Measure Theoretic Probability 1
Prof. Suprio Bhar
Department of Mathematics & Statistics
Indian Institute of Technology, Kanpur
Lecture No. 05
Limits of sequences of sets and Monotone Classes

Welcome to this lecture. As before, let us first recall what we have discussed so far and then
we shall start with the topics of this lecture. So, this week, we have started talking about
events coming from certain random experiments. And when you look at the collection of all
events in connection with random experiments, we end up with certain structures on these

collections of events. Remember that these events are special subsets of the sample space,

where sample space means the set of all outcomes.

Now, once you have that collection of all events, we considered the structures of o —fields
and fields on top of it, we studied general definitions of o — fields and fields corresponding
to any non-empty set. We looked at many of the examples of these we had shown that all 6 —
fields are fields but not the converse. So, we have shown an example of a field which is not a

o —field.

For examples of fields we have done two different types of approaches, one was a bottom-up
approach starting from the trivial o —field and adding sets to the and obtaining examples.
Another was a top-down approach, starting with the power set o —field and removing certain
sets in a certain way, so that I get o —field. In the second way, we have constructed what we

call as 0 —field generated by certain collection of sets.

And in this regard, in this way, we have obtained a very important object or very important
o —field on the real line, which we called as the Borel 6 —field. This was defined as the 0 —
field generated by the open sets in the real line. We have shown, after that we have discussed
that there are other the classes of sets, which also generate the same o —field, the Borel 0 —

field on R, for example, all closed sets will also generate the same things.

We have looked at open intervals, left open right closed intervals and so on. And all we have
seen is that, if we look at classes of such sets, then they generate the same o —field, the Borel
o —field. So, Borel 0 —field has a very nice collection of events or very nice collections of
subsets of the real line. We have also remarked that there are the sets, there are subsets of the
real line, which are not Borel ¢ —field meaning not in the Borel o —field, we shall see

examples of those later on.



And one other thing we have discussed in the last lecture in fact is that there are notions of
Borel o —field on extended real lines and also for higher dimensional Euclidean spaces and
also on Borel subsets of the real line. So, we have discussed all these concepts. Now, with

that at hand, we now start with today's lecture, we are now moving on to the slides.
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So, this is involving limits of sequences of subsets. So, [ am given some non-empty set call it

Q1 and I am interested in sequences of subsets. So, A1’ Az’ C An and so on. Now, the idea

is this involving the o —fields, we have been able to work with countable unions and

countable intersections. And these in some sense are certain kind of limiting operations.

And that is what we want to highlight and do much more closer analysis in this lecture. So,
we start off with some ideas of sequences of sets and we introduce some certain notions of
monotonicity involving sets. So, that we can call that a certain sequence maybe increasing or

a certain sequence may be decreasing. So, let us start with the definitions.
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So, I say that, I am given such a sequence of sets A Y A g An. If it so happens that

A1 c A2 c As' ... So, An c An+1 . So, then we will say that the sequence {An} is non

decreasing or increasing. In this case, what happens is that if you look at the countable union

of these sets, that is what I call as 4, let us say then we shall say that {An} is increasing to A.

So, you have these sets A1’ then it increases to Az’ then it increases to A3. So, you look at all

these unions of all these sets, as they increase you are getting bigger and bigger sets. And at

the end, if you denote that set as A, then we say that the sequence {An} is increasing to A.
Now, in this regard, we shall use this notation An T to denote that the sequence is increasing

or non-decreasing.

So, here the notion of monotonicity is simply involving set inclusions. So, An should be

included in An+1 and this should happen for all n. Great. Now, I am looking at this notation
that if A is the complete union of all these sets An, I will write An increases to A, so this An T

A. So, that is what the notation means, we shall see examples of this.
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But conversely, you expect to have a notion in the other way. So, if it So, happens that A1 is
the largest set, then you get Az’ so that is slightly smaller, so A2 c Al, then A3 c A2 and so
on. So, An 2 An+ o if it happens for all such n, then we say that the sequence n is a

non-increasing or decreasing. So, in this case, we are using this notation as expected An L.

So, this will mean that the sequence of sets decreases.

Now, once you look at the sequence of sets, you expect that you first to start with A ) then you
go to a smaller set. So, you can think of A , s the intersection between A ) and A » then when

you look at A3, you can think of it as a intersection between A1’ A2 and A3. So, in this way,



you can expect to get the limit to be this complete intersection of all these sets. And let us say

you denote this complete interception by A then we also going to say that this sequence {An}

is decreasing to A.

