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Welcome to this lecture. As before, let us first recall what we have discussed so far and then

we shall start with the topics of this lecture. So, this week, we have started talking about

events coming from certain random experiments. And when you look at the collection of all

events in connection with random experiments, we end up with certain structures on these

collections of events. Remember that these events are special subsets of the sample space,

where sample space means the set of all outcomes.

Now, once you have that collection of all events, we considered the structures of fieldsσ −

and fields on top of it, we studied general definitions of fields and fields correspondingσ −

to any non-empty set. We looked at many of the examples of these we had shown that all σ −

fields are fields but not the converse. So, we have shown an example of a field which is not a

field.σ −

For examples of fields we have done two different types of approaches, one was a bottom-up

approach starting from the trivial field and adding sets to the and obtaining examples.σ −

Another was a top-down approach, starting with the power set field and removing certainσ −

sets in a certain way, so that I get field. In the second way, we have constructed what weσ −

call as field generated by certain collection of sets.σ −

And in this regard, in this way, we have obtained a very important object or very important

field on the real line, which we called as the Borel field. This was defined as theσ − σ − σ −

field generated by the open sets in the real line. We have shown, after that we have discussed

that there are other the classes of sets, which also generate the same field, the Borelσ − σ −

field on R, for example, all closed sets will also generate the same things.

We have looked at open intervals, left open right closed intervals and so on. And all we have

seen is that, if we look at classes of such sets, then they generate the same field, the Borelσ −

field. So, Borel field has a very nice collection of events or very nice collections ofσ − σ −

subsets of the real line. We have also remarked that there are the sets, there are subsets of the

real line, which are not Borel field meaning not in the Borel field, we shall seeσ − σ −

examples of those later on.



And one other thing we have discussed in the last lecture in fact is that there are notions of

Borel field on extended real lines and also for higher dimensional Euclidean spaces andσ −

also on Borel subsets of the real line. So, we have discussed all these concepts. Now, with

that at hand, we now start with today's lecture, we are now moving on to the slides.

(Refer Slide Time: 3:35)

So, this is involving limits of sequences of subsets. So, I am given some non-empty set call it

and I am interested in sequences of subsets. So, and so on. Now, the ideaΩ 𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

is this involving the fields, we have been able to work with countable unions andσ −

countable intersections. And these in some sense are certain kind of limiting operations.

And that is what we want to highlight and do much more closer analysis in this lecture. So,

we start off with some ideas of sequences of sets and we introduce some certain notions of

monotonicity involving sets. So, that we can call that a certain sequence maybe increasing or

a certain sequence may be decreasing. So, let us start with the definitions.
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So, I say that, I am given such a sequence of sets . If it so happens that𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

. So, . So, then we will say that the sequence is non𝐴
1
 ⊆ 𝐴

2
⊆ 𝐴

3
 .  .  .  𝐴

𝑛
 ⊆ 𝐴

𝑛+1
{𝐴

𝑛
}

decreasing or increasing. In this case, what happens is that if you look at the countable union

of these sets, that is what I call as , let us say then we shall say that is increasing to .𝐴 {𝐴
𝑛
} 𝐴

So, you have these sets , then it increases to , then it increases to . So, you look at all𝐴
1

𝐴
2

𝐴
3

these unions of all these sets, as they increase you are getting bigger and bigger sets. And at

the end, if you denote that set as , then we say that the sequence is increasing to .𝐴 {𝐴
𝑛
} 𝐴

Now, in this regard, we shall use this notation to denote that the sequence is increasing𝐴
𝑛
 ↑

or non-decreasing.

So, here the notion of monotonicity is simply involving set inclusions. So, An should be

included in and this should happen for all n. Great. Now, I am looking at this notation𝐴
𝑛+1

that if A is the complete union of all these sets , I will write increases to , so this𝐴
𝑛

𝐴
𝑛

𝐴 𝐴
𝑛
 ↑

A. So, that is what the notation means, we shall see examples of this.
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But conversely, you expect to have a notion in the other way. So, if it So, happens that is𝐴
1

the largest set, then you get , so that is slightly smaller, so , then and so𝐴
2

𝐴
2
 ⊆ 𝐴

1
𝐴

3
 ⊆ 𝐴

2

on. So, , if it happens for all such n, then we say that the sequence n is a𝐴
𝑛
 ⊇ 𝐴

𝑛+1

non-increasing or decreasing. So, in this case, we are using this notation as expected .𝐴
𝑛
 ↓

So, this will mean that the sequence of sets decreases.

