want pairwise disjoint𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

subsets for any arbitrary number n, but then I want their union, this is a finite union, I want their

union to be in epsilon. So, if this happens for all arbitrary such n and , then I will𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

call that collection is closed under finite disjoint unions. Similarly, we now define aℰ

corresponding concept for countable disjoint unions.

So, again we look at a collection and then we say it is closed under countable disjoint unions, ifℰ

for a sequence of sets now, the set should be first of all pairwise disjoint, then for those kinds of

sequences I want their countable union to be back in the collection . If it so happens forℰ

arbitrary such sequences with pairwise disjoint sets, then I will call that is closed underℰ

countable disjoint unions. So, with these two operations, we are now ready to discuss certain

interesting properties of measures.



(Refer Slide Time: 5:22)

So, earlier we have already recalled some of the basic facts about measures that we have already

seen. And now, using those properties, we now derive certain more interesting properties. So,

first properties involving probe two probability measures, later on we will see some more

properties involving general measures. So, let us start with and be two probabilityℙ
1

ℙ
2

measures on some appropriate measurable space . So, they are defined on the same(Ω,  ℱ)

measurable space.



Now, we look at this collection. So, this is defined in a very special form. We want those subsets

in your -field such that the probability of the sets under and match. So, if the probabilityσ ℙ
1

ℙ
2

of the set A has the same probability under these two different way of measuring and , thenℙ
1

ℙ
2

I will put it in the collection . So, that is the collection. Now, what is the claim of the𝒜

proposition? So, we claim that this is a first of all a non-empty collection, and then it is also

closed under complementation and it is also closed under finite disjoint unions and countable

disjoint unions.

So, this is a very special collection of subsets of the original set and we are choosing theseΩ

subsets from the -field. And we are saying that this collection is non empty and it is closedσ

under these important operations, complementation, finite disjoint unions and countable addition

to unions. So, how do you show this? Let us prove them on by one.

First observe that the measure of the whole set is 1, because we are looking at property measures.

So, therefore, which is, of course, content in your -field must be such a set that we haveΩ σ

described. So, therefore, is in your . So, therefore, this is non-empty. So, let us try to see whyΩ ℰ

this is closed under complementation.
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So, you look at arbitrary set here. I only want to show that its complement is also in the same

collection. So, to check that, first observe that as per the definition the probability of the set A



according to and according to P2 must match, but then you will now try to compute theℙ
1

probability of the complement.

But according to the formula that we have probability of according to is nothing but𝐴𝑐 ℙ
1

. is nothing but 1. That is the probability measure itself. But then1 − ℙ
1
(𝐴) ℙ

1
(Ω)

i so just write that and immediately you get that this equality holds that hasℙ
1
(𝐴) = ℙ

2
(𝐴) 𝐴𝑐

the same mass whenever you are looking at under and whenever you are looking at under P2.ℙ
1

So, no matter which probability measure you use or you get the same mass forℙ
1

ℙ
2

𝐴𝑐

provided already has that same property. And hence, , which is in your -field, must be that𝐴 𝐴𝑐 σ

in the special collections . And therefore, is closed under complementation.ℰ ℰ
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So, let us now try to show finite disjoint unions is also such a nice property for such a collection

. So, choose some arbitrary number of sets , but finitely many. Suppose they areℰ 𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

pairwise disjoint, I want to claim that their union is also in . So, how do you show this? First ofℰ

all, since Ais are in your collection, then their probability according to and according toℙ
1

ℙ
2

must match. So, for all , this is the equality that you already have.1 ≤ 𝑖 ≤ 𝑛

But then, you use finite additivity of the individual probability measures and . If you useℙ
1

ℙ
2

that, then look at the probability under of the union of the sets that can be split as the finiteℙ
1

summation of the probabilities of Ai according to , but then , write that andℙ
1

ℙ
1
(𝐴

𝑖
) = ℙ

2
(𝐴

𝑖
)

again use the finite additivity of to get this last expression on your right hand side. Andℙ
2

immediately it says that this union is also in your collection .𝐴
𝑖

ℰ

Therefore, is closed under finite disjoint unions and here we have used the finite additivity ofℰ

the probability measures and , the remaining property is about countable disjoint unions.ℙ
1

ℙ
2

But then, the proof goes again in this exactly same way as done for finite disjoint unions, you

look at a sequence of sets which are pairwise disjoint, use the fact that and are probabilityℙ
1

ℙ
2

measures and they are countably additive using that you can prove this fact. This part is left as an

exercise for you. Please work this out.



