Measure Theoretic Probability 1
Prof. Suprio Bhar
Department of Mathematics & Statistics
Indian Institute of Technology, Kanpur
Lecture No. 08
Properties of Measures (Part 1)

Welcome to this lecture. So, as before, let us quickly recall what we have done so far. So, in this
week, we are looking at measures which allow us to look at how likely certain events are in some
random experiment or how large or important a set is in a general measurable space. We had
looked at the probability measures, which associates to the whole set the total mass 1 and

therefore, all the other subsets will have mass less than 1.

So, you are looking at such measures in the last lecture and then we had obtained certain nice
properties of probability measures. And in particular, we looked at certain explicit ways of
constructing probability measures like using convex combinations of known measures, known

probability measures.

Now, with those examples at hand, this is the right time to look at the properties of measures or
the set functions. Some of the results that we are going to discuss will be specifically for
probability measures, but otherwise this will be for general measures. Let us start and go through

the slides.
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So, as before we are starting off with a measure space (), F, n). So, p is a measure on the
measurable space (£, F). And we are going to concentrate on algebraic properties of the
measures [. So, what do we mean by algebraic properties, that means, we are going to look at
certain kinds of inequalities, which involve addition, subtractions and maybe multiplications, and

so on. So, let us look at these inequalities.
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So, just to recall, we have, we already have certain nice properties about measures. So, what are
these? So, let us just quickly go about these facts. Let us first quickly recall these facts about

measures. The measure of the empty set is 0. A measure is a non-negative set function and it is



finitely additive and countably additive. The measures of each arbitrary subset in your o-field is
dominated from above by the measure of the whole set. So, the measure of the whole set is the

maximum value achieved by the measure .

Then, if you add up the measures of A and A you get back the measure of the whole set. So, in
fact, this was proved earlier and by means of this we prove that measures of arbitrary subsets is
dominated from above by measures of the whole set. And finally, we defined probability
measures as measures with the property that pu() = 1. So, with these basic facts about
measures at hand, we are now going towards looking at certain algebraic properties of measures.

But before that, before we start the discussion, we introduced this terminology.

(Refer Slide Time: 3:30)
R0 ONSCUST AUCROT P ropoees —oE THRICRDR L

&%mm@(%& ond Courttalle d{\s;)s'w\;c

wnen ) \
© A Glecdhon & 6\3 Qb sete o% O
w 2d To b cleged  unden %Y{\‘g‘
d‘\éﬁs’w@? wronk, .‘g £on m\& ’Pt\&\\'\i\se
.m*%m Y Ol \DOLK‘KUS'\SP_ d(\&jdﬂn’( e



A[, Az,'-'/ AY\ G—E , we hoove ,(\’) 9('\16?..

i=)

(1) A tDlechion & f Qiksavs of A
B 20 T e dhed wnden Courable
&\sjcs\h’( wnons, - fon o $eguenca 1A,
R poivesce R Sels n | we Yo

OUAnex.

N =\
First, we are going to talk about something called finite disjoint union subsets. So, suppose you
will look at certain collection of subsets, which we call a €. So, this is just a collection, arbitrary
collection. We say this collection € is closed under finite disjoint unions if for arbitrary positive

integers n, you look at pairwise disjoint sets A1’ Az’ C An coming from the collection &, then

their union is again in €.

So, again we are not allowing arbitrary subsets Al, Az’ - An, we want pairwise disjoint

subsets for any arbitrary number n, but then I want their union, this is a finite union, I want their

union to be in epsilon. So, if this happens for all arbitrary such n and Al, Az’ Ce An, then I will

call € that collection is closed under finite disjoint unions. Similarly, we now define a

corresponding concept for countable disjoint unions.