Now, once you look at the sequence of sets, you expect that you first to start with then you𝐴
1

go to a smaller set. So, you can think of as the intersection between and , then when𝐴
2

𝐴
1

𝐴
2

you look at , you can think of it as a intersection between , and . So, in this way,𝐴
3

𝐴
1

𝐴
2

𝐴
3



you can expect to get the limit to be this complete intersection of all these sets. And let us say

you denote this complete interception by then we also going to say that this sequence𝐴 {𝐴
𝑛
}

is decreasing to .𝐴

So, provided the sequence is decreasing, look at this complete intersection and write that 𝐴
𝑛

decreases to A or . So, this simply means that these sets will decrease and are going𝐴
𝑛
 ↓ 𝐴

to decrease to the complete intersection, this complete countable intersection. So, we have

these two notions that we have introduced and what you require is that first of all for

increasing sequence you require for all n. And for decreasing sequences you𝐴
𝑛
 ⊆ 𝐴

𝑛+1

require . So, you have a decreasing sequence of sets in the second case.𝐴
𝑛
 ⊇ 𝐴

𝑛+1
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So, now, you first make a connection with these two notions. So, you can immediately try to

check that it actually shows that if is a increasing sequence of sets and increases to a{𝐴
𝑛
}

then it will happen if and only if their complements are decreasing and it actually decreases to

the set A complement. So, try to check this. So, they should this is an if and only if condition

that connects the notion of increasingness to the decreasingness of another sequence. So, just

to understand this notion better, let us look at certain examples.



(Refer Slide Time: 9:00)

So, take this sequence of intervals on the real line. So, An is minus n to plus n. So, for n{𝐴
𝑛
}

1, 2, 3 all the non-negative integers, all positive integers. Then what happens? If you look at

that starts from to . So, therefore, is a bigger set and it will𝐴
𝑛+1

− (𝑛 + 1) (𝑛 + 1) 𝐴
𝑛+1

contain . So, since and this is true for all possible then is increasing.𝐴
𝑛

𝑛 ∈ 𝐴
𝑛+1

𝑛 {𝐴
𝑛
}

Now, you are interested in what happens to the limit. So, the sense of limit here is simply for

the increasing sequence of sets, all you have discussed is the complete union. So, what is the

complete union of all these ’s is that the whole real line. So, what do we expect is that you𝐴
𝑛

look at all these intervals , take their union as goes from 1 to , it will cover the(− 𝑛,  𝑛) 𝑛 ∞



whole real line. So, the complete union is the whole real line. So, that is the first example that

you keep in mind.

Now, here is a very interesting example. So again, we are restricting our attention to the real

line. So, fix a point , a real number and then look at these type of sets . So, this is again,𝑥 𝐴
𝑛

minus infinity to the closed, so this is a closed interval , so therefore, these[− ∞,  𝑥 − 1
𝑛 ]

sets will look like something like this. So, , so that corresponds to .[− ∞,  𝑥 − 1] 𝑛 = 1

Then for , you get the set , and so on. Now, we can easily check that𝑛 = 2 [− ∞,  𝑥 − 1
2 ]

these sets are increasing.𝐴
𝑛

And now we are interested in what is the complete union. And it so happens that if you try to

verify this complete union, you can rewrite it in this notation, that it actually the complete

union is actually this open interval minus infinity to open x, so it will not contain the point ,𝑥

but it will be . So, that is a very interesting observation that you have these(− ∞,  𝑥)

collections of closed intervals, but their countable union is giving you an open interval. So,

please check this.

