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Welcome to this lecture, before proceeding forward let us quickly recall what we have done

in the previous lecture. In the previous lecture we had discussed certain structural properties

of measures; in particular we have talked about the Lebesgue decomposition theorem and the

Radon-Nikodyne theorem. These gave us some interesting structural properties involving

mutual singularity of measures and absolute continuity of measures.

As we shall see using such structural properties we can finally talk about many different

types of random variables and corresponding laws in particular we shall talk about absolutely

continuous random variables. We are consolidating what we have learned in this course and

using all those results putting together we are going to get some very interesting results. Let

us move forward and discuss the slides of this lecture.
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In the previous lecture we have looked at this decomposition of measures and in particular we

have also talked about this absolute continuity. Here we are interested in probability measures

on such Euclidean spaces with the Borel -field and what we are going to do is to compareσ

these probability measures against the well-known measure, which is the Lebesgue measure

.λ𝑑

In this lecture what do you do we start by considering this specific problem in dimension 1.

Towards the end we will talk about the situation in higher dimensions, so for the purpose of

the discussion we are going to fix this notation that will be a probability measure on r andµ

will denote the corresponding distribution function. We may also consider the𝑓
µ

corresponding random variable with this law .µ

Remember in week 4 we had discussed about constructions of random variables or random

vectors with a specified law. You construct a random variable and then you can talk about the

corresponding distribution function. For the purpose of this lecture, we are mostly going to

concentrate on the probability measure, but you can restrict all of this in terms of a random

variable.
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Let us move forward, so recall from note 17 of week 4 that we had discussed this

decomposition of a distribution function into a discrete distribution function and a continuous

distribution function. Here this is a convex linear combination given by some scalar α

between 0 and 1. We have also remarked that this decomposition is unique.

With this recall continuing with these notations of note 6, we can now appeal to the

correspondence between distribution functions on the real line and probability measures on

this measurable space. This was discussed earlier in week five see note 10 of week five. What

do we get is that we can get probability measure and which correspond to theµ
𝑑

µ
𝑐

distribution functions and .𝑓
𝑑

𝑓
𝑐

So, f subscript d is the discrete one, is the continuous one. Correspondingly you get these𝐹
𝑐

probability measures and , but what is happening here? Let us try to identify theµ
𝑑

µ
𝑐

distribution functions.
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Now, we started off with this probability measure if you lo at the size of the setµ (− ∞,  𝑥] 

for any in the real line you get the value of the distribution function at the point but the𝑥 𝑥

identification which we just recalled is exactly this, this convex linear combination in terms

of a discrete distribution function and a continuous distribution function.

But then we just said that we will consider the corresponding probability measures and those

are denoted by and . So, all you have to do is to look at the size that it associates toµ
𝑑

µ
𝑐

µ
𝑑

this set that will give you this distribution function and if you look at and(− ∞,  𝑥] µ
𝑐

consider this set this size will give you the continuous distribution function .(− ∞,  𝑥] 𝑓
𝑐

So, that is as per the structural properties that we have discussed, but now observe that andµ
𝑑

both are probability measures and you are considering a convex linear combination ofµ
𝑐

probability measures. Therefore, you get this probability measure which is this convex linear

combination of probability measures.

But you have just identified that this convex linear combination of probability measures has

this interesting property that the corresponding distribution function is exactly . Again, let𝑓
µ

me repeat this is a probability measure with the distribution functionα µ
𝑑
 +  (1 − α)µ

𝑐
𝑓

µ

that is as per these equalities that we have written down.

Therefore, by the uniqueness of the distribution functions that was left as an exercise earlier

in week five we have that these measures are actually the same, therefore,

That means that for any Borel set you have this equality.µ =  αµ
𝑑
 + (1 − α)µ

𝑐
 .