So, provided the sequence is decreasing, look at this complete intersection and write that An
decreases to A or An 1 A . So, this simply means that these sets will decrease and are going

to decrease to the complete intersection, this complete countable intersection. So, we have
these two notions that we have introduced and what you require is that first of all for

increasing sequence you require An c An+1 for all n. And for decreasing sequences you

require An 2 An+ % So, you have a decreasing sequence of sets in the second case.
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So, now, you first make a connection with these two notions. So, you can immediately try to

check that it actually shows that if {An} is a increasing sequence of sets and increases to a

then it will happen if and only if their complements are decreasing and it actually decreases to
the set A complement. So, try to check this. So, they should this is an if and only if condition
that connects the notion of increasingness to the decreasingness of another sequence. So, just

to understand this notion better, let us look at certain examples.
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Definition(F) (Monotone class)
So, take this sequence of intervals {4 } on the real line. So, An is minus n to plus n. So, for n

1, 2, 3 all the non-negative integers, all positive integers. Then what happens? If you look at

An+1 that starts from — (n + 1) to (n + 1). So, therefore, An+1 is a bigger set and it will
contain An. So, since n € An+1 and this is true for all possible n then {An} is increasing.
Now, you are interested in what happens to the limit. So, the sense of limit here is simply for

the increasing sequence of sets, all you have discussed is the complete union. So, what is the

complete union of all these An’s is that the whole real line. So, what do we expect is that you

look at all these intervals (— n, n), take their union as n goes from 1 to oo, it will cover the



whole real line. So, the complete union is the whole real line. So, that is the first example that

you keep in mind.

Now, here is a very interesting example. So again, we are restricting our attention to the real

line. So, fix a point x, a real number and then look at these type of sets An. So, this is again,

minus infinity to the closed, so this is a closed interval [— oo, x — %], so therefore, these
sets will look like something like this. So, [— oo, x — 1], so that corresponds to n = 1.

Then for n = 2, you get the set [— oo, x — %], and so on. Now, we can easily check that

these sets An are increasing.

And now we are interested in what is the complete union. And it so happens that if you try to
verify this complete union, you can rewrite it in this notation, that it actually the complete
union is actually this open interval minus infinity to open X, so it will not contain the point x,
but it will be (— oo, x). So, that is a very interesting observation that you have these
collections of closed intervals, but their countable union is giving you an open interval. So,

please check this.

And similar fashion, there is this interesting example. So, here I am now, instead, [ am again

fixing x, but I am looking at a different types of closed intervals. So, I am taking
(= oo, x +%]. So, again, for n =1, (— oo, x + 1], then n = 2, you will get
(— o, x + 1/2] and so on. Now, you can again check that An’s are decreasing and what is

the limit. So, the limit here, notion of limit is simply the complete intersection.

So, if you now try to check that the what is the complete intersection here, you will end up
with a closed interval. So, intersection of all these closed intervals will give you this close
interval [— oo, x]. So, again, try to check this. So, this is a very interesting notion of
convergence for the sets. So, you have certain limits of sequences here, when sets are
increasing in a certain way, or decreasing in a certain way. So, using these notions, we now

introduce a interesting type of collections of sets.
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So, I look at a collection of subsets of {1, some non-empty set, and let us call this collection F
. This is some arbitrary collection so far, but I ask that there are certain properties. So, I will
call this collection as a monotone class. If it is closed under countable increasing union and
countable decreasing intersections. What do I mean by this again? So, let us go to the exact

descriptions of the operations, countable increasing unions and countable decreasing

intersections.

So, the first property means that you take an increasing sequence of sets and look at their
countable union. So, as described earlier, if you are looking at an increasing sequence of sets,

you are going to look at the complete union, the complete countable union. And since these



sets are increasing, you can call this complete union as a countable increasing union. So, that

1s what [ mean.

So, what do we want is that if you have an increasing sequence of sets in this collection, F, I
want their complete union to also belongs to the collection F. So, that is the first property and
this is what we will call as closure under countable increasing union. And once you have that

property, you again will expect that the similar property for the intersections.
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So if you have a decreasing sequence of sets in the collection F, and if it so happens, that An

’s will decrease, and therefore they are going to decrease to the complete intersection. Now, if

A ’s are decreasing, then the complete intersection you can now visualize as the countable
n

decreasing intersection. So, that is what I call here. And therefore, that is what your set 4 is.