And similar fashion, there is this interesting example. So, here I am now, instead, I am again

fixing , but I am looking at a different types of closed intervals. So, I am taking𝑥

. So, again, for , then you will get(− ∞,  𝑥 + 1
𝑛 ] 𝑛 = 1, (− ∞,  𝑥 + 1] 𝑛 = 2,

and so on. Now, you can again check that ’s are decreasing and what is(− ∞,  𝑥 + 1/2] 𝐴
𝑛

the limit. So, the limit here, notion of limit is simply the complete intersection.

So, if you now try to check that the what is the complete intersection here, you will end up

with a closed interval. So, intersection of all these closed intervals will give you this close

interval . So, again, try to check this. So, this is a very interesting notion of[− ∞,  𝑥]

convergence for the sets. So, you have certain limits of sequences here, when sets are

increasing in a certain way, or decreasing in a certain way. So, using these notions, we now

introduce a interesting type of collections of sets.
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So, I look at a collection of subsets of , some non-empty set, and let us call this collectionΩ ℱ

. This is some arbitrary collection so far, but I ask that there are certain properties. So, I will

call this collection as a monotone class. If it is closed under countable increasing union and

countable decreasing intersections. What do I mean by this again? So, let us go to the exact

descriptions of the operations, countable increasing unions and countable decreasing

intersections.

So, the first property means that you take an increasing sequence of sets and look at their

countable union. So, as described earlier, if you are looking at an increasing sequence of sets,

you are going to look at the complete union, the complete countable union. And since these



sets are increasing, you can call this complete union as a countable increasing union. So, that

is what I mean.

So, what do we want is that if you have an increasing sequence of sets in this collection, , Iℱ

want their complete union to also belongs to the collection . So, that is the first property andℱ

this is what we will call as closure under countable increasing union. And once you have that

property, you again will expect that the similar property for the intersections.

(Refer Slide Time: 14:01)

So if you have a decreasing sequence of sets in the collection , and if it so happens, thatℱ 𝐴
𝑛

’s will decrease, and therefore they are going to decrease to the complete intersection. Now, if

’s are decreasing, then the complete intersection you can now visualize as the countable𝐴
𝑛

decreasing intersection. So, that is what I call here. And therefore, that is what your set is.𝐴

And here what you want is that if is a decreasing sequence of sets and coming from this{𝐴
𝑛
}

collection , I want that complete countable intersection, the countable decreasingℱ

intersections to belongs to that collection once more. So, this is why I will call as closure

under countable decreasing intersections. So, once you have a collection of subsets withℱ

these properties, that it is closed under countable increasing unions and countable decreasing

intersections, I shall call it a monotone class.

So, now all these operations that you expect, I want to see examples of this. So, the first

examples that you will immediately get are fields. So, no matter what kind of sets youσ −

take, as long as they are increasing and looking at countable unions of those, so countable



unions are allowed in fields. So, therefore, these fields will satisfy closure underσ − σ −

countable increasing unions. So, remember fields will support countable union.σ −

So, in particular, it will support countable increasing unions, so, therefore, it is closed under

countable increasing unions. Similarly, for a field, you have closure under countableσ −

interceptions. So, in particular, it will also support closure under countable decreasing

intersections. So, therefore, all fields are monotone classes. We are not going to look atσ −

many general classes of monotone classes, many explicit other examples, we will restrict our

attention to fields.σ −
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But it is a good exercise to find an example of a monotone class, which is not as field, tryσ −

to work this out, there are many, many examples, you can work them out. So, it is so, we are

not going to use too much of monotone classes in this course, we are not going to spend too

much time on it. But it is always good to have an understanding of monotone classes and that

is why this exercise will help you. So, please try to find examples of monotone classes, which

are not fields.σ −

In fact, this monotone classes and fields and fields, they have very interestingσ −

connections in between them. So, just to describe that, here are now a set of exercises for

you. So, exercise 12 here, this is in relation to a field. And that is what something we are

going to use later on, let us take some number of sets a finite number of sets in a field. So ,𝐴
1

, are sets in a field. Consider these sets let us say , ,. . ., and , , . . ., , I𝐴
2

