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Welcome to this lecture, before proceeding forward let us first quickly recall what we have

done throughout this course. We have learnt about measure spaces, measurable functions, and

as a special case of that we have studied probability spaces and random variables. We have

also learned measured theoretic integration and as a special case we have talked about

expectations of random variables. In particular, we have seen that this general definition

reduces to the standard formulas that we know about for the cases when the random variables

are discrete or absolutely continuous.

With this knowledge, we can also compute the moments of all these random variables, but

now measure theory allows us to look at random variables in general, meaning we do not

have to separately talk about discrete random variables or absolutely continuous random

variables.

We can put them together at the same time; this allows us much more freedom in writing

down many of the expressions or stating their proofs. We are going to see certain important

inequalities involving moments of these random variables in general. Let us move forward

and look at the slides of this lecture.
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In this lecture we are going to stick to these notations that and will be real valued random𝑋 𝑌

variables defined on a given probability space and this measurable function , ,(Ω,  ℱ,  ℙ) 𝑓 𝑔

etc. shall refer to measurable functions real-valued defined on this measurable space (Ω,  ℱ)

but together with some given measure . What we are interested in are these kinds ofµ

quantities or .
Ω
∫ |𝑋|𝑝 𝑑ℙ ∫ |𝑓|𝑝 𝑑µ

Here is some non-negative real number. Remember or whatever they are these are𝑝 |𝑋|𝑝 |𝑓|𝑝

non-negative measurable functions and hence, these above integrals always will exist.

However, this may take the value ; we allow that in our analysis. Before we start, we first∞

recall an algebraic inequality and this we state without proof.
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This is referred to as the Jensen's inequality finite form. What do we do? Take any open

convex set , what do I mean? I mean that must be an open subset of the real line, but it𝑈 𝑈

should also have this property that given any two points inside this set , the average of that𝑈

value also lies inside the set , i.e., if , then , so that is the convexity of𝑈 𝑎, 𝑏 ∈ 𝑈 𝑎+𝑏
2 ∈ 𝑈

the set.

Consider a function which is defined on taking real values and this function we want it to𝑈

be convex, what we need is that the function value at a midpoint will be less equal to the

average of the function value that is the convexity of the function. In this finite form we are

interested in certain other type of averages; here what we do we choose many points from𝑛

the domain and scalars , then𝑈 𝑎
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What are we looking at is that this is the weighted average of the points with respect to the𝑥
𝑖

weights and we are dividing by the total weight and if you evaluate the function we are𝑎
𝑖

saying this will be less or equal to the same weighted average, but of the function values.

That is all we are saying in this statement.

If our given function phi is twice differentiable then there is this easy condition that allows us

to check whether phi is convex or not? So what do we do we lo at the double derivative of the

function and if it so happens that the double derivative is strictly positive for all points in the

domain then phi will be convex. This is a sufficient condition that will imply that the given

function is convex, so this is quite useful in practice to check that a given function is convex.

Using this we are moving on and we are going to show this important inequality called the

Young's inequality. What is the statement? Here we are choosing two real numbers and𝑝 𝑞

between 1 and , so we are not allowing them to be equal to the boundary points 1 or .∞ ∞

They are strictly between 1 and .∞



With the relation that then the statement says for all a and b non-negative the1
𝑝 + 1

𝑞 = 1

product of . Here, note that, is actually giving you a convex𝑎𝑏 ≤  𝑎𝑝

𝑝 + 𝑏𝑞

𝑞
1
𝑝 + 1

𝑞 = 1

combination.

What we are seeing here is that is less or equals to some kind of a convex combination of𝑎𝑏

these values and and the statement also says that this equality will hold if and only if a𝑎𝑝 𝑏𝑞

and b are related by this relation that . Here note that , therefore, ,𝑏 = 𝑎𝑝−1 𝑝 > 1 𝑝 − 1 > 0

so is well defined, so there is no issue about that.𝑎𝑝−1

How do you show this? So first let us get rid of the boundary related conditions so if 𝑎 = 0

or then this product is 0 this product appearing on the left-hand side is 0 and therefore𝑏 = 0

whatever is appearing on the right hand side that will be greater equals to 0, because that term

is non-negative anyway, so this inequality is automatically satisfied provided either or is𝑎 𝑏 

0.
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Now, consider the case when both and are positive, here we apply this trick that we are𝑎 𝑏

going to choose a very specific convex function and we are going to apply the Jensen's

inequality the finite form of it. Here we start off with the natural logarithm function