This is something very simple that we have just restated and appealed to the correspondences

between distribution functions and probability measures. Let us continue with these notations

now. We have so far got these notations probability measure corresponding distributionµ

function is then got splitted into discrete part and continuous part and correspondingly𝑓
µ

𝑓
µ

we got and .µ
𝑑

µ
𝑐
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Now, this probability measure that corresponds to this discrete distribution function mustµ
𝑑

be discrete, meaning that it specifies its total mass only on a finite set or a counter with

infinite set. Therefore, is the law of a discrete random variable, so it corresponds to aµ
𝑑

discrete distribution function and hence this is the law of a discrete random variable and as

per our discussion in the previous lecture this must be mutually singular with respect to the

Lebesgue measure.

This was discussed earlier in the previous lecture. Therefore, in this decomposition of intoµ

, you have identified that the first part is mutually singular with respect toαµ
𝑑
 +  (1 − α)µ

𝑐

the Lebesgue measure, but we are now going to focus on the remaining part this part.µ
𝑐



Then sometimes we will refer to the corresponding distribution function which is this , this𝑓
𝑐

is a continuous distribution function, sometimes we will focus on . We will use informationµ
𝑐

from both sides. Now we would like to understand the structure of or corresponding .µ
𝑐

𝑓
𝑐

This is the continuation of the discussion that was left out earlier in note 18 of week 5 so

there we had discussed about discrete random variables, discrete distribution functions and so

on and we had mentioned that we will come back to other types of distribution functions in

week 8, so this is where we are starting off. Now our focus is purely on that continuous part.

By the Lebesgue decomposition theorem that was discussed in the previous lecture we have

that that can be split as the addition of two measures let us write them as and .µ
𝑐

µ
~

𝑐

1
 µ

~
𝑐

2
 

These are two measures on the real line together with the Borel - field.σ

Moreover, as per the Lebesgue decomposition theorem you must have one of them say isµ
~

𝑐

1
 

mutually singular with respect to the Lebesgue measure and the other one is absolutelyµ
~

𝑐

2
 

continuous with respect to the Lebesgue measure. This is the structural properties that is

given by the Lebesgue decomposition theorem.

Now, look at the size of the set real line under this measures, so here you look at this sum of

these two quantities and by the definition you have that is the size of the real line under the

given probability measure , but that is 1. What do you get?µ
𝑐
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These two quantities this addition of these two quantities is 1 but these are some non-negative

real numbers and therefore, they take values between 0 and 1. That is the conclusion from

this relation above, great! If you continue with these notations, what you can now try to show

is that there exists two probability measures which we denote by and , which are definedµ
𝑐
1 µ

𝑐
2

on this real line and such that there is a scalar which takes values between 0 and 1 withβ

these structural properties that the earlier measures, the s can be written as a scalar multipleµ
~

of these probability measures which are and .µ
𝑐
1 µ

𝑐
2

Earlier these measures and ; these were not necessarily probability measures. Thereµ
~

𝑐

1
 µ

~
𝑐

2
 

what we observed is that the total mass associated to the real line takes values between 0 and

1 they could be probability measures but if one of them is a probability measure then the

other one is identically 0.

But now what we are saying is that you can figure out a scalar and you can find these twoβ

probability measures such that the original measures, ’s can be represented as a scalarµ
~

multiple of these probability measures. Of course, here could be 0 or 1 and in those cases,β

we can make some comments, but before that since this ’s, these measures have someµ
~

relation with respect to the Lebesgue measure you can make the similar comments with

respect to these new probability measures that you construct.

Here must be mutually singular with respect to and must be absolutely continuousµ
𝑐
1 λ µ

𝑐
2

with respect to . Let us come to these extreme cases when is 0 or 1. If is 0 then the firstλ β β

part should contribute 0, so that should be a 0 measure. This is a if and only if condition, and

if is 1 then the second part should not contribute that should be identically 0, again this isβ

an if and only if condition.

So, try to work this out this identification is left as an exercise, but then what we have

claimed in this exercise is that you have some identification of these measures s in terms ofµ
~

certain probability measures. So let us put it together with the structure that we already have.
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If you have these results from exercise 5 then put it together then that continuous part thatµ
𝑐

we obtained from the given probability measure that part can be written as a convex linearµ

combination of two measures, two probability measures. We would like to explore the

properties of these two probability measures. Now what do you do?

Directly go to the corresponding distribution function so you know that and these areµ
𝑐
1 µ

𝑐
2

probability measures and you are going to look at the corresponding distribution functions.