 𝐴
𝑛

𝐵
1

𝐵
2

𝐵
𝑛

𝐶
1

𝐶
2

𝐶
𝑛

define them. So, what are these , , . . ., ?𝐵
1

𝐵
2

𝐵
𝑛

So, I define to be itself, but I look at for onwards for next numbers onwards𝐵
1

𝐴
1

𝐵
𝑖

𝑖 = 2

to be Ai, but I remove all the items, all the elements that I have seen so far. So by that I mean

that I look at , which we have already encountered so far. And then I take them out from
𝑗=1

𝑖−1

⋃ 𝐴
𝑗

Ai. So, I look at for , then is simply , then will be ,𝐴
1

𝐵
1

𝐵
2

𝐴
2 

∩ 𝐴
1

𝑐 𝐵
3

𝐴
3
 ∩ (𝐴

1
∪ 𝐴

2
)𝑐

so like that.



So, we are looking at the new terms that are arriving in . But I do not want the terms that I𝐴
𝑖

have already seen up to . So, those are I am removing. So, that is what, that is how I am𝐴
𝑖−1

defining ’s. And what are ’s? ’s are nothing but . So, is itself, but is𝐵
𝑖

𝐶
𝑖

𝐶
𝑖

𝑗=1

𝑖

⋃ 𝐴
𝑗

𝐶
1

𝐴
1

𝐶
2

. So, what you can now try to show is that if the sets , , are in the field, then𝐴
1 

 ∪ 𝐴
2

𝐴
1

𝐴
2

𝐴
𝑛

the sets are also in the field, but using the structures of the ’s as defined𝐵
1
,  𝐵

2
,  .  .  .,  𝐵

𝑛
𝐵

𝑖

here, you can try to show that and are pairwise disjoint by that I mean that if i naught𝐵
𝑖

𝐵
𝑗

equals to i, then and will not have any common element. So, their intersection is an𝐵
𝑖

𝐵
𝑖

empty set.

Similarly, for the ’s, which are defined as some kind of a cumulative union. So, what you𝐶
𝑖

are having is that for, if , , are in the field, then , , and also in the field.𝐴
1

𝐴
2

𝐴
𝑛

𝐶
1

𝐶
2

𝐶
𝑛

Interestingly, you can also show some certain connections with Ci’s and the sets ’s. So,𝐵
𝑗

you can again show that is nothing but again kind of a cumulative union of the ’s. So try𝐶
𝑖

𝐵
𝑗

to verify these relations.

(Refer Slide Time: 19:09)

And then here is the interesting connection, that if you can have a collection of subsets, which

is a field as well as a monotone class, so remember, fields will allow you complementation

finite unions and finite intersections. A monotone class allows you countable increasing



unions and countable decreasing intersections. So, suppose a collection of subsets allow all

these operations for you, then try to show that must be a field.ℱ σ −

So, field together with a monotone class implies you actually get a field and a hint forσ −

this is use this previous exercise that we have just discussed. And an important theorem or

important result follows these ideas. And this is what is called the monotone class theorem.
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So, let us come to this point. So, let be a field and be a monotone class with theℱ ℳ

property that the field is contained in a monotone class. So, I am looking at non-empty set ,Ω

I am looking at some collection of subsets, which is with these complementation finiteℱ

unions and intersections that is a field and then I am looking at a monotone class , again onℳ

the same non-empty set.

So, on monotone class I have countable increasing unions and countable decreasing

intersections with the property that the original list of field, original collection of sets , thatℱ

is a field all those sets are already included in the list in the collection . So, that is what thisℳ

inclusion means, as we have discussed earlier.

Now, the conclusion of the theorem says that under this situation, the field generated byσ −

the collection by the field is contained in the monotone class, this is a very important result

that connects fields the generated field and the monotone class. So, again just to repeat, ifσ −

you have a field that is contained in a monotone class, then the field generated by theσ −

field is also contained in a monotone class.