. Here what happens is .𝑙𝑛 :  (0,  ∞) →  ℝ 𝑑

𝑑𝑥2 (− 𝑙𝑛 𝑥) = 1

𝑥2 > 0,  ∀𝑥

Therefore, the function is a convex function on . Here we have used the fact− 𝑙𝑛 (0,  ∞) 

that double derivative of this function is positive and therefore, it must be convex, so we have

used this criteria here. If you apply the Jensen's inequality finite form to the minus logarithm

function, here note that this is logarithm with respect to the base .𝑒

Now, if you apply this we get this fact that minus logarithm of this convex linear combination

must be less or equal to this quantity, which is the convex linear combination of the function

values but then observe that this right side quantity is nothing but If you− 𝑙𝑜𝑔 (𝑎𝑏).

exponentiate it the inequality will follow, by exponentiating you are going to get is less or𝑎𝑏

equal to this convex linear combination that was appearing on the right hand side.

Therefore, the inequality is following from this argument, but the case of equality is being

left as exercises please work it out. We are going to use this Young's inequality to allow us to

prove a very important inequality called the Holder’s inequality. Here we are finally entering

the integrations that we are interested in. What is happening is that we are choosing two

measurable functions exactly as stated in the introduction, so and are real valued𝑓 𝑔

measurable functions defined on this measurable space .(Ω,  ℱ)

Fix two real numbers and between 1 and , we are not allowing the value 1 for this𝑝 𝑞 + ∞ 𝑝

and and we also do not want them to take the value . This is strictly between 1 and𝑞 + ∞ ∞

these are real numbers, but we also want that this convex linear combination should be

formed so by the time in that should be 1 then the claim is that if you look at1
𝑝 + 1

𝑞

.∫ |𝑓𝑔| 𝑑µ ≤  ∫ |𝑓|𝑝 𝑑µ( )1/𝑝

 ∫ |𝑔|𝑞 𝑑µ( )1/𝑞



Here we are looking at the product of the and . So, we are ∫ |𝑓|𝑝 𝑑µ( )1/𝑝

∫ |𝑔|𝑞 𝑑µ( )1/𝑞

looking at these two integrations and looking at their appropriate powers and then finally we

are multiplying. This is what appears on the right hand side.

Now, the proof is being left as an exercise this is an important applications of the Young's

inequality, but here is a hint, first observe that the functions that appear in this inequality

which are , and all of these are non negative measurable functions. Therefore,|𝑓𝑔| |𝑓|𝑝 |𝑔|𝑞

the integrations exist but could take the value of .∞

The first thing to note is that if it so happens that the right-hand side is 0 then at least one of

the integrations that appear on the right-hand side must be 0 and that as per our understanding

will imply that one of the functions or must be 0 almost everywhere but then their𝑓 𝑔 µ

product will also be 0 almost everywhere and therefore this integration will also turn out toµ

be 0. Therefore, the inequality will follow if at least one of the terms on the right hand side is

0.

Then we are interested in the situation where these quantities are non-trivial, so if any one of

these quantities are , then also the inequality follows but now we are interested in the+ ∞

situation where these integrations that are appearing on the right hand side are some

non-trivial real numbers, not , not 0.+ ∞

Then what you can do is that you can apply the Young's inequality with these specific choices

of a and b. What do you do? You look at the value of for every fixed value of point , you𝑎 ω

look at , so this quantity appears on the right hand side, see. Here we are|𝑓(ω)| ∫ |𝑓|𝑝( )−1/𝑝

just dividing by that quantity and looking at this.

So, choose a like this and similarly you will choose for the value . If𝑏 |𝑔(ω)| ∫ |𝑔|𝑞( )−1/𝑞

you choose and that like that then if you apply the Young's inequality you will𝑎 𝑏

immediately get the required inequality. So, this is the Holder’s inequality and this gives

estimates for integration of the product of the functions.
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Now, there are several comments that appear here, so look at this integration that appear in

this inequality they could be and as remarked they can give some important comments+ ∞

or important implications when they are . So, if it so happens that this term which appears∞

on the left hand side of the inequality if this integration is then it immediately tells you that∞

the right hand side terms which involve this ’s integration or integrations these|𝑓|𝑝 |𝑔|𝑞

cannot be 0, because remember 0 times anything is 0.