So, again we look at a collection £ and then we say it is closed under countable disjoint unions, if
for a sequence of sets now, the set should be first of all pairwise disjoint, then for those kinds of
sequences I want their countable union to be back in the collection £. If it so happens for
arbitrary such sequences with pairwise disjoint sets, then I will call that £ is closed under
countable disjoint unions. So, with these two operations, we are now ready to discuss certain

interesting properties of measures.
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So, earlier we have already recalled some of the basic facts about measures that we have already
seen. And now, using those properties, we now derive certain more interesting properties. So,
first properties involving probe two probability measures, later on we will see some more

properties involving general measures. So, let us start with IPland IPZ be two probability

measures on some appropriate measurable space (£}, F). So, they are defined on the same

measurable space.
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Now, we look at this collection. So, this is defined in a very special form. We want those subsets

in your o-field such that the probability of the sets under ]P’land ]P’2 match. So, if the probability
of the set A has the same probability under these two different way of measuring IP’land IPZ, then

I will put it in the collection A. So, that is the collection. Now, what is the claim of the
proposition? So, we claim that this is a first of all a non-empty collection, and then it is also
closed under complementation and it is also closed under finite disjoint unions and countable

disjoint unions.

So, this is a very special collection of subsets of the original set () and we are choosing these
subsets from the o-field. And we are saying that this collection is non empty and it is closed
under these important operations, complementation, finite disjoint unions and countable addition

to unions. So, how do you show this? Let us prove them on by one.

First observe that the measure of the whole set is 1, because we are looking at property measures.
So, therefore, {1 which is, of course, content in your o-field must be such a set that we have
described. So, therefore, Q is in your £. So, therefore, this is non-empty. So, let us try to see why

this is closed under complementation.
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So, you look at arbitrary set here. I only want to show that its complement is also in the same

collection. So, to check that, first observe that as per the definition the probability of the set A



according to IP’1 and according to P2 must match, but then you will now try to compute the

probability of the complement.

But according to the formula that we have probability of A according to P L is nothing but

1 - IPl(A). IP’l(Q) is nothing but 1. That is the probability measure itself. But then

]Pl(A) = ]Pz(A) 1 so just write that and immediately you get that this equality holds that A° has

the same mass whenever you are looking at under P, and whenever you are looking at under P2.

So, no matter which probability measure you use ]P’1 or IP>2 you get the same mass for A

provided A already has that same property. And hence, A°, which is in your o-field, must be that

in the special collections €. And therefore, £ is closed under complementation.
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So, let us now try to show finite disjoint unions is also such a nice property for such a collection

E. So, choose some arbitrary number of sets A " A IR An, but finitely many. Suppose they are

pairwise disjoint, I want to claim that their union is also in €. So, how do you show this? First of

all, since Ais are in your collection, then their probability according to IP’1 and according to IP’2

must match. So, for all 1 < i < n, this is the equality that you already have.

But then, you use finite additivity of the individual probability measures P, and P,. If you use
that, then look at the probability under P L of the union of the sets that can be split as the finite
summation of the probabilities of Ai according to [P1’ but then ]P’l(Ai) = ]P)Z(Ai)’ write that and
again use the finite additivity of IP’2 to get this last expression on your right hand side. And

immediately it says that this union Ai is also in your collection €.

Therefore, € is closed under finite disjoint unions and here we have used the finite additivity of

the probability measures P ) and P 2 the remaining property is about countable disjoint unions.

But then, the proof goes again in this exactly same way as done for finite disjoint unions, you

look at a sequence of sets which are pairwise disjoint, use the fact that IP ) and P , are probability

measures and they are countably additive using that you can prove this fact. This part is left as an

exercise for you. Please work this out.



So, therefore, just to consolidate, we have looked at these algebraic operations involving set
operations and we are looking at these spatial collections for any two arbitrary property measures
defined on the same measurable space and then this collection of these spatial subsets turns out

to have this nice properties. We will see more properties of this collection later on.
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So, now we concentrate our attention to general measures. So, suppose you take any two
arbitrary subsets in your o-field and suppose [ is a measure as taken earlier, now I claim that this
equality holds. What is this? This says a u(4A U B) and u(A N B). If you add them up, this
agrees with p(4) + p(B). So, how do you show this? So, start with the right hand side. The
trick here is to start with the right hand side.

So, start with the set A and set B and observe that this can be written as pairwise disjoint union
of certain other sets. What are these? So, I write A asA N Band A N B". So, I write A N B as
one set and A N B as another set. But then by the construction A N Band A N B are pairwise
disjoint.

Similarly, I split the set B as this pairwise disjoint union of A N B and A° N B. Use the final
relativity of mu, you immediately get this relation that p(A) + u(B) = p(4 N B). So, that was

one of the terms that is here. But the other three terms I put them together under this bracket.