And here what you want is that if {An} is a decreasing sequence of sets and coming from this

collection F, I want that complete countable intersection, the countable decreasing
intersections to belongs to that collection once more. So, this is why I will call as closure
under countable decreasing intersections. So, once you have a collection of subsets F with
these properties, that it is closed under countable increasing unions and countable decreasing

intersections, I shall call it a monotone class.

So, now all these operations that you expect, I want to see examples of this. So, the first
examples that you will immediately get are o —fields. So, no matter what kind of sets you

take, as long as they are increasing and looking at countable unions of those, so countable



unions are allowed in o —fields. So, therefore, these o —fields will satisfy closure under

countable increasing unions. So, remember ¢ —fields will support countable union.

So, in particular, it will support countable increasing unions, so, therefore, it is closed under
countable increasing unions. Similarly, for a o —field, you have closure under countable
interceptions. So, in particular, it will also support closure under countable decreasing
intersections. So, therefore, all 0 —fields are monotone classes. We are not going to look at
many general classes of monotone classes, many explicit other examples, we will restrict our

attention to o —fields.
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But it is a good exercise to find an example of a monotone class, which is not as o —field, try
to work this out, there are many, many examples, you can work them out. So, it is so, we are
not going to use too much of monotone classes in this course, we are not going to spend too
much time on it. But it is always good to have an understanding of monotone classes and that
is why this exercise will help you. So, please try to find examples of monotone classes, which

are not o —fields.

In fact, this monotone classes and o —fields and fields, they have very interesting
connections in between them. So, just to describe that, here are now a set of exercises for
you. So, exercise 12 here, this is in relation to a field. And that is what something we are

going to use later on, let us take some number of sets a finite number of sets in a field. So A1’
Az’ An are sets in a field. Consider these sets let us say B1’ Bz" o Bn and C1’ Cz’ e Cn,I

define them. So, what are these B1’ Bz’ R Bn?

So, I define B1 to be A1 itself, but I look at Bi for i = 2 onwards for next numbers onwards

to be Ai, but I remove all the items, all the elements that [ have seen so far. So by that [ mean
i—1

that I look at U A],, which we have already encountered so far. And then I take them out from
j=1

Ai. So, I look atA1 for B1’ then B2 is simplyA2 ﬂA1 C,‘[hentwillbeA3 N (A1 UAZ)C,

so like that.



So, we are looking at the new terms that are arriving in Ai. But I do not want the terms that I

have already seen up to Ai_ % So, those are I am removing. So, that is what, that is how [ am

l
defining Bi’s. And what are C ; s? C ; ’s are nothing but U A]_ .So, C ) is A1 itself, but C ) is
j=1

A1 U Az' So, what you can now try to show is that if the sets A1’ Az’ An are in the field, then
the sets B v B o Bn are also in the field, but using the structures of the Bl_ ’s as defined
here, you can try to show that Bl, and Bj are pairwise disjoint by that I mean that if 1 naught
equals to i, then Bi and Bl, will not have any common element. So, their intersection is an
empty set.

Similarly, for the C L_’s, which are defined as some kind of a cumulative union. So, what you
are having is that for, if A1’ Az’ An are in the field, then C . Cz, Cn and also in the field.

b

Interestingly, you can also show some certain connections with Ci’s and the sets B,- s. So,
you can again show that C . is nothing but again kind of a cumulative union of the Bj ’s. So try

to verify these relations.

(Refer Slide Time: 19:09)

\

ok
oce®): T o Gledkion T f fubscks
_— b

& O %M o welL 08 oo Monotene C‘_\ossj

Jrer. choo Mol F 6 o 0 fdd. (Wink
Vee E‘:&th&a@)
“Themem @: QN\GT\OJ(I)Y\Q. QNS F%mm)

lekc 3’ !0*10\'%&3 oA j/\soegh
Monatone Cass, dweh Mot F S M Then

And then here is the interesting connection, that if you can have a collection of subsets, which
is a field as well as a monotone class, so remember, fields will allow you complementation

finite unions and finite intersections. A monotone class allows you countable increasing



unions and countable decreasing intersections. So, suppose a collection of subsets allow all

these operations for you, then try to show that F must be a 0 —field.

So, field together with a monotone class implies you actually get a o —field and a hint for
this is use this previous exercise that we have just discussed. And an important theorem or

important result follows these ideas. And this is what is called the monotone class theorem.
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So, let us come to this point. So, let F be a field and M be a monotone class with the
property that the field is contained in a monotone class. So, I am looking at non-empty set (1,
I am looking at some collection of subsets, which is F with these complementation finite
unions and intersections that is a field and then I am looking at a monotone class M, again on

the same non-empty set.