So, that is our convention therefore, both of these must be positive. That is the first

observation; moreover, at least one of them should be now for the inequality to hold. Let∞

us go back to this inequality, we are saying if the left hand side is then at least one of them∞

must be and the other must be positive. None of them can be 0; if one of them is 0 then the∞

product is 0.

So, you have to be careful with that. That is the first observation that we get, so if the left

hand side is then it still gives you some information about the right hand side. However, if∞

it so happens that the right hand side term is meaning, this product is then this+ ∞ + ∞

inequalities automatically satisfied and this does not give you any useful information for the

left hand side.

We are going to restate this result of theorem 4 in terms of certain appropriate integrations for

random variables so that we are going to do in a minute but now and whose|𝑓|𝑝 |𝑔|𝑞

integrations we are considering, suppose they are mu integrable so their integrations will be

finite. Then all these terms that appear on this Holder’s inequality must be finite and this



actually tells you by the Holder’s inequality that the left-hand side term which is the

integration of the product of the functions must be finite and that tells you that is|𝑓𝑔| µ

-integrable.

So, this is an important comment about integrability, so let us go back to that statement once

more so we are saying if both the terms on the right-hand side are finite then the left-hand

side is finite but this being finite will tell you that has a finite integration that means that|𝑓𝑔|

is -integrable.𝑓𝑔 µ
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We restate these results for random variables what happens here, you again continue with

these notations and with these convex linear combinations . Then what𝑝 𝑞 1
𝑝 + 1

𝑞 = 1

happens? You look at , so that is the integration of with respect to the𝐸(|𝑋𝑌|) |𝑋𝑌|

probability measure and by the Holder’s inequality you immediately get this bound on theℙ

right-hand side.

This is simply a special case of the Holder’s inequality when you are considering random

variables for the measurable functions and the probability measure appears in place of the

measure mu. Therefore, you immediately get this but now consider this special case which is

well known as the Cauchy Schwarz inequality what do you do you choose and to be 2.𝑝 𝑞

Here all you need is that and should be between 1 and forming this convex linear𝑝 𝑞 ∞

combination. Now if you choose these conditions are satisfied and then you will𝑝 = 𝑞 = 2

get this interesting inequality. That tells you that is bounded by this quantity on the𝐸(|𝑋𝑌|)

right hand side and that involves the second moments of the random variables and .𝑋 𝑌

If it so happen that and will exist and will be real valued, so in this case what you𝐸(𝑋) 𝐸(𝑌)

can do? Instead of looking at the random variables and , look at the random variables𝑋 𝑌

and . Therefore, applying this observation, this inequality that we have𝑋 − 𝐸(𝑋) 𝑌 − 𝐸(𝑌)

just observed to these new random variables, you get this interesting bound, we are going to

make some comments about this in a minute.



Let us come to Cauchy-Schwarz inequality for the measurable functions this is in general

statement again you chooses and to be 2 and then you get this required inequality as a𝑝 𝑞

special case of the Holder’s inequality. What you can ask is that there are this Holder’s

inequality that you have just discussed and there are these Cauchy-Schwarz inequalities and

these inequalities involving random variables.

Now, what you can ask is that when does the equality hold? In Holder’s inequality which is

theorem 4 and basically the applications of Holder’s inequality which is theorem 5. Please

check this when does the equality hold.
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We are interested in special sub cases of the Holder’s inequality, here what we do? We look at

this random variable which is identically equal to 1 then go back to the theorem 5, 1 so what

is this so go back to that statement so we have this statement that is dominated by this𝐸(|𝑋𝑌)

quantity. However, if you put then what happens your left hand side is nothing but𝑌 = 1

and on the right hand side this moment of is nothing but 1.𝐸(|𝑋|) 𝑌

Therefore, you get the inequality that . Here you are able to choose𝐸(|𝑋|) ≤  (𝐸(|𝑋|𝑝))1/𝑝

any number between 1 and . So that is as per the Holder’s inequality.𝑝 ∞

We try to extend this inequality for general indices, here you choose and between 0 and𝑝 𝑞

, so these are positive numbers and choose . There is no other restrictions on and∞ 𝑝 < 𝑞 𝑝 𝑞



these are positive numbers and . Consider this random variable Z which is mod X to𝑝 < 𝑞

the power p and choose this number and by our choice of and , .𝑟 = 𝑞
𝑝 𝑝 𝑞 𝑟 > 1

Then by this first part that we have just observed you can look at that is nothing but𝐸(𝑍)