Again, if you look at any real number then the distribution function of that is that is𝑥 µ
𝑐

𝑓
𝑐

computed as the size of the set under the measure .(− ∞, 𝑥] µ
𝑐

But as just obtained, can be written as this convex linear combination, and that is exactlyµ
𝑐

telling you that the distribution function that was the continuous part of the distribution𝑓
𝑐

function that can be written as a convex linear combination of another two distribution𝑓
µ

functions. We are going to explore the structural properties of these new distribution

functions and the corresponding measures and .µ
𝑐
1 µ

𝑐
2

So, that is what we are going to concentrate on. Here we are focusing specifically on the

continuous part of the original distribution function ; we already understand the discrete𝑓
µ

part. So, continue with these notations but focus on this that corresponds to , remember𝐹
𝑐

2 µ
𝑐
2

as per the construction is absolutely continuous with respect to Lebesgue measure.µ
𝑐
2

So, let us use this information, here what is happening is that you can now try to compute the

jumps of these at any point . So, if you fix a point look at this jump that is nothing but𝐹
𝑐

2 𝑥 𝑥

the difference of the function values of and the left limit at that function value.𝑥

That is the difference and that is giving you the jump size, but let us write them in terms of

the corresponding measure which is and as per the standard computation you have to lookµ
𝑐
2

at the size of the singleton set under this measure and we claim that this value is 0,{𝑥} µ
𝑐
2

Why?
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Because is absolutely continuous with respect to the Lebesgue measure and this singletonµ
𝑐
2

set is an set of measure 0 under the Lebesgue measure, therefore, this must be a set of

measure 0 under the that measure. Therefore, what is the conclusion from here that there isµ
𝑐
2

no jump, so therefore the distribution function corresponding to that has no jumps this is aµ
𝑐
2

continuous distribution function.

Moreover, by the discussion in the previous lecture which is in note 5 if is the PDF of this𝑓

so is a probability measure which is absolutely continuous with respect to the Lebesgueµ
𝑐
2

measure and in this case, we have discussed about the existence of the probability density

function, which is nothing but the Radon-Nikodyne derivative of the probability measure µ
𝑐
2

with respect to the Lebesgue measure, so that is the PDF here.

Take that PDF we call it then for all in the real line look at the distribution functions𝑓 𝑥

value again what is this, this is nothing but the size of the set under the measure ,(− ∞, 𝑥] µ
𝑐
2

but as per the identification in the Radon-Nikodyne theorem that is this integration of the

function over the set .(− ∞, 𝑥]

This is the identification of the measure with respect to the Lebesgue measure, so that isµ
𝑐
2

the identification and we are using the probability density function in this expression, but

then use the standard notation of writing the Lebesgue integrations in terms of this standard

integration notation. That is again our standard notation that we are following, this is just for

the simplification of the notation. Therefore, what do we get, we get that this is an𝐹
𝑐

2

absolutely continuous distribution function.

So, now we will ask what is an absolutely continuous distribution function, this is what we

are going to discuss in the next definition. You already have a structural property of that it𝐹
𝑐

2

is given as an integration of the corresponding probability density function over the range

to . That is giving back the distribution function value at .− ∞ 𝑥 𝑥

Let us look at this definition, we state it in higher dimensions in general that you say that this

is absolutely continuous if the corresponding probability measure is absolutely continuousµ

with respect to the Lebesgue measure in this dimensional setup. If that happens then you𝑑



say that the corresponding distribution function is absolutely continuous. Absolute continuity

of measures is being transferred to the absolute continuity of the distribution function f. Now

in this terminology turns out to be absolutely continuous, great.𝐹
𝑐

2
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Corresponding to these absolutely continuous measures, absolutely continuous distribution

functions you can talk about corresponding class of random variables or random vectors. A

random variable or a vector is said to be absolutely continuous if the corresponding

distribution function is absolutely continuous.

This is again the same type of motivation that we followed in the discrete case, we look at the

corresponding distribution function and if the corresponding distribution function is

absolutely continuous you call the original random variable or a vector to be absolutely

continuous. In the discrete case we looked at the support and then identified that the

corresponding distribution function must be discret, but this is just a alternative description in

terms of the corresponding distribution functions properties.