So, there is a reason for doing that. But you see that you have u(A N B) appearing twice. So, we
keep one outside and put the other one with the remaining terms within this bracket. So, now,

you use finite additivity to claim that whatever term is within the bracket is exactly the
w(A U B). Why, because A U B is the finite disjoint union of the sets A N B, An B and

A°n B.



So, this is a very standard set theoretic property that A U B can be split as pairwise, as the
disjoint union of these three sets. Therefore, you apply the finite additivity and combine the sizes
of these three sets together to write a (A U B), and hence, the required equality follows. So, let
us go back. So, for any arbitrary subsets A and B, you get that (4 U B) added with u(4A N B),
you get back u(4) + w(B).
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Now, as a consequence, you get this corollary that if you take two subsets now, A and B, but
with this additional property that B is a further subset of A actually. Then what happens, then
that earlier relation reduces to this relation. How, A you can write it as the pairwise disjoint
union of B and A\B. So, that is one way to go about this. Another way is to simply apply

previous proposition and simplify it to this one. So, there are two ways of proving this equality.

So, one here, since A is a bigger set than B, you first write A as a disjoint union of B and A\B.
So, write using finite additivity. Another option is to use the previous proposition. But then from
this equality, there is a very interesting relation that follows. Since p(A\B) that set is

non-negative, since p associates non-negative values, L(A\B) that is non-negative, you get that

n(B) < u(4).

So, this is a non-negative quantity and hence you get this inequality. So, here as longas B € 4,

w(B) cannot be more than p(A). So, that is an interesting property, some kind of a modern city



relation, algebraic relation for the measurement. So, try to work them out, write them out, but I

have already discussed the main ideas for the proofs.
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But given a sequence {A1' Az’ . An}, recall that earlier we had discussed the interesting

construction in exercise 12 this was in week one. So, let us recall what we had done. So, given

the sequence of sets or maybe a finite number of sets A1’ Az’ C ey An, you can construct certain

sets B, B,, ..., B such that these properties holds that the U An is matching with U B . Bn's

are subsets of An, but further the Bn should be pairwise disjoint.

So, you can construct sets B v B g Bn, which are pairwise disjoint which are subsets of
original sets An, but their union matches with the unions of An. And notice that the union of an

is nothing but a countable disjoint union now, because Bns are pairwise disjoint. So, this is

something we are going to use from now on.

Just to recall about this exercise 12 that we are talking about, this was actually for any finite

number of sets A1’ Az' . An but if you fix the first n elements, first n sets Al, Az’ ey An and
construct these sets B y By B, then you exactly get this property. So, here you vary for any

n, then you can construct the corresponding Bn by the same construction method. So, that is the

idea that it was earlier explained for finitely number of sets Al, Az’ Cew An but then you can
repeat for any n and obtain the Bn and prove these three properties. So, this is easy to observe,

but then we are going to use these specific type of Bn's in our later results.
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So, this is immediately going to be used in proposition 8. So, remember, for sequence of sets

{An}, which was pairwise disjoint, we have countable additivity of the measure p, which said that

the measure of the countable union is obtained as the sum of the individual sizes. So, that was

what we called as countable additivity of a set function of a measure p.

But then, what we actually have is that for arbitrary sequences, where there may be intersection

between the sets, you actually can claim an inequality. You can no more claim equality, but you



can claim an inequality. What does it say? It says that the measure of the, this countable union is

at most the series value which is obtained by adding up the individual sizes of the sets.

To prove this we use the sequence Bn as constructed above. What do we do? So, take those Bns.
Remember, Bn's are pairwise disjoint, U B is same as U An and B c An. So, we use all these

properties. First, observe that this countable union of Ans is nothing but countable union of Bn,
so that you write first. Since Bn's are pairwise disjoint, you apply the countable additivity of the

set function p, of the measure p and you get this summation that you have to add up the

individual sizes and you get this series. So, that is the countable additivity of the measure mu.