, but then look at this . is non-negative, so it is equal to . If you apply this𝐸(|𝑋|𝑝) 𝐸(𝑍) 𝑍 𝐸(𝑍)

part 1 you will immediately claim that for this number r you will get this bound, so you are

looking at the -th absolute moment of and looking at the -th root of that.𝑟 𝑍 𝑟

That is the inequality that is stated in the part 1 of theorem, but if you write again back in𝑍

terms of you get this expression here. If you rewrite this inequality just for the random𝑋

variable you get this interesting inequality which says that for any and which are𝑋 𝑝 𝑞

positive and if then you get this bound.

This says that the pth roots of pth absolute moments are increasing in that index , so if you𝑝

go from to this quantity increases. For we already had this inequality in part 1.𝑝 𝑞 𝑝 = 1

That is exactly what we have extended from the part 1 to part 2 we have just extended that.

As a special case of this observation, let us consider the second moments of and .𝑋 𝑌

So, suppose these are finite then what will this give, this will tell you that and will𝐸(𝑋) 𝐸(𝑌)

also be finite because this will be dominated by the square root of the second moment and

square root of the second moment both for the random variables and . What will happen𝑋 𝑌

is that in this case and are integrable and therefore these values and are in the𝑋 𝑌 𝐸(𝑋) 𝐸(𝑌)

real numbers.

Therefore, you go back to this Cauchy-Schwarz inequality that we stated in theorem 5 part 2,

so let us go back to that statement. In theorem 5 part 2 we had stated these inequalities and

we already have this situation where and are real numbers. Let us use this𝐸(𝑋) 𝐸(𝑌)

inequality what happens?
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You get this interesting inequality that says

. Here is defined𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋,  𝑌)| | ≤ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋) 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑌) 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋,  𝑌)

as . These are again all these familiar expressions that come𝐸 (𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))( )

from your basic probability courses, so we are not going into the exact details of covariance

and variance.

We assume that you know about this but we are now proving this from the major theoretic

setup. Remember here could be discrete, could be absolutely continuous, there is no𝑋 𝑌

restriction on and , and could be of mixed type also. With this inequality at hand so𝑋 𝑌 𝑋 𝑌

let us now move on to other discussions.

Here what do you do choose a number and allow the value 1 for the point . You𝑝 ∈ [1,  ∞) 𝑝

allow this range of values for , if it so happens that and both of these are𝑝 |𝑓|𝑝 |𝑔|𝑝

integrable, specifically let us consider the case . If we assume that and are𝑝 = 1 |𝑓| |𝑔| µ

integrable, so by that I mean that and are integrable then we are saying that or𝑓 𝑔 µ |𝑓 + 𝑔|

equivalently is integrable and this is being generalized with this power , so that is𝑓 + 𝑔 µ 𝑝

all this statement says.

If f and g are integrable then f plus g is integrable. What do we do about this proof? So, we

want to prove this by some appropriate inequalities. Let us go back to this certain inequalities

of this form we want to claim that will be dominated by multiplied by a|𝑓 + 𝑔|𝑝 |𝑓|𝑝 + |𝑔|𝑝

suitable constant.

So, you have to figure out this suitable constant but if you can figure out this suitable constant

then using the integrability of the terms that appear on this right-hand side just by taking

integration in this inequality you will get the required result that is integrable. There|𝑓 + 𝑔|𝑝

are two methods we discuss here both give some ideas in how to do this kind of estimates.

First start with , observe that , therefore, raise to the power|𝑓 + 𝑔|𝑝 |𝑓 + 𝑔| ≤ |𝑓| + |𝑔| 𝑝

you will also get this inequality. Then look at the maximum of the functions between and|𝑓|

then is dominated by and similarly is also dominated by|𝑔| |𝑓| max {|𝑓|,  |𝑔|} |𝑔|

.max {|𝑓|,  |𝑔|}



Therefore, you get . That is all that calculation is happening within the2 max {|𝑓|,  |𝑔|}

bracket and you are just raising these inequalities to the power p. Now you observe that you

can now push the power p inside and say that this is . Then observe≤  2𝑝 max {|𝑓|𝑝,  |𝑔|𝑝}

that maximum of these two quantities is less or equal to the sum of these two quantities, these

are non-negative quantities therefore this relation is true.