So, therefore, just to consolidate, we have looked at these algebraic operations involving set

operations and we are looking at these spatial collections for any two arbitrary property measures

defined on the same measurable space and then this collection of these spatial subsets turns out

to have this nice properties. We will see more properties of this collection later on.
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So, now we concentrate our attention to general measures. So, suppose you take any two

arbitrary subsets in your -field and suppose is a measure as taken earlier, now I claim that thisσ µ

equality holds. What is this? This says a and . If you add them up, thisµ(𝐴 ∪ 𝐵) µ(𝐴 ∩ 𝐵)

agrees with . So, how do you show this? So, start with the right hand side. Theµ(𝐴) + µ(𝐵)

trick here is to start with the right hand side.

So, start with the set A and set B and observe that this can be written as pairwise disjoint union

of certain other sets. What are these? So, I write A as and . So, I write as 𝐴 ∩ 𝐵 𝐴 ∩ 𝐵𝑐 𝐴 ∩ 𝐵

one set and as another set. But then by the construction and are pairwise𝐴 ∩ 𝐵𝑐 𝐴 ∩ 𝐵 𝐴 ∩ 𝐵𝑐

disjoint.

Similarly, I split the set as this pairwise disjoint union of and . Use the final𝐵 𝐴 ∩ 𝐵 𝐴𝑐 ∩ 𝐵

relativity of mu, you immediately get this relation that . So, that wasµ(𝐴) + µ(𝐵) = µ(𝐴 ∩ 𝐵)

one of the terms that is here. But the other three terms I put them together under this bracket.

So, there is a reason for doing that. But you see that you have appearing twice. So, weµ(𝐴 ∩ 𝐵)

keep one outside and put the other one with the remaining terms within this bracket. So, now,

you use finite additivity to claim that whatever term is within the bracket is exactly the

. Why, because is the finite disjoint union of the sets , andµ(𝐴 ∪ 𝐵) 𝐴 ∪ 𝐵 𝐴 ∩ 𝐵𝑐 𝐴 ∩ 𝐵

.𝐴𝑐 ∩ 𝐵



So, this is a very standard set theoretic property that can be split as pairwise, as the𝐴 ∪ 𝐵

disjoint union of these three sets. Therefore, you apply the finite additivity and combine the sizes

of these three sets together to write a , and hence, the required equality follows. So, letµ(𝐴 ∪ 𝐵)

us go back. So, for any arbitrary subsets A and B, you get that added with ,µ(𝐴 ∪ 𝐵) µ(𝐴 ∩ 𝐵)

you get back .µ(𝐴) + µ(𝐵)
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Now, as a consequence, you get this corollary that if you take two subsets now, A and B, but

with this additional property that is a further subset of actually. Then what happens, then𝐵  𝐴

that earlier relation reduces to this relation. How, A you can write it as the pairwise disjoint

union of and . So, that is one way to go about this. Another way is to simply apply𝐵 𝐴\𝐵

previous proposition and simplify it to this one. So, there are two ways of proving this equality.

So, one here, since A is a bigger set than B, you first write as a disjoint union of and .𝐴 𝐵 𝐴\𝐵

So, write using finite additivity. Another option is to use the previous proposition. But then from

this equality, there is a very interesting relation that follows. Since that set isµ(𝐴\𝐵)

non-negative, since associates non-negative values, that is non-negative, you get thatµ µ(𝐴\𝐵)

.µ(𝐵) ≤ µ(𝐴)

