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Welcome to this lecture, before proceeding forward let us first quickly recall what we have

done in this week. In this week, we have concentrated on looking at the structural properties

of measures. In particular, we have seen these two very important results called the Lebesgue

decomposition theorem and the Radon-Nikodyne theorem. Using these results, we have

obtained important decomposition results for general probability measures on the real line

together with the Borel -field.σ

Using that decomposition, we have also talked about the corresponding decompositions about

the distribution functions, and using these decompositions, we have talked about the

corresponding classes of random variables or random vectors. In particular, we have

concentrated our attention on these absolutely continuous random variables, which

correspond to the random variables with law being absolutely continuous with respect to the

underlying Lebesgue measure.

With these absolutely continuous random variables at hand, we are now moving on to their

properties and analysis involving these random variables. We are going to look at

expectations for these random variables. Let us now move on to the slides for this lecture.

(Refer Slide Time: 01:49)





In this lecture we are going to discuss about the computation of expectation for these

absolutely continuous random variables that we have discussed, but then we will also

comment about the higher dimensional versions of this, so we will also consider absolutely

continuous random vectors. We are going to see some inequalities involving the moments

after we discuss these expectations.

We have earlier discussed about expectation for general random variables then for the special

case of discrete random variables, now we finish the discussion about expectations for

absolutely continuous random variables and putting everything together we are going to look

at certain inequalities that are applicable to all these situations.

Let us first start with the notations, so given some absolutely continuous random variable call

it defined on some probability space and a Borel measurable function which is𝑋  (Ω,  ℱ,  𝑃) 𝑔

taking values on the real line and defined on the real line, so if you take these things and𝑋 𝑔

then remember composition with so that is that is a random variable again defined𝑔 𝑋 𝑔(𝑋)

on the probability space.

However, this is not necessarily absolutely continuous. For an example, take to be a𝑔

constant function, so then is just a constant random variable you can treat it as a𝑔(𝑋)

degenerate random variable and this is not absolutely continuous. Therefore, you have to be

careful with this choice of . You may have seen these kind of results certain sufficient𝑔

conditions on the function which will allow you to claim that is also absolutely𝑔 𝑔(𝑋)

continuous.

These sufficient conditions are usually in terms of regularity of this function all, so let us𝑔

recall this result. However, please note that we are going to state this without proof assuming

that you have already seen this result in your basic probability theory courses, and also, we

are not going to state this version in higher dimensional case again this result can be

generalized to the higher dimensions.
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Let us see this result, so we continue with this setup that we have our absolutely continuous

random variable and we have a nice measurable function. Let us now look at what are these𝑋

conditions we impose on this function . Suppose you take to be differentiable in particular𝑔 𝑔

notice that must be continuous and hence it is Borel measurable, so this is a special type of𝑔

a measurable function.

Now, in addition you also assume that is strictly positive for all points that will ensure that𝑔'

your function is one-to-one and strictly increasing. In this case what you claim is that the𝑔

random variable is also an absolutely continuous random variable and you can in𝑌 = 𝑔(𝑋)

fact write down its PDF given by some such formula.

Remember if the function is strictly increasing and one-to-one, you can consider the  𝑔

inverse function and that is the inverse function that appears in this formula, and then here

just to note there are certain range of values for this random variable capital y which is given

as this range of values. This is g of minus infinity to g of infinity. So, what are these values?

These values are nothing but and limit of the function . Here denotes the
𝑋 ∞
lim
→

𝑔
𝑋 −∞

lim
→

𝑔 𝑓
𝑋

usual notation that is the PDF of the given random variable . With respect to all of these𝑋

terms you can write down the PDF of this random variable y which is . There are these𝑔(𝑋)

other sufficient conditions for example you can take to be negative for all X and you𝑔'(𝑋)

will get a similar result for this.



For a higher dimensional case the result usually involves this Jacobians of these functions g,

let us not go into to that detail but this is a standard result that you may have seen in your

basic probability courses and we are going to assume this. Since this is just for the record that

we can figure out certain sufficient conditions under which becomes absolutely𝑔(𝑋)

continuous. But now our main interest is in the computation of expectation for absolutely

continuous random variables or random vectors. Here we are doing the setup in higher

dimensional at one go.
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Suppose you start off with a random vector taking values in , here could be anything𝑋 ℝ𝑑 𝑑

1, 2, 3, 4 any such dimensions, suppose you write the PDF as a subscript then what is the𝑋

definition? By definition the Radon-Nikodyne derivative of the law of the random variable

which is that has this density function with respect to the Lebesgue measure in thisℙ ◦ 𝑋−1

dimension.