You get this constant that we were after therefore, what we have is that is less or2𝑝 |𝑓 + 𝑔|𝑝

equal to some constant which is here multiplied by . Another method will2𝑝 |𝑓|𝑝 + |𝑔|𝑝

improve this constant slightly, so let us try to say this.
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Here we are choosing this is as per the statement and then look at this function𝑝 ≥ 1 𝑥 → 𝑥𝑝

on . Now you can check that this function is convex, if you use this fact then by this(0,  ∞)

lemma 1 which is the finite form of the Jensen's inequality you get |𝑓 + 𝑔|𝑝 ≤ 2𝑝 |𝑓|+|𝑔|
2( )𝑝

.

So, that is all we are doing here, that is the first step. If you push the power inside by𝑝

applying this convex linear combination here, so that is all we are doing you are applying the

finite form of the Jensen's inequality. Here you get the power p average of that, that is all. But

then what happens is that you get this inequality with appearing as that constant that we2𝑝−1

have talked about.

We are getting this fact that is less or equal to some appropriate constant multiplied|𝑓 + 𝑔|𝑝 

by . Either of these bounds will imply that is integrable or|𝑓|𝑝 + |𝑔|𝑝 |𝑓 + 𝑔|𝑝 µ

equivalently is -integrable.|(𝑓 + 𝑔)𝑝| µ

As seen in this proof above we have applied two methods and the second method gave a

sharper inequality. You were able to improve that constant in the upper bound. Now you

would like to understand if there is a better result in this direction. We see this inequality

which has been refined much further and this is called the Minkowski’s inequality.
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We are choosing this number , so excluded but 1 allowed. If it so happens𝑝 ∈ [1,  + ∞) ∞

that and are -integrable then we want to again claim that this is also integrable so|𝑓|𝑝 |𝑔|𝑝 µ

that is part of the statement. Then here we are going to say an important inequality that is

going to give you the relation between these summations.

Let us try to see this. In the case observe that and therefore, if𝑝 = 1 |𝑓 + 𝑔| ≤ |𝑓| + |𝑔|

you integrate these functions on both sides by this measure then you get the requiredµ

relation. The required relation is very easy to check when but now you want to show𝑝 = 1

this when . In this case what do you do?𝑝 > 1

You choose such that this convex linear combination is formed, so is given𝑞 ∈ [1,  + ∞) 𝑝

to you and you are going to choose this appropriately. So that , In this case𝑞 1
𝑝 + 1

𝑞 = 1

what happens? Then integration of you can write it as a product of|𝑓 + 𝑔|𝑝

.|𝑓 + 𝑔| |𝑓 + 𝑔|𝑝−1

You are writing in terms of a product in preparation for applying the Holder’s inequality and

that is why you are also choosing this to form this convex linear combination. For this𝑞

part you apply this inequality that was observed earlier that .|𝑓 + 𝑔| |𝑓 + 𝑔| ≤ |𝑓| + |𝑔|

Therefore, you get these two separate integrations this is simply by additivity of the

integrations you get two separate integrations.

Here integrability is not an issue because we are only dealing with functions which are taking

non-negative values, but here we want to focus on this part here that is . Again,|𝑓 + 𝑔|
𝑝−1

so there is no problem in this definition. We claim that this function here raise to the𝑝 > 1

power , if you want to integrate it with respect to you will get a finite quantity. This is left𝑞 µ

as an exercise please check this.

What do we do with this observation at hand we are going to apply the Holder’s inequality on

the right-hand side of this star relation, so that was in preparation for applying the Holder’s

inequality that in both these integrations the integrands are factored and we are going to apply

the Holder’s inequality here.
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If you apply this then you immediately obtain that integration with respect to the|𝑓 + 𝑔|
𝑝

measure that is on the left-hand side is less or equal to these two terms. So, the first integralµ

that was there on the right-hand side will contribute this term that the -th root of the𝑝

integration of , so that is appearing here and similarly we will get this term|𝑓|𝑝 (|𝑔|𝑝)1/𝑝

integration of that, that is all you are getting.

Now, this common term is appearing on both the terms, so let us just go back to this

integration in start. You are just factoring it, you are raising this part to the power , this part𝑝

to the power , similarly, you are raising this part to the power , this part to the power , so𝑞 𝑝 𝑞

that is all you are applying and you are getting this as a consequence of the Holder’s

inequality.