So, on monotone class I have countable increasing unions and countable decreasing
intersections with the property that the original list of field, original collection of sets F, that
is a field all those sets are already included in the list in the collection M. So, that is what this

inclusion means, as we have discussed earlier.

Now, the conclusion of the theorem says that under this situation, the o —field generated by
the collection by the field is contained in the monotone class, this is a very important result
that connects fields the generated o —field and the monotone class. So, again just to repeat, if
you have a field that is contained in a monotone class, then the o —field generated by the

field is also contained in a monotone class.

So, all we are saying is that, if you have a field, then you will also expect to have sequences
of sets from the field and then their complete unions and things like that also will belong to
the monotone class. That is what this generated o —field contained in monotone class
implies. So, if you have a field contained in a monotone class, then the ¢ —field generated by
the field is also content in the same monotone class. So, this is a very important theorem, and

we do not prove this we are just stating it as part of the course.
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Now, what are the implications of this, so, the way we are going to use this is discussed in
this note. So, if you have two collections of subsets, arbitrary collections of subsets, € and D,
so0, again, | am fixing the non-empty set and discussing this. So, here, if it so, happens that C

is contained in D. So, this is a larger collection D is a larger collection, we sometimes will

need to prove that the o —field generated by € is contained in D.

We shall need that we will discuss such situations later on. And then to claim such inclusions
provided that we have C is already there inside D, we shall need certain results. And based on
our discussion so far, we have the following conditions which imply this. So, again the setup
is that we are already given the information € is contained in D, but, I want to claim that 6 —

field generated by C is also contained in D.



So, what are the situations? So, the first situation is this that if C is contained in D, and D is a
o —field, then since o —field generated by C is the smallest 0 —field containing C, as a
definition, immediately it will follow that 0 —field generated by C is contained inside D. So,

this is something we discussed as part of the previous lecture.

But then, there is another condition which we just got introduced to in the monotone class
theorem. And that suggests that if you have field and if D is a monotone class, then the same
inclusion holds. So, that means, if € is a field contained in a monotone class D, then the c —
field generated by the field € is also contained in D. This is the implication provided in the

monotone cluster.
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We shall see applications of these observation later on. And this result is again related to the
principle of good set. So, we had mentioned this earlier in note 22. But again just to repeat

due to time constraints, we are not going to discuss these things in detail later on.
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Now, we come to a very interesting operation called lim sup and lim inf of sets. So, again
just to recall so far, what we have done is that we have looked at increasing sequences subsets
and decreasing sequences subsets, and we have discussed certain ideas of limits there. So, in
case of increasing sequence of subsets, we had looked at the complete union, the complete
countable union as the kind of a limit and for the decreasing sequence of subsets, we had

looked at the complete intersection as the limit.

Now, it may so happen that you have a general sequence of sets, which is neither increasing
nor decreasing. In that case, you may ask, is there any notion of a limit? Again, we take

motivation from real analysis. So, in real analysis, if you are given a general sequence of real



numbers, it need not be convergent, it need not relevant. However, you have this notions of

lim sup and limits inferior and they always exist for a real number sequence.

Of course, lim sup and lim inf for a sequence of real numbers can be + oo, but they always
exist. So, we take motivation from that and define the lim sup and lim inf of a sequence of
sets. How do you do this, so, I am given this sequence of sets they wanted to a and so on, I
define this lim sup this way. So, I first look at unions from n onwards. So, that is the inner

union.

The outer intersection says that I now look at intersections of such things. And lim inf is
exactly the opposite thing. I first look at intersections from n onwards, that is the inner
operation. And outside I am now looking at unions of all such things. So, get used to these

notations lim sup of sets An and lim inf of the sequence {An}’s. So, I have a sequence of

sets An and I am defining lim sup and lim inf this way. Now, you shall ask what happens

as examples.
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Now, just for your hands on examples, [ have left you with some exercises. So, consider these

three types of sequences in An, Bn and Cn. So, An is the set [0, n], as you can, as you can
immediately see, this sets An increase. What about Bn’s? They have some kind of oscillating

feature you see, if n is odd, like n equal to 1, 3, 5, 7 so on. So, there I am taking the set (0, 1)
. If n is even like 2,4, 6, so on, so then I am taking the set (0, 2). Then try to see what

happens to lim sup and lim inf.