So, this is a non-negative quantity and hence you get this inequality. So, here as long as ,𝐵 ⊆ 𝐴

cannot be more than . So, that is an interesting property, some kind of a modern cityµ(𝐵) µ(𝐴)



relation, algebraic relation for the measurement. So, try to work them out, write them out, but I

have already discussed the main ideas for the proofs.
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But given a sequence , recall that earlier we had discussed the interesting{𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛
}

construction in exercise 12 this was in week one. So, let us recall what we had done. So, given

the sequence of sets or maybe a finite number of sets , you can construct certain𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

sets such that these properties holds that the is matching with . s𝐵
1
,  𝐵

2
,  .  .  .,  𝐵

𝑛
⋃ 𝐴

𝑛
⋃ 𝐵

𝑛
𝐵

𝑛
'

are subsets of , but further the should be pairwise disjoint.𝐴
𝑛

𝐵
𝑛

So, you can construct sets , which are pairwise disjoint which are subsets of𝐵
1
,  𝐵

2
,  .  .  .,  𝐵

𝑛

original sets , but their union matches with the unions of . And notice that the union of s𝐴
𝑛

𝐴
𝑛

𝐵
𝑛

is nothing but a countable disjoint union now, because Bns are pairwise disjoint. So, this is

something we are going to use from now on.

Just to recall about this exercise 12 that we are talking about, this was actually for any finite

number of sets but if you fix the first n elements, first n sets and𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛
𝐴

1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

construct these sets , then you exactly get this property. So, here you vary for any𝐵
1
,  𝐵

2
,  .  .  .,  𝐵

𝑛

n, then you can construct the corresponding Bn by the same construction method. So, that is the

idea that it was earlier explained for finitely number of sets but then you can𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

repeat for any n and obtain the and prove these three properties. So, this is easy to observe,𝐵
𝑛

but then we are going to use these specific type of in our later results.𝐵
𝑛
'𝑠
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So, this is immediately going to be used in proposition 8. So, remember, for sequence of sets

, which was pairwise disjoint, we have countable additivity of the measure , which said that{𝐴
𝑛
} µ

the measure of the countable union is obtained as the sum of the individual sizes. So, that was

what we called as countable additivity of a set function of a measure .µ

But then, what we actually have is that for arbitrary sequences, where there may be intersection

between the sets, you actually can claim an inequality. You can no more claim equality, but you



can claim an inequality. What does it say? It says that the measure of the, this countable union is

at most the series value which is obtained by adding up the individual sizes of the sets.

To prove this we use the sequence Bn as constructed above. What do we do? So, take those Bns.

Remember, s are pairwise disjoint, is same as and . So, we use all these𝐵
𝑛
' ⋃ 𝐵

𝑛
⋃ 𝐴

𝑛
𝐵

𝑛
 ⊂ 𝐴

𝑛

properties. First, observe that this countable union of s is nothing but countable union of ,𝐴
𝑛

𝐵
𝑛

so that you write first. Since s are pairwise disjoint, you apply the countable additivity of the𝐵
𝑛
'

set function , of the measure and you get this summation that you have to add up theµ µ

individual sizes and you get this series. So, that is the countable additivity of the measure mu.

But then , so therefore cannot be more than and hence you get this𝐵
𝑛
 ⊂ 𝐴

𝑛
µ(𝐵

𝑛
) µ(𝐵

𝑛
)

inequality this upper bound that is given by adding up the individual sizes of the sets and𝐴
𝑛

therefore, you get this inequality that was stated in the proposition. So, therefore, when you are

working with pairwise disjoint sequence, you get an equality. But otherwise, for general

sequences, you can at most claim an inequality and this is the upper bound.
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Now, this is an interesting comment. So, this is about the discussions in proposition 7.