So, all we are saying is that, if you have a field, then you will also expect to have sequences

of sets from the field and then their complete unions and things like that also will belong to

the monotone class. That is what this generated field contained in monotone classσ −

implies. So, if you have a field contained in a monotone class, then the field generated byσ −

the field is also content in the same monotone class. So, this is a very important theorem, and

we do not prove this we are just stating it as part of the course.
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Now, what are the implications of this, so, the way we are going to use this is discussed in

this note. So, if you have two collections of subsets, arbitrary collections of subsets, and ,𝓒 𝒟

so, again, I am fixing the non-empty set and discussing this. So, here, if it so, happens that 𝓒

is contained in . So, this is a larger collection is a larger collection, we sometimes will𝒟 𝒟

need to prove that the field generated by is contained in .σ − 𝓒 𝒟

We shall need that we will discuss such situations later on. And then to claim such inclusions

provided that we have is already there inside , we shall need certain results. And based on𝓒 𝒟

our discussion so far, we have the following conditions which imply this. So, again the setup

is that we are already given the information is contained in , but, I want to claim that𝓒 𝒟 σ −

field generated by is also contained in .𝓒 𝒟



So, what are the situations? So, the first situation is this that if is contained in , and is a𝓒 𝒟 𝒟

field, then since field generated by is the smallest field containing , as aσ − σ − 𝓒 σ − 𝓒

definition, immediately it will follow that field generated by is contained inside . So,σ − 𝓒 𝒟

this is something we discussed as part of the previous lecture.

But then, there is another condition which we just got introduced to in the monotone class

theorem. And that suggests that if you have field and if is a monotone class, then the same𝒟

inclusion holds. So, that means, if is a field contained in a monotone class , then the𝓒 𝒟 σ −

field generated by the field is also contained in . This is the implication provided in the𝓒 𝒟

monotone cluster.

(Refer Slide Time: 24:02)

We shall see applications of these observation later on. And this result is again related to the

principle of good set. So, we had mentioned this earlier in note 22. But again just to repeat

due to time constraints, we are not going to discuss these things in detail later on.
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Now, we come to a very interesting operation called and of sets. So, again𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

just to recall so far, what we have done is that we have looked at increasing sequences subsets

and decreasing sequences subsets, and we have discussed certain ideas of limits there. So, in

case of increasing sequence of subsets, we had looked at the complete union, the complete

countable union as the kind of a limit and for the decreasing sequence of subsets, we had

looked at the complete intersection as the limit.

Now, it may so happen that you have a general sequence of sets, which is neither increasing

nor decreasing. In that case, you may ask, is there any notion of a limit? Again, we take

motivation from real analysis. So, in real analysis, if you are given a general sequence of real



numbers, it need not be convergent, it need not relevant. However, you have this notions of

and limits inferior and they always exist for a real number sequence.𝑙𝑖𝑚 𝑠𝑢𝑝

Of course, and for a sequence of real numbers can be , but they always𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓 ± ∞

exist. So, we take motivation from that and define the and of a sequence of𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

sets. How do you do this, so, I am given this sequence of sets they wanted to a and so on, I

define this this way. So, I first look at unions from n onwards. So, that is the inner𝑙𝑖𝑚 𝑠𝑢𝑝

union.

The outer intersection says that I now look at intersections of such things. And is𝑙𝑖𝑚 𝑖𝑛𝑓

exactly the opposite thing. I first look at intersections from n onwards, that is the inner

operation. And outside I am now looking at unions of all such things. So, get used to these

notations of sets and of the sequence ’s. So, I have a sequence of𝑙𝑖𝑚 𝑠𝑢𝑝 𝐴
𝑛

𝑙𝑖𝑚 𝑖𝑛𝑓 {𝐴
𝑛
}

sets An and I am defining and this way. Now, you shall ask what happens𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

as examples.