So, again the way of computations just to give you some ideas. So, just going back to
computations involving lim sup , first fix some n, small n. Look at this inner union first
compute that write try to write in terms of one set, but it will depend on n and then take the
complete intersection as n goes from 1 to infinity. To compute limit individuals, what you
have to do? You have to do exactly similar thing, first compute the inner intersection from n
onwards. So, whatever you get, you write it in terms of one set and then you take the

complete union from as n goes from 1 to infinity, try to work this out.
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So, that is for the An’s and Bn’s and Cn for the Cn’s. So, in Bn’s I have taken sets (0, 1) and
(0, 2), they have certain intersections in Cn they have no intersections, but they have this

oscillating type of feature. So, try to work this out, I have left them as exercises and this will

help you understand what exactly happens in terms of lim sup lim inf.
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Now, there are certain interesting interpretations for lim sup and lim inf. So, if a point
belongs to lim sup , so this means, if you go to the definition, let us go to the definition once
more. So, let us look at x € limsup . So, that means x belongs to this intersection,
intersection is outside. So, that means, x belongs to this inner union for all possible n. So, just
to repeat if x belongs to this lim sup that means, from the definition of intersections, x must

belong to the inner unions for each fix set small n.

So, that is what we write. So, if x € lim sup An, then x must belong to this inner unions
n—> o

into oo for each n, but this will happen if and only if x € An for infinitely many n. You try to



now go back to the definition of x belonging to this union. So, if it happens for each n, then x

must fall in An’s for infinitely such things.

I am not saying that it will belongs to each and every n, but I am saying there will be some

sequences of n’s such that you will get x € An, this is simply following the definition. And
for this reason, we may describe the situation x belongs to the lim sup as x € Aninﬁnitely
often. So, x € An for infinitely many n and in English language we shall refer to it as x € An

infinitely often.
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There is a similar interpretation for lim inf of An’s. So, that is goes like this. So, x belongs to

liminf. So, remember, just going back to the definition, if you look at the definition x

[ee]

belongs to this lim inf means x € U An. That means, x belongs to this inner intersection
n=1

for at least one n. So, let us write that down.

So, x belongs to lim inf that means, x belongs to this intersection for at least one n. So, let us

say that n is n,, some positive integer, but then that means that x belongs to this intersection
for all n after an including n. So, x belongs to this intersection from n, onwards. So, that

means X is a common element in all this 4 k’s as k varies from n 0 onwards.

So, for this reason, we may describe this situation that x belongs to liminf of An’s as
X € An eventually, that means, there exists a stage in n 0 such that after that stage x € An’s.

So, that gives you some very nice interpretations of lim sup and lim inf.

Now, there are some interesting properties that connects lim inf and lim sup , they are given
in this proposition. Again, these are some of the operations using the usual set operations and
you can easily check them. So, if you look at lim inf and look at the whole complement, that

can be written as the lim sup of the complement of the sets. So, that is the first property.

The second property says, if you look at lim sup , and look at the complement that can be
written as the lim inf of the complements of the sets. So, again these properties are simply
involved in the complementation, intersections and unions. So, using set standard set
operations properties. Now, in the real line, when you define lim inf and limsup of a

sequence of real numbers, you had this property that lim inf < lim sup .

For sets, that notion simply belongs, simply becomes a notion of subset, that means, we are

getting this property that lim inf An is a subset of lim sup. Again from the discussion that

we have done for lim sup and lim inf, you can immediately check this. So, check that, that
a point is in lim inf, that means, you can immediately show that it actually belongs to

lim sup also, therefore, lim inf is a subset of lim sup .



(Refer Slide Time: 32:58)

(© Limind Ay & bimed A,

[+ rT\—tQG

(w) 1§ AR o Ag LA, Hhen
bmé.ux Ay = IQAW\'RQC Ay = A,

MmN X >
&
'P‘\O'D% . EK g,

No’tu_: @) Tg_ (Gm-\ Some Segwente S AT we

And then it will now connect to the notions of limits that we have already considered for

increasing sequences of sets and decreasing sequences of sets. So, if it so happens that An’s
increase to A, so in case of our increasing sequence or An’s decrease to a that for the case of

decreasing sequence subsets, then you can immediately check that both the notions lim sup

and lim inf exist.

Of course, as per the definition here, they will match. So, that is the important point here. So,
lim sup will equal lim inf in the case the sequences increase or decrease and it will actually
give you the set A. So, no matter if you are taking increasing sequences subsets, then A will
become the complete union. So, then lim sup limit and lim inf both will be the complete

union.