Now, this term is common, you take that out and if you do this calculation a bit carefully you

can show that that quantity is nothing but this quantity, so please try to check|𝑓 + 𝑔|(𝑝−1)𝑞

this. What is happening? So, on the left-hand side I have integration of that and we|𝑓 + 𝑔|𝑝

have some term within the bracket here multiplied by the left-hand side raised to the power

.𝑝
1−𝑝

Let me repeat, so I have the left-hand side which is less or equal to this term within the

brackets multiplied by the expression on the left-hand side raised to the power . So, you𝑝−1
𝑝

cancel things off and you are going to get the required inequality that the -th root of the left𝑝

hand side will be less equal to the sum of these -th roots.𝑝



That is the statement that was given in this inequality here in Minkowski's inequality. We get

this result and as a consequence you also get the integrability of .|𝑓 + 𝑔|𝑝
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We see some comments involving this Minkowski's inequalities, so the inequality in this

theorem is true even if one of these integrations on the right-hand side is infinite. On the

right-hand side, you get a summation of two integrations. If anyone of these terms is infinite

even then this inequality is still true but we are really interested in the case when these terms

are finite that is when you get some useful information bounding this left-hand side.

That is why in the hypothesis we had assumed these integrability conditions so that this

right-hand side becomes finite. Even if that is not the case you can still get this inequality but

you do not really get any useful information for the bound for the left-hand side. We now

have some good ideas about the estimates involving these moments, but now we want to look

at certain more interesting inequalities and this is a very very useful inequality and referred to

as Markov-Chebyshev inequality.



Here what do we do? So, choose any measurable function and fix epsilon to be positive then

look at the size of this set where and we say that we can dominate it, we can|𝑓| > ϵ

estimate this by this quantity the integration of . More generally there is this upper bound|𝑓|
ϵ

given to us which is . Here and this relation holds for any fixed1

ϵ𝑝  ∫ |𝑓|𝑝 𝑑µ 𝑝 ∈ (0,  ∞)

. Now for the case of random variables you get this special statement which can beϵ > 0

represented in terms of probability of certain events. We are just rewriting this inequality that

was stated here in terms of the random variable. What is this? We are saying that

.ℙ(|𝑋| ≥ ϵ) ≤ 1
ϵ 𝐸(|𝑋|)

Here again the inequality will be meaningful if is integrable that is is finite. More𝑋 𝐸(|𝑋|)

generally in this case when you are involving this scalar you can still get these0 < 𝑝 < ∞

estimates of these probabilities in terms of this absolute moment. This is anyway a special

case of part 1.
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Let us see how we can prove this, so here for any epsilon positive look at this size of this set

which we are interested in. Here what is happening first observe that this is the set of points

in the domain such that , but if you raise it to the power when|𝑓(ω)| ≥ ϵ 𝑝 𝑝 ∈ (0,  + ∞)

you still get this inequality.

These two sets are identical therefore, you get the same measure great but then you can

rewrite this inequality in our standard form that removing this sample point you can getω

that. These two measures of the sets are the same because the sets are the same. Look at the

quantity that we are interested in which is , but then observe that this function is an∫ |𝑓| |𝑓|

upper bound for this function which is multiplied by the indicator of the set we are|𝑓|

interested in.



You just multiply by this indicator therefore, you get this inequality relation because you are

saying that this function dominates this function, but then on this set the value of is at|𝑓|

least and use that this quantity will dominate times the integration of this indicatorϵ ϵ

function. Integration of indicator function is nothing but the size of that set and therefore, you

get the inequality and you can rewrite it as measure of this set is less or equal to 1
ϵ ∫ |𝑓|

which you wanted.

How do you get the version involving that scalar ? You start with this integration of , if𝑝 |𝑓|𝑝

you apply this and for this scalar you get this relation simply by the previous argument.ϵ𝑝

Instead of you are now putting and for the function you are putting . You get thisϵ ϵ𝑝 |𝑓| |𝑓|𝑝

relation but then you have immediately observed that measure of this set is exactly equal to

measure of this set.

Therefore, the inequality will follow. So, this is a very simple inequality you are just using

the fact that dominates this function as soon as you multiply by this indicator. This is a|𝑓| |𝑓|

very very simple proof but this has a very wide range of applications.