That is the idea that you take the Lebesgue measure on and look at this Radon-Nikodyneℝ𝑑

derivative of the law that will give you the density function and that is your probability

density function. So, this result we have already seen, but we have also identified that we can

transfer integrations with respect to into an integration involving the Lebesgueℙ ◦ 𝑋−1

measure just by multiplying by this function.

This was mentioned in exercise 4 part 1. Then what do you do? You apply this exercise and

observe this set of equalities. Expected value of the random vector as defined it is the value𝑋

of the random vector integrated against the probability measure. And here if you do the

change of variable you will end up with this structure that it is the integration over .ℝ𝑑

Here , so we will make a clarification about this d dimensional integration in a𝑥 ∈ ℝ𝑑

minute, but formally let us accept this equality is true. This is just a change of variable

formula or change of measure formula that we have been using so far, but now if you change

measures from to the Lebesgue measure by using that Radon-Nikodyne derivativeℙ ◦ 𝑋−1



you can bring in the density function here, that is what we have done, that is what this

exercise suggested.

Then what you do is that you observe that this is the usual integration with respect to the

Lebesgue measure and using the standard notational terminology that we have introduced this

is just for notational convenience that we will simply write it as usual dx, so that is what it is.

Now these equalities will hold provided one of the integrations exist but now we have to

clarify this issue about integration in .ℝ𝑑

Here this or all of these are taking values in and we have only explained about𝑥   𝑋(ω) ℝ𝑑

integration of extended real value functions or real value functions. Here these terms and𝑥

such terms are now valued. So let us make a clarification about this. What do we𝐸(𝑋) ℝ𝑑

mean by these equalities is that the equality is interpreted component wise.

What do I mean? You take th component of that is what you put it in so this will be𝑖 − 𝑋 𝑋𝑖

let us say that denotes the ith component of and if you do the change of variables𝑋

appropriately you will go to here. That is the idea so this equality holds component wise so

that is the idea, but again you can also do this change of variable in the dimensional setup.ℝ𝑑

That will give you this formula.

Again, if you define the integration of valued functions exactly in the way we haveℝ𝑑 

defined the real valued integrations then we will get the similar results, so again one way is to

define it component wise, another way is to define the integration directly in and do thisℝ𝑑

in change of variable formula in this d dimensional setup, either way works. That is this

meaning of these equalities provided one of these integrations exists.

(Refer Slide Time: 10:25)





Now, what do you do after you interpret this you can do a usual analysis involving your

expectation and do computations. Continue with these notations that is a absolutely𝑋

continuous random variable and is a Borel measurable function defined on R and take𝑔

. Then what you can try to show this is a usual result that we have discussed earlier𝑌 = 𝑔(𝑋)

for general random variables and also for discrete random variables and this is again true for

absolutely continuous random variables.

That is given as this expression provided the integrations exist, but then this is𝐸(𝑌) 𝑌

nothing but the because is itself and then you can compute in terms of𝐸(𝑔(𝑋)) 𝑌 𝑔(𝑋) 𝑔(𝑋)

the law of . This is the integration that appears here, so you have gone from integrations𝑋

with respect to the law of to the integrations involving the law of , so that is the meaning𝑌 𝑋

of this equality.

Provided one of the integrations is defined if it exists you can make sense of these equalities,

but then look at this last expression. Here the law of appears and then if you know that𝑋 𝑋

for you is absolutely continuous just put in the probability density function there so you will

get this expression the familiar expression for the expectation of , where you are𝑔(𝑋)

multiplying the function g by the probability density function and then taking the integration.

Again, in all of this we have to first ensure that the integrations exist but it is important to

note that in these computations we are not assuming any structural properties of the function

other than that it is Borel measurable. So, this is valid for any Borel measurable function. In𝑔

this case remember the random variable need not be absolutely continuous even𝑌 = 𝑔(𝑋)



then you get these expressions for which you can compute in terms of the probability𝐸(𝑌)

density function of or the law of . So this is the power of measure theory.𝑋 𝑋
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Then by choosing appropriate functions you can talk about the moments for these𝑔

absolutely continuous random variables . So, these are these moments of the random𝑋

variable about the point . Now what do you observe so far is that this above expressions𝑋 𝐶

for the expectations is matching with whatever you have seen in your basic probability

theory.