Now, we have identified one part of the, continuous part of the original distribution function,

so let me repeat is the original distribution function, is the continuous part of that and𝑓
µ

𝐹
𝑐

we have identified as a absolutely continuous distribution function. This is the part that𝐹
𝑐

2

we have identified; let us focus on the other part.
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But then what we have so far understood is that this is absolutely continuous and in𝐹
𝑐

2

particular what we have already justified is that this is a continuous distribution function, but

then the decomposition, the original decomposition that we had started off with in that that𝑓
𝑐

continuous part was definitely taken to be continuous.

So, now has this decomposition in terms of and , so let us go back to the𝐹
𝑐

𝐹
𝑐

1 𝐹
𝑐

2

decomposition, here we say that that is continuous and is also continuous and that 𝐹
𝑐
 𝐹

𝑐
2

will immediately tell you that that must be continuous.𝐹
𝑐

1

There are now two cases that you would have to verify to make this statement if is 0 so thisβ

term will not contribute, you do not have to look at it, if is 0 you ignore this term and isβ  𝐹
𝑐

purely of the second type here absolutely continuous, but if is non-zero if there is aβ

non-trivial contribution coming up here then must be continuous, so that is the upshot of𝐹
𝑐

1

this discussion.

Let us go back to that, what we have is that that is a continuous distribution function.𝐹
𝑐

1

However, this corresponds to this probability measure which we denoted as and by theµ1
𝑐

structural property this must be mutually singular with respect to the Lebesgue measure. Then

we are going to call to be a singular continuous distribution function. So this notion we𝐹
𝑐

1

define in the next definition.
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What is a singular continuous distribution function this is the continuous distribution function

again defined on the d dimensional setup itself and this will be called to be singular if theµ

corresponding probability measure is mutually singular with respect to the Lebesgue

measure.

So, in this setup what we have observed is that the continuous part of the original distribution

function that was the continuous part of that is this has a convex linear combination𝐹
µ

𝐹
𝑐

𝐹
𝑐

or a decomposition into one part which is absolutely continuous and another part which is

singular continuous.

We have briefly discussed an example of a singular continuous distribution function in note 3

earlier; this was regarding the null sets which are possibly uncountable. In particular we

mentioned the example of the cantor set. Here the Lebesgue measure associates 0 mass and

you can still consider certain probability measures which live on that set, meaning on the

complement of the canter set the probability measure should associate 0 mass only on the

cantor set it assigns the full mass.

With such probability measures it is possible to get examples of corresponding distribution

functions which are continuous. This is the type of example that we are looking for, but in

this course we are not going into the details and we are not going to discuss this much further

but it is for our information that such examples are known and we should keep track of them

whenever we are doing any kind of a general discussion involving random variables or

measures, probability measures or corresponding distribution functions.
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Continue with these notations of this discussion so far what we have identified is that we

have this convex linear decomposition or convex linear combination of the original

distribution function that is in terms of these three things. So first we decomposed into𝑓
µ

𝐹
𝑑

and and turned out to be discrete, but then further was decomposed into a convex𝐹
𝑐

𝐹
𝑑

𝐹
𝑐

linear combination of a singular continuous distribution function and an absolutely

continuous distribution function.

So, that is the complete decomposition that we have at this moment, but correspondingly we

also have this decomposition for the probability measure that we had started off with. Now

here the same terms will correspond to the similar terms for the measures. What here you

have is that you have this which is the law of a discrete random variable and then you haveµ
𝑑

these two other measures one which is singular with respect to the Lebesgue measure, but its

distribution function is continuous and the second part is absolutely continuous with respect

to the Lebesgue measure.

Now, if you go through the construction, you can again try to show that this decomposition is

unique. So, we will go forward assuming this factor. We are interested in looking at examples

of absolutely continuous random variables. Let us look at them.
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To specify these random variables what we exactly need are examples of probability

measures. Let us call them as , so to specify these random variables x we want to specifyµ
𝑥

the corresponding law. As soon as you have a law you can construct such random variables.