If An’s are decreasing, then it decreases to the complete intersection and therefore, lim sup

and lim inf will match and will be the complete intersection. So, try to work this out. So, that

is left as exercise these are very simple exercises involving set operations.
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Now, again some further comments, if it happens for some sequence {An}, that lim sup and

lim inf match, then we say that limit of the sets exists. So, this would happen if as we have

discussed in the proposition above, if the original sequence An 1s increasing or decreasing this

will happen that was a part of the proposition above.

So, in general if it so happens that lim inf and lim sup match, then we shall write that limit

of An’s exist and we it will be the equal, it will equal that lim inf or lim sup in this equality

case. So, the limit will be equal to the lim inf and lim sup, that equals the common value

here.

(Refer Slide Time: 34:43)

(x0) 'LS (51,3) % o measunelle

S%mta_ ond [\{-\m\jm& o SQG[\"':’-\“C'L
™ 3, v—\'\\e_\\ b& C:UY\SJ\‘T\\LQ\\GY\/ L«m&.m% A,
omd %\mﬁ% AL ba\ma % d. 3& fuﬁm‘,

An A N on ALLA) then olso Aed,

Thege Ob2erations vall Yo Used |odm



™ 3, Aen Ea ConathnaRen. thm% A,

=g

oA hm‘m@ A, ba\ma o 7. Tg fuﬁ@,

N>

A M N on ALLA) then also Aed,

&

Thege Obleryations vall Yo Used lofm

™ e Cousse,

Ex&d%e.@ : Given Omd et A :7% %) T

- ——

L £ S 2 ¢ 0 «
And another important observation take a measurable space. So, that means F is a 6 —field
on this non-empty set (0. And if it so happens you have a sequence of sets in the o —field.
Then if you look at this construction of lim sup and lim inf, they involve certain countable
unions and countable intersections. You will immediately claim that since a ¢ —field F is
closed under countable unions and countable intersections, the lim sup and lim inf must

belong to F.

So again, this is immediately following from the definition of a 6 —field. Further, if you have

additional information, like An’s increase or An’s decrease, then of course, this limit this

common value of the lim inf or lim sup . So, that is the common value. So, let us call that A

again.

So, that will also belongs to the o —field. So, we will again use this later on, but this is an
important observation that take any sequence of sets coming from a o —field, then their
liminf or lim sup are certain sets involving countable unions and countable intersections,

that is how they are defined and they will belong to the o —field.
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So, in this regard, there is this interesting connection with the usual notions of lim sup and
lim inf that we have seen for sequences of real numbers. So, that connects involving certain
indicator functions of sets. So, what are these, so take any subset A € () a non-empty set,

then you say that the indicator function of the set A is this function, I will write 1A, it will it is

to has a domain € and it takes values 0 or 1.

So, if you take a point in ), x € (1, then the indicator function will give you 0 if the point is
not in the set A, otherwise it will put 1 if the set if the point is in A, then it will put 1, so that
is the indicator function. So, it has to two values you just check if an arbitrary element x
belongs to the set or not. If it belongs there, you put 1 if it does not belong you put 0, that is

the indicator function of the set.
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Now, look at a sequence of subsets, what you can now try to show that for all x € (, if you

look at lim inf of this indicator An(x), so the left hand side, if you fix your x, then indicator
An(x), this is a sequence of 0’s and 1°s. So, this is a sequence of real numbers, I am looking

at lim inf of that. And on the right hand side, I am looking at indicator of the lim inf of the

sets.

Now this is a set lim inf of An’s, this is one set that we have discussed. So, I am looking at

an indicator of that and I am evaluating at the point x. So, on the left hand side, I have a
sequence of Os and 1s I am looking at lim inf of that. On the right hand side, I also have a 0,

1 value sequence, but the lim inf is taken in terms of sets.



A similar statement also holds for lim sup . So again, on the left hand side, I have a sequence
of Os and 1s. So, I am just putting this I am fixing that x, I am just checking whether the x is

belongs to the An’s or not. So, that is how I am getting this sequence of 0’s and 1’s and [ am

computing the lim sup and on the right hand side, I am computing the indicator of the

lim sup that we have defined.

So, on the right hand side lim sup is in terms of the sets and then I am evaluating that
function at the point x. So, these will connect the notions of lim inf usual sense of real
numbers, sequence of real numbers with notions of lim sup and lim inf of sets. So, we stop

here.