What we have done in an earlier week when you have been discussing about these discrete

random variables, we have got the usual expression for the expectation of discrete random

variables, now we are talking about absolutely continuous random variables again we have

got the familiar expression, but all of these can be derived from the general theory of measure

theoretic integration.

So, that is the power of measure theory that all of these special cases for discrete random

variables or absolutely continuous random variables are appearing as special cases but the

general theory is allowing you to do all of these computations in pretty general setup. You

can redo these exercises from your basic probability theory that for standard random

variables you can try to compute the moments.

This is left as an exercise, but then what you have done in your basic probability theory is

that you have also looked at all of these properties involving variances, covariances and other

things and you can now repeat these same arguments as soon as you have achieved the same

quantities. We have gone to these same moments but we have now been able to define them

in a more concrete fashion than what you have seen in your basic probability theory.



But now you can repeat all these usual analysis as you have seen in your basic probability

theory, so you are not repeating that part but you can already fit it together with these

measure theoretic arguments. For these normal random variables, we had mentioned this

parameters and squared so you can now identify it with the standard identification thatµ σ µ

becomes and the is the variance of , which is nothing but this second moment of  𝐸(𝑋) σ2 𝑋 𝑋

about this mean.
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Recall this discussion from note 26 of week 7, so there we had mentioned some things about

characteristic functions, in particular we had mentioned these characteristic functions for

general random variables and then in specifically we have mentioned that we can do these

computations for discrete random variables, but then for absolutely continuous random

variables from our earlier understanding once more, you can now go and obtain some nice

expressions for the characteristic functions.

If you have an absolutely continuous random variable look at this characteristic function𝑋

which is this . Here is a real number, so varies and it is giving you this function,𝐸 𝑒𝑖𝑢.𝑋 𝑢 𝑢

but now if you split this real part and the imaginary part you get these cosines and sines and



that you integrate against the so that is the usual definition for any random variableℙ ◦ 𝑋−1

.𝑋

If you know that your random variable is absolutely continuous you put in the density𝑋

function, and if you put in the density function and club these integrations together you get

back this familiar expression that you have to integrate multiplied by the density𝑒𝑖𝑢.𝑋

function. What we are using here is that you are changing the usual integration in terms of the

law of to the integration involving the Lebesgue measure and we have used the standard𝑋

notational terminology that we have introduced in this course.

We are not writing down this Lebesgue measure explicitly but it is understood that this is

interpreted as Lebesgue integration. Of course, if you can do the integration in the Riemann

sense then you can get the same value, maybe the Riemann integrations will be easier to

compute so then you do that and take it as the value for the Lebesgue integration. Here it is

the powerful use of this Radon-Nikodyne theorem that is allowing you to go from this law of

to the integration involving Lebesgue measure.𝑋

This is for the one-dimensional setup that when is a real valued random variable but now𝑋

what happens if you consider any valued random vector, here again you can go via theℝ𝑑

standard definitions that you may have seen in your basic probability theory. Now what you

have to do is to interpret all the things accordingly in the measure theoretic setup.
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Here for any what do you do, you look at𝑢 ∈ ℝ𝑑 ϕ
𝑋

(𝑢) = 𝑒𝑖𝑢.𝑋

the value is given as the , so is the usual dot product which is given as this i times𝑒𝑖.𝑢𝑋 𝑢. 𝑋

the sum of these component wise products. If 's are the components of , ’s are the𝑢
𝑗

𝑢 𝑋
𝑗

components of then you look at this componentwise products and add them up and this𝑋

complex number is just in front acting as a scalar, but now as per our understanding these𝑖

integration is nothing but the integration with respect to the underlying probability measure

and if you change variables you just go from this integration to an integration involving the

law.

This is integration with respect to the law of , again you can go back to the usual ideas that𝑋

you can replace this law for an absolutely continuous random variable and just bring in the

density function and write it as Lebesgue integration. That is the idea great so this here again

you can do this usual computation for characteristic functions in d dimensional setup.

For discrete random variables what do you do? You write this as this convex linearℙ ◦ 𝑋−1

combinations of Dirac masses and that is it you do the usual analysis and get this finite sum

or a countable sum accordingly.