We restrict our attention to probability measures on the real line. Now what do you want in

this case you want that these probability measures must be absolutely continuous with respect

to the Lebesgue measure.

For such measures as per the Radon-Nikodyne theorem what do you require? You require

probability density functions which we write it as , which has this property that these are𝑓
𝑋

non negative Borel measurable functions with the total integration over the real line to be

one.

Here we are following this standard notation that Lebesgue integration is essentially written

as Riemann integration or that same integration notation. This is again for notational

convenience. All you have to do is to specify appropriate property density functions and what

do you do you look back at standard examples that you may have covered in your basic

probability courses.

So, start with this uniform distribution on . You say that follows uniform on  (0, 1) 𝑋 (0, 1)

the open interval and for that what you need to do is to take the corresponding(0, 1)

probability density function to be the indicator of , and here all you have to verify that it(0, 1)

is a non-negative measurable function. That is already true and you also have to verify that

the total integration is 1 and that immediately follows because this is nothing but the length of

the interval under the Lebesgue measure and that is equal to 1.
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Look at a slightly more complicated example this is the exponential distribution with rate ,α

is taken to be some positive scalar. You say that follows exponential distribution if theα 𝑋 α

corresponding probability density function is given as this; this is multiplied by thisα𝑒−α𝑥

indicator function.

Then again you verify that this is a non-negative measurable function because it is the

product of one continuous function against this measurable function which is an indicator

function. So, this whole product makes sense and this becomes a measurable function.

Moreover, these values that are being specified on the right-hand side these values are

non-negative.

Therefore, that you are considering now it is a non-negative measurable function, all you𝑓
𝑋

have to now verify is that the total integration is 1 but then that exactly comes down to the

integration from 0 to because of this presence of this indicator function, but then this is a∞

simple example of a Riemann integration and you connect it with the Lebesgue integration

and that turns out to be 1. So, this is a very standard verification.

You now look at another standard example which is the normal distribution with parameters µ

which is in the real line and which is some positive quantity, so please do not get confusedσ

with this which we have been using so far. This is now a real number. So far we have beenµ

using for the general probability measure on the real line, but now we are restricting ourµ

attention to this specific examples of absolutely continuous random variables.

And here in this example we are taking to be a real scalar. Now if you specify the densityµ

function in this standard format you again try to verify that this is a non-negative measurable

function and the total integration is 1. Again, the total integration is one is usually covered in

your basic probability courses and you must have seen this. We are not going into the details

for brevity. This is assumed that this is giving you a genuine probability density function.
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But you may have seen other nice examples of absolutely continuous random variables in

your basic probability courses and all you have to do is to specify that corresponding

probability density function and specify the corresponding law and that will give you

examples of the random variables, if you look at with the specified law that is it.

You can specify the PDF that specifies the probability measure that specifies the random

variable; you can construct such random variables. Now this decomposition of probability

measures as we have discussed in this lecture you can extend this further in an analogous

manner to higher dimensions.

We have split a general probability measure into three parts, one part corresponds to discrete

random variables, one part corresponds to singular continuous distribution functions and you

can also refer to the corresponding random variables as singular continuous random variables

and the final part is the absolutely continuous random variables that is the part that we have

been concentrating on so far.

These three parts that constitutes a general probability measure, so that one also has this

corresponding decomposition in terms of the distribution functions. These results can be

extended in higher dimensions again similar discussions will go through and you can also get

standard examples of absolutely continuous random vectors. So, this is now in higher

dimensions so you will get random vectors and in particular you can talk about these

Gaussian random vectors and other things that you have already seen in your basic

probability courses.

Again, all you have to do is to specify the appropriate probability density function with

respect to the Lebesgue measure on this -dimensional setup, so that is all you have to do. If𝑑

you do that you will get all these nice examples, but again for brevity we are not going into

the details, but it should be assumed that these are now being covered the structural properties

has been discussed you have connected it with your existing knowledge that you have gained

from your basic probability theory.

That covers the discussion in this lecture and in the next lecture we are going to finally talk

about the expectations of absolutely continuous random variables. That is what we are going

to do in the next lecture, so we stop here.