Remember, we proved that for any measure, together with if you add themµ(𝐴 ∪ 𝐵) µ(𝐴 ∩ 𝐵)

up, that will be exactly . But then you would like to transfer the to theµ(𝐴) + µ(𝐵) µ(𝐴 ∩ 𝐵)

other side. And thereby, you would like to write in terms of these three things,µ(𝐴 ∪ 𝐵)

.µ(𝐴) + µ(𝐵) −µ(𝐴 ∩ 𝐵)

But you have to be careful here, if it so happens that you are dealing with an infinite measure,

then may be infinity. If you are dealing with an infinite measure, then mayµ(𝐴 ∩ 𝐵) µ(𝐴 ∩ 𝐵)

be . In that case, you have to be careful when you are subtracting. So, remember, infinity∞

minus infinity is not defined. So, if you want to subtract this infinite term , if it isµ(𝐴 ∩ 𝐵)

infinite, then you are not allowed to do so. You cannot define . So, therefore, you cannot∞ − ∞

cancel off the that was earlier on the left hand side.µ(𝐴 ∩ 𝐵)

So, you cannot subtract it and put it on the right hand side. So, you can do it for finite measures

or if you are given the information that is finite, only then you are allowed to writeµ(𝐴 ∩ 𝐵)

this formula that is . But this is true for any finite measure,µ(𝐴 ∪ 𝐵) µ(𝐴) + µ(𝐵) −µ(𝐴 ∩ 𝐵)

so you do not have to worry about that.

And in particular, this is of course, true for probability measures. And that gives you back your

familiar formula that . So, that is your familiar𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

formula that is now generalized to arbitrary finite measures for example. Now, by the principle



of mathematical induction, you can now extend it to n many sets. So, you can extend it to finitely

many sets and you get the result, which is called the inclusion exclusion formula.

(Refer Slide Time: 20:55)

So, here you are considering n many sets now. So, here I am taking finite measure once more,

just for the sake of well defineness. We do not want to subtract any term which is infinite. So,

just for simplicity, let us work with finite measures. Then we are saying that if you choose n

many sets, , arbitrary n many sets, then the measure of their union, this is a finite𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛



union, can be written in terms of an algebraic expression like this. So, it is an addition and

subtraction of certain terms. What you observe is this.

So, first, you add up the size of the individual sets according to the measure . But look atµ

pairwise intersections and subtract out those sizes. Here, you should choose i and j, so that they

do not get repeated. So, that is why I have put . So, as i and j varies from 1 to n, you get all𝑖 < 𝑗

possible pairs and . So, you look at all possible such intersections, pairwise intersections,𝐴
𝑖

𝐴
𝑗

and look at the size of that you subtract them out.

Then next step, you add the term, which is intersections of three terms like this, three sets like

this. So, you take , for example, with i, j, k distinct i, j run, i, j, k runs from 1 to n. But𝐴
𝑖
,  𝐴

𝑗
,  𝐴

𝑘

here you add them. So, that is the sign gets flipped. So, start with plus sign, then for pairwise

intersections, you add minus sign and so on. And at the end, you will end up with this terms,

which is the intersection of all the sets and look at the size of that. You associate . So,(− 1)𝑛−1

that is the general formula.

So, here, what you are doing, you are first taking the sets A, then you are subtracting out the

common parts, then adding up the triple intersections and so on. This is again a generalization of

the results that you know for probability measures. And this is left as exercises for you. This can

be proved in many different ways. One of the ways is just by extending it by mathematical

induction, by the principle of mathematical induction, using the case for two sets.

From two sets, you can go to n sets by principle of mathematical induction. So, that is one way

of doing it. Other way of doing it is by counting the appearance of the, appearance of an arbitrary

element in these sets. So, basically, what you are doing is that if you go via a Venn diagram of

these sets , you had just looking at how many times you are counting these sets.𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

If you have counted the sets s once at a time, then you have already counted the intersections𝐴
𝑖
'

twice. So, that is why you are subtracting out the pairwise intersections.

But if you subtract out the pairwise intersections, what you have already removed are the triple

intersections. So, that is what you have to add. So, that is why this formula comes with plus and

minus signs in the alternative sense. So, alternatively, you get plus or minus signs and you get

this expression which is known as the inclusion exclusion principle. So, try to prove this, that



again, the hint is you can use the principle of mathematical induction and apply and prove this.

Use the principle of mathematical induction and prove this. So, this is again left as an exercise.

So, we have discussed some algebraic properties of measures and we are going to see certain

nice properties involving continuity in the next lecture. So, we will stop here.