We again recall an important comment as mentioned in note 26 of week 7 that this

characteristic function uniquely determines the law of this random vector , so in week 7 we𝑋

had mentioned this fact when we were talking about one dimensional case, but now we are

saying that this is just the generalization to higher dimensions and here again if you know the



characteristic function then the law of which is a random vector now is also uniquely𝑋

determined.
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So, let us move forward, you can recall from note 25 of week 3 that you can identify the

components of random vectors as random variables. Let us put in the notational terminology

as appropriately so suppose is a random vector with these components up to then𝑋 𝑋
1

𝑋
𝑑

what we have said at the time is that this is a random vector defined on this probability space

if and only if the components are also random variables on the same probability space.

Then what we have said is that if you are given this one dimensional random variables you

can put them together and obtain the random vector. This was the identification through this

coordinate wise projection maps and compositions of the random vector , so this was the𝑋

idea that was used to prove this connection. More generally what you can now do is that you

can choose n such coordinates call them 𝑗
1
,  𝑗

2
,  .  .  .  ., 𝑗

𝑛
.

We are putting it in the increasing order so these are all distinct. What do you do? You that

you choose these values within 1 to d, and then what you can do is that you𝑗
1
,  𝑗

2
,  .  .  .  ., 𝑗

𝑛

can look at this continuous map which is from to which maps any vector smallℝ𝑑 ℝ𝑛

to a n vector with these components. You ignore all the other components of the𝑥
1
,.  .  ., 𝑥

𝑑

original vector x and just write down the components corresponding to this .𝑗
1
,  𝑗

2
,  .  .  .  ., 𝑗

𝑛

Just write them down that will give you this map from to , but observe that this is aℝ𝑑 ℝ𝑛

nice continuous map and hence this must be Borel measurable. Therefore, as a composition

with the random vector X it will now give you this random vector which is now n



dimensional. So, from the d dimensional random vector by this appropriate projection maps

you have now obtained n valued random vector.
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If you continue with these notations that we have just discussed you can show is that this

random vector n dimensional random vector must be discrete provided the original random

vector was discrete. If you start with a discrete random vector, apply appropriate functions on

this, you will get a discrete random vector once more.

So, that is the idea that is being used here, but here is a question can you make a similar

statement for absolutely continuous random vectors? So, if you take to be absolutely𝑋

continuous random vectors can you make a similar statement, try to check this. Now we

continue with the same notation, so we are still interested in these random vectors and this

individual collection of components which again give you some lower dimensional random

vectors.



As mentioned above you can compute this law or distributions of these n dimensional random

vectors from the given random vector you can do that. So, this is just a appropriate change𝑋

of variable formula, you apply that function j and by this appropriate transformations you can

obtain this law for this n dimensional random vector, but these n dimensional distributions

that you obtain are usually referred to as the n dimensional marginal distributions of the

original d dimensional random vector .𝑋

Just to repeat we are saying that you choose these n many components out of the original d

many components and look at the law or distribution of these components random vectors so

this is the joint distribution of these n many random vectors. You can obtain this law or

distributions and for each such combination of n many components you get one such law or

distribution.

These collections of n dimensional distributions we shall refer to as the n dimensional

marginal distributions of . It is important to note that given this you can immediately𝑋 𝑋

obtain the marginal distributions; however, the converse is not true. If you are given all these

marginal distributions and you are asked to figure out the law of it is not uniquely𝑋

determined, so this converse is not true.
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What do you do? You should try to find an example which shows this that given these

marginal distributions you can possibly get two different random vectors with different laws

such that the marginal distributions remain the same, but the laws are different. That is the

idea, so please try to figure out such an example.

With this analysis we have managed to wrap up all the ideas that you have seen in your basic

probability theory, and have connected the computations of discrete random variables and

computations for absolutely continuous random variables in terms of the expectations and

moments to the usual formulas.

We have used this measure theoretic structures but we have obtained these formulas that you

have seen in your basic probability theory. We also have seen this connection with Riemann

integrations and Lebesgue integrations, so that also came up as a special case of this measure

theoretic integration with this we can understand the power of measure theory that can cover

all of these distinct situations under the same umbrella.

Therefore, you can apply all these general results that you may have obtained in your

measure theoretic setup and individually they will give you results in these special cases. So,

we are going to see much more analysis about these moments and variances and covariances

of these random variables and vectors in the next lecture. This is what we are going to discuss

in the next lecture, we stop here.