(Refer Slide Time: 26:33)



Now, just for your hands on examples, I have left you with some exercises. So, consider these

three types of sequences in , and . So, is the set , as you can, as you can𝐴
𝑛

𝐵
𝑛

𝐶
𝑛

𝐴
𝑛

[0,  𝑛]

immediately see, this sets increase. What about ’s? They have some kind of oscillating𝐴
𝑛

𝐵
𝑛

feature you see, if n is odd, like n equal to 1, 3, 5, 7 so on. So, there I am taking the set (0,  1)

. If is even like 2,4, 6, so on, so then I am taking the set . Then try to see what𝑛 (0,  2)

happens to and .𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

So, again the way of computations just to give you some ideas. So, just going back to

computations involving , first fix some n, small n. Look at this inner union first𝑙𝑖𝑚 𝑠𝑢𝑝

compute that write try to write in terms of one set, but it will depend on n and then take the

complete intersection as n goes from 1 to infinity. To compute limit individuals, what you

have to do? You have to do exactly similar thing, first compute the inner intersection from n

onwards. So, whatever you get, you write it in terms of one set and then you take the

complete union from as n goes from 1 to infinity, try to work this out.
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So, that is for the ’s and ’s and for the ’s. So, in ’s I have taken sets and𝐴
𝑛

𝐵
𝑛

𝐶
𝑛

𝐶
𝑛

𝐵
𝑛

(0,  1)

, they have certain intersections in they have no intersections, but they have this(0,  2) 𝐶
𝑛

oscillating type of feature. So, try to work this out, I have left them as exercises and this will

help you understand what exactly happens in terms of .𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓
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Now, there are certain interesting interpretations for and . So, if a point𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

belongs to , so this means, if you go to the definition, let us go to the definition once𝑙𝑖𝑚 𝑠𝑢𝑝

more. So, let us look at . So, that means belongs to this intersection,𝑥 ∈ 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑥

intersection is outside. So, that means, x belongs to this inner union for all possible n. So, just

to repeat if belongs to this that means, from the definition of intersections, x must𝑥 𝑙𝑖𝑚 𝑠𝑢𝑝

belong to the inner unions for each fix set small n.

So, that is what we write. So, if , then must belong to this inner unions𝑥 ∈
𝑛 ∞
lim
→

𝑠𝑢𝑝 𝐴
𝑛 

𝑥

into for each , but this will happen if and only if for infinitely many . You try to∞ 𝑛 𝑥 ∈ 𝐴
𝑛

𝑛



now go back to the definition of belonging to this union. So, if it happens for each , then x𝑥 𝑛

must fall in ’s for infinitely such things.𝐴
𝑛

I am not saying that it will belongs to each and every , but I am saying there will be some𝑛

sequences of ’s such that you will get , this is simply following the definition. And𝑛 𝑥 ∈ 𝐴
𝑛

for this reason, we may describe the situation x belongs to the as infinitely𝑙𝑖𝑚 𝑠𝑢𝑝 𝑥 ∈ 𝐴
𝑛

often. So, for infinitely many n and in English language we shall refer to it as𝑥 ∈ 𝐴
𝑛

𝑥 ∈ 𝐴
𝑛

infinitely often.
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There is a similar interpretation for of ’s. So, that is goes like this. So, x belongs to𝑙𝑖𝑚 𝑖𝑛𝑓 𝐴
𝑛

. So, remember, just going back to the definition, if you look at the definition x𝑙𝑖𝑚 𝑖𝑛𝑓

belongs to this means . That means, belongs to this inner intersection𝑙𝑖𝑚 𝑖𝑛𝑓 𝑥 ∈  
𝑛=1

∞

⋃ 𝐴
𝑛

𝑥

for at least one n. So, let us write that down.

So, x belongs to that means, belongs to this intersection for at least one . So, let us𝑙𝑖𝑚 𝑖𝑛𝑓 𝑥 𝑛

say that is , some positive integer, but then that means that x belongs to this intersection𝑛 𝑛
0

for all after an including . So, x belongs to this intersection from onwards. So, that𝑛 𝑛
0

𝑛
0

means x is a common element in all this ’s as varies from onwards.𝐴
𝑘

𝑘 𝑛
0

So, for this reason, we may describe this situation that x belongs to of ’s as𝑙𝑖𝑚 𝑖𝑛𝑓 𝐴
𝑛

eventually, that means, there exists a stage in such that after that stage ’s.𝑥 ∈ 𝐴
𝑛