But then Bn c An, so therefore u(Bn) cannot be more than u(Bn) and hence you get this
inequality this upper bound that is given by adding up the individual sizes of the sets An and

therefore, you get this inequality that was stated in the proposition. So, therefore, when you are
working with pairwise disjoint sequence, you get an equality. But otherwise, for general

sequences, you can at most claim an inequality and this is the upper bound.
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Now, this is an interesting comment. So, this is about the discussions in proposition 7.
Remember, we proved that for any measure, p(4 U B) together with p(A N B) if you add them
up, that will be exactly un(A) + u(B). But then you would like to transfer the u(A N B) to the
other side. And thereby, you would like to write (A U B) in terms of these three things,

n(A) + w(B) —u(A n B).

But you have to be careful here, if it so happens that you are dealing with an infinite measure,
then u(A N B) may be infinity. If you are dealing with an infinite measure, then p(A N B) may
be oo. In that case, you have to be careful when you are subtracting. So, remember, infinity
minus infinity is not defined. So, if you want to subtract this infinite term p(A N B), if it is
infinite, then you are not allowed to do so. You cannot define co — oo. So, therefore, you cannot

cancel off the (A N B) that was earlier on the left hand side.

So, you cannot subtract it and put it on the right hand side. So, you can do it for finite measures
or if you are given the information that p(A N B) is finite, only then you are allowed to write
this formula that p(A U B) is p(4) + w(B) —u(A N B). But this is true for any finite measure,

so you do not have to worry about that.

And in particular, this is of course, true for probability measures. And that gives you back your
familiar formula that P(A U B) = P(A) + P(B) — P(A n B). So, that is your familiar

formula that is now generalized to arbitrary finite measures for example. Now, by the principle



of mathematical induction, you can now extend it to n many sets. So, you can extend it to finitely

many sets and you get the result, which is called the inclusion exclusion formula.
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So, here you are considering n many sets now. So, here I am taking finite measure once more,
just for the sake of well defineness. We do not want to subtract any term which is infinite. So,
just for simplicity, let us work with finite measures. Then we are saying that if you choose n

many sets, A1’ Az’ C An, arbitrary n many sets, then the measure of their union, this is a finite



union, can be written in terms of an algebraic expression like this. So, it is an addition and

subtraction of certain terms. What you observe is this.

So, first, you add up the size of the individual sets according to the measure p. But look at
pairwise intersections and subtract out those sizes. Here, you should choose i and j, so that they
do not get repeated. So, that is why I have puti < j. So, as i and j varies from 1 to n, you get all

possible pairs Ai and Aj. So, you look at all possible such intersections, pairwise intersections,

and look at the size of that you subtract them out.

Then next step, you add the term, which is intersections of three terms like this, three sets like

this. So, you take Ai, Aj, Ak, for example, with 1, j, k distinct i, j run, i, j, k runs from 1 to n. But

here you add them. So, that is the sign gets flipped. So, start with plus sign, then for pairwise

intersections, you add minus sign and so on. And at the end, you will end up with this terms,

o . : : . -1
which is the intersection of all the sets and look at the size of that. You associate (— l)n . So,

that is the general formula.

So, here, what you are doing, you are first taking the sets A, then you are subtracting out the
common parts, then adding up the triple intersections and so on. This is again a generalization of
the results that you know for probability measures. And this is left as exercises for you. This can
be proved in many different ways. One of the ways is just by extending it by mathematical

induction, by the principle of mathematical induction, using the case for two sets.

From two sets, you can go to n sets by principle of mathematical induction. So, that is one way
of doing it. Other way of doing it is by counting the appearance of the, appearance of an arbitrary
element in these sets. So, basically, what you are doing is that if you go via a Venn diagram of

these sets A1’ Az, Cey An, you had just looking at how many times you are counting these sets.
If you have counted the sets Ai's once at a time, then you have already counted the intersections

twice. So, that is why you are subtracting out the pairwise intersections.

But if you subtract out the pairwise intersections, what you have already removed are the triple
intersections. So, that is what you have to add. So, that is why this formula comes with plus and
minus signs in the alternative sense. So, alternatively, you get plus or minus signs and you get

this expression which is known as the inclusion exclusion principle. So, try to prove this, that



again, the hint is you can use the principle of mathematical induction and apply and prove this.

Use the principle of mathematical induction and prove this. So, this is again left as an exercise.

So, we have discussed some algebraic properties of measures and we are going to see certain

nice properties involving continuity in the next lecture. So, we will stop here.