(Refer Slide Time: 38:15)



Let us look at it from the perspective of moments of random variables. Consider the fact

when the second moment of exists and is finite then variance is finite so that something𝑋

that you have already known from your basic probability theory. Observe that we have

already mentioned that if the second moment is there then it will also tell you that is𝐸(|𝑋|)

also finite and it implies that is integrable and in particular expected value of is a real𝑋 𝑋

number.

You can consider this random variable which is and therefore if you apply this𝑌 |𝑋 − 𝐸(𝑋)|

proposition to, so what was proposition 2 once more? So proposition 2 is nothing but this

Markov-Chebyshev inequality. If you apply it to the random variable instead of what do𝑌 𝑋

you get you get the fact that and you can rewrite thisℙ |𝑋 − 𝐸(𝑋)| ≥ ϵ( ) = ℙ |𝑌| ≥ ϵ( )



and you will get this expression involving , because the second moment of is𝑣𝑎𝑟(𝑋) 𝑌

nothing but the and this is true for all .𝑣𝑎𝑟 (𝑋) ϵ > 0

Therefore, you get some estimates of the deviation of from the mean by this quantity in𝑋 ϵ

terms of the variance and that is scaled by this appropriate factor involving this is true forϵ

any .ϵ
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If we state this result without proof so this is the Jensen's inequality. Again, remember that

we had mentioned this finite form of Jensen's inequality right at the beginning here we state

the general form without proof. Here what we are doing? We are starting up with an

integrable random variable that means is a real number here we are saying that if you𝐸(𝑋)

take any convex function defined on the real line just to remind you a convex function is

continuous and hence measurable.

Therefore, this composition is well defined it will satisfy the measurability requirement. We

are saying that if is also integrable then we get this inequality. What are theϕ(𝑋)

hypotheses? is integrable, is integrable and phi is convex, provided these three things𝑋 ϕ(𝑋)

happen you get this inequality .ϕ(𝐸(𝑋)) ≤ 𝐸(ϕ(𝑋))

We are not going to prove this but we are going to discuss some special cases of this

inequality what are this? So, if you choose this convex function you get is𝑋 →  |𝑋| |𝐸(𝑋)|

dominated by , so this we have seen earlier. Similarly, if you choose the function𝐸(|𝑋|) 𝑋

going to then you get this familiar inequality once more. That the first absolute moment of𝑋2

is dominated by the square root of the second moment.𝑋

You can choose this as a curiosity that you can choose this numbers from the𝑥
1
,  𝑥

2
,  .  .  ., 𝑥

𝑛

real numbers and scalars positive. Here you get this discrete random variable𝑎
1
,  𝑎

2
,  .  .  .,  𝑎

𝑛

with this specific law that it is focused on these Dirac masses but with these weights𝑋



. Therefore, this will give you a convex linear combination and this is a genuine
𝑎

𝑗

𝑎
1
+𝑎

2
+ . . +𝑎

𝑛

probability measure.

(Refer Slide Time: 41:51)



Here what do you get you look at that is nothing but these random variable once moreϕ(𝑋)

but taking values at therefore, the law of is essentially these Dirac masses withϕ(𝑥
𝑗
) ϕ(𝑋)

the same convex linear combination. Look at the expected values, expected values are

nothing but the weighted averages of ’s for and a weighted averages of 's for𝑥
𝑗

𝐸(𝑋) ϕ(𝑥
𝑗
)

and then immediately if you look at Jensen's inequality that will tell you that lemma𝐸(ϕ(𝑋))

1 will follow why because you are just looking at the same inequality.

If you go back to this, so this is nothing but phi applied to this weighted averages of the

quantities less or equal to which we have computed at this quantity.𝐸(ϕ(𝑋))
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This is exactly what we had stated in lemma 1, so let us see this, so again this weighted

average is evaluated at this point. If you look at that it is less equal to the weighted average of

the function value, so that is exactly what was obtained as a consequence of the general

Jensen's inequality.

Let us go back to that therefore, the lemma 1 follows as a special case of the Jensen's

inequality, which is the general form of this, so we do not prove this. In this lecture we have

discussed many of the interesting inequalities involving moments and more generally of

expected values of functions of .𝑋

We use this for estimating many of the important quantities involving the random variables

and in particular by the Markov-Chebyshev inequalities we can also estimate certain



important events and their probabilities. This is the final lecture in terms of the contents of

this course, but in the next lecture we are going to consolidate whatever we have learned and

make some concluding remarks. So let us stop here.