𝑛
0

 𝑥 ∈ 𝐴
𝑛

So, that gives you some very nice interpretations of and .𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

Now, there are some interesting properties that connects and , they are given𝑙𝑖𝑚 𝑖𝑛𝑓 𝑙𝑖𝑚 𝑠𝑢𝑝

in this proposition. Again, these are some of the operations using the usual set operations and

you can easily check them. So, if you look at and look at the whole complement, that𝑙𝑖𝑚 𝑖𝑛𝑓

can be written as the of the complement of the sets. So, that is the first property.𝑙𝑖𝑚 𝑠𝑢𝑝

The second property says, if you look at , and look at the complement that can be𝑙𝑖𝑚 𝑠𝑢𝑝

written as the of the complements of the sets. So, again these properties are simply𝑙𝑖𝑚 𝑖𝑛𝑓

involved in the complementation, intersections and unions. So, using set standard set

operations properties. Now, in the real line, when you define and of a𝑙𝑖𝑚 𝑖𝑛𝑓 𝑙𝑖𝑚 𝑠𝑢𝑝

sequence of real numbers, you had this property that .𝑙𝑖𝑚 𝑖𝑛𝑓 ≤ 𝑙𝑖𝑚 𝑠𝑢𝑝

For sets, that notion simply belongs, simply becomes a notion of subset, that means, we are

getting this property that is a subset of . Again from the discussion that𝑙𝑖𝑚 𝑖𝑛𝑓 𝐴
𝑛

𝑙𝑖𝑚 𝑠𝑢𝑝

we have done for and , you can immediately check this. So, check that, that𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

a point is in , that means, you can immediately show that it actually belongs to𝑙𝑖𝑚 𝑖𝑛𝑓

also, therefore, is a subset of .𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓  𝑙𝑖𝑚 𝑠𝑢𝑝
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And then it will now connect to the notions of limits that we have already considered for

increasing sequences of sets and decreasing sequences of sets. So, if it so happens that ’s𝐴
𝑛

increase to , so in case of our increasing sequence or ’s decrease to a that for the case of𝐴 𝐴
𝑛

decreasing sequence subsets, then you can immediately check that both the notions 𝑙𝑖𝑚 𝑠𝑢𝑝

and exist.𝑙𝑖𝑚 𝑖𝑛𝑓

Of course, as per the definition here, they will match. So, that is the important point here. So,

will equal in the case the sequences increase or decrease and it will actually𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

give you the set . So, no matter if you are taking increasing sequences subsets, then will𝐴 𝐴

become the complete union. So, then limit and both will be the complete𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

union.

If ’s are decreasing, then it decreases to the complete intersection and therefore,𝐴
𝑛

𝑙𝑖𝑚 𝑠𝑢𝑝

and will match and will be the complete intersection. So, try to work this out. So, that𝑙𝑖𝑚 𝑖𝑛𝑓

is left as exercise these are very simple exercises involving set operations.
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Now, again some further comments, if it happens for some sequence , that and{𝐴
𝑛
} 𝑙𝑖𝑚 𝑠𝑢𝑝

match, then we say that limit of the sets exists. So, this would happen if as we have𝑙𝑖𝑚 𝑖𝑛𝑓

discussed in the proposition above, if the original sequence is increasing or decreasing this𝐴
𝑛

will happen that was a part of the proposition above.

So, in general if it so happens that and match, then we shall write that limit𝑙𝑖𝑚 𝑖𝑛𝑓 𝑙𝑖𝑚 𝑠𝑢𝑝

of ’s exist and we it will be the equal, it will equal that or in this equality𝐴
𝑛

𝑙𝑖𝑚 𝑖𝑛𝑓 𝑙𝑖𝑚 𝑠𝑢𝑝

case. So, the limit will be equal to the and , that equals the common value𝑙𝑖𝑚 𝑖𝑛𝑓 𝑙𝑖𝑚 𝑠𝑢𝑝

here.

(Refer Slide Time: 34:43)



And another important observation take a measurable space. So, that means is a fieldℱ σ −

on this non-empty set . And if it so happens you have a sequence of sets in the field.Ω σ −

Then if you look at this construction of and , they involve certain countable𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

unions and countable intersections. You will immediately claim that since a field isσ − ℱ

closed under countable unions and countable intersections, the and must𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

belong to .ℱ

So again, this is immediately following from the definition of a field. Further, if you haveσ −

additional information, like ’s increase or ’s decrease, then of course, this limit this𝐴
𝑛

𝐴
𝑛

common value of the or . So, that is the common value. So, let us call that A𝑙𝑖𝑚 𝑖𝑛𝑓 𝑙𝑖𝑚 𝑠𝑢𝑝

again.

So, that will also belongs to the field. So, we will again use this later on, but this is anσ −

important observation that take any sequence of sets coming from a field, then theirσ −

or are certain sets involving countable unions and countable intersections,𝑙𝑖𝑚 𝑖𝑛𝑓 𝑙𝑖𝑚 𝑠𝑢𝑝

that is how they are defined and they will belong to the field.σ −
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So, in this regard, there is this interesting connection with the usual notions of and𝑙𝑖𝑚 𝑠𝑢𝑝

that we have seen for sequences of real numbers. So, that connects involving certain𝑙𝑖𝑚 𝑖𝑛𝑓

indicator functions of sets. So, what are these, so take any subset a non-empty set,𝐴 ⊂ Ω

then you say that the indicator function of the set A is this function, I will write , it will it is1
𝐴

to has a domain and it takes values 0 or 1.Ω

So, if you take a point in , , then the indicator function will give you 0 if the point isΩ 𝑥 ∈ Ω

not in the set , otherwise it will put 1 if the set if the point is in , then it will put 1, so that𝐴 𝐴

is the indicator function. So, it has to two values you just check if an arbitrary element x

belongs to the set or not. If it belongs there, you put 1 if it does not belong you put 0, that is

the indicator function of the set.
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Now, look at a sequence of subsets, what you can now try to show that for all , if you𝑥 ∈ Ω

look at of this indicator , so the left hand side, if you fix your , then indicator 𝑙𝑖𝑚 𝑖𝑛𝑓 𝐴
𝑛
(𝑥) 𝑥

, this is a sequence of 0’s and 1’s. So, this is a sequence of real numbers, I am looking𝐴
𝑛
(𝑥)

at of that. And on the right hand side, I am looking at indicator of the of the𝑙𝑖𝑚 𝑖𝑛𝑓 𝑙𝑖𝑚 𝑖𝑛𝑓

sets.

Now this is a set of ’s, this is one set that we have discussed. So, I am looking at𝑙𝑖𝑚 𝑖𝑛𝑓 𝐴
𝑛

an indicator of that and I am evaluating at the point . So, on the left hand side, I have a𝑥

sequence of 0s and 1s I am looking at of that. On the right hand side, I also have a 0,𝑙𝑖𝑚 𝑖𝑛𝑓

1 value sequence, but the is taken in terms of sets.𝑙𝑖𝑚 𝑖𝑛𝑓



A similar statement also holds for . So again, on the left hand side, I have a sequence𝑙𝑖𝑚 𝑠𝑢𝑝

of 0s and 1s. So, I am just putting this I am fixing that , I am just checking whether the is𝑥 𝑥

belongs to the ’s or not. So, that is how I am getting this sequence of ’s and 1’s and I am𝐴
𝑛

0

computing the and on the right hand side, I am computing the indicator of the𝑙𝑖𝑚 𝑠𝑢𝑝

that we have defined.𝑙𝑖𝑚 𝑠𝑢𝑝

So, on the right hand side is in terms of the sets and then I am evaluating that𝑙𝑖𝑚 𝑠𝑢𝑝

function at the point . So, these will connect the notions of usual sense of real𝑥 𝑙𝑖𝑚 𝑖𝑛𝑓

numbers, sequence of real numbers with notions of and of sets. So, we stop𝑙𝑖𝑚 𝑠𝑢𝑝 𝑙𝑖𝑚 𝑖𝑛𝑓

here.


