Measure Theoretic Probability 1
Professor Suprio Bhar
Department of Mathematics and Statistics
Indian Institute of Technology, Kanpur
Lecture 36
Decomposition of Measures

Welcome to this lecture. This is the first lecture of week 8. In this lecture, we are going to
study some important structural properties of measures. Using these results and consolidating
whatever we have learned throughout this course, later in the week we are going to make
some very interesting comments. In particular, as promised in a later lecture we are going to

finally talk about Absolutely Continuous Random Variables and their expectation.

In particular, we are going to see that as seen for the case of discrete random variables the
usual formulations that you have seen in your basic probability theory, agree with the major
theoretical structure, but all of these are now coming under the umbrella of measure-theoretic
structures and this is a very very general framework now. So let us move ahead and discuss

the structural properties of measures.
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In this lecture we are going to focus on certain results which are usually referred to as
decomposition of measures. And using these results later on we are going to talk about
absolutely continuous random variables and their expectations. Before proceeding let us first
fix the notation, for us we will work with measure p on some measurable space (Q, F), so

(Q, F, p) will construct a measure space.
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Let us first recall this result from week 6 that given any non-negative and measurable
function f, if you fix the measure p and fix that measurable function f but vary the sets over
which this integration is being conducted, you are going to get back a measure and we have
also remarked earlier that there are some special cases where if you are dealing with f to be
integrable, so that integration of |f| is nothing but integration of f which is finite, f is given

to be non negative.

So |f| = f, so integration of |f| equals integration of f itself and if f is integrable these

integrations are finite, but this is the total mass associated to the set {0 under the measure v .
Therefore, this v becomes a finite measure under this condition that f is integrable with

respect to the measure (.

So, here integrability refers to the original measure and moreover you can also make this
statement that for a general non-negative measurable function you expect to get a measure v
to be o-finite provided your given measure [ is o-finite. So you have these structures for such

new set function, great.
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But also consider this more general case that if you are dealing with a measurable function

now, you can take positive or negative values, but if you assume that this is new integrable,
. o . + - . +

so that is as per definition integrations of f and f both should be finite. Then separately f

and f are non negative measurable functions and therefore, you can talk about this new set

. ) ) + -
functions which we write as v and v .

What are these? You have fixed the function f, so f " and f these functions are also fixed.

They are non-negative and integrable. Now if you work with different sets coming from your
o . : + - .
domain side o-field you are going to construct these set functions v and v . So these are just

. . . . . + - . . :
integrating this non-negative functions f and f , which are also integrable so as mentioned

earlier these will be finite measures.



. . . + -
But recall earlier that we had mentioned that these functions f and f cannot be
simultaneously positive at a point, so the set of points w such that f takes positive values

and f takes positive values that set is an empty set. This was mentioned in note 17 of week

3.
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Therefore, you observe that v which is defined in terms of the function f " that will be 0 if
you are working with sets where f is strictly positive, so their f " must be 0. On the other
hand, if your set A is contained in the set fJr being positive, so there the function f is 0,

therefore, if you integrate there v will give you the value 0.

So, that is what it happens that you get these two distinct sets, disjoint sets where you get
these measures are providing masses separately, correct? So, with this observation, we now
make this definition of mutually singular measures. So, what is the definition? That you take

two measures |, and u , on the same measurable space.

You say that p L is singular with respect to W, or p, is singular with respect to p L OT and u 5
are mutually singular. So, all these three terminologies are the same, so you can refer to W
being singular with respect to I, or you can say |, is singular with respect to W, or just to be

very clear you can just say W and p , are mutually singular.

So, all of these mean the same thing and that is defined as follows that you can find some set

in your o-field such that W, associates 0 mass to that set, but i, associates 0 mass to its

complement so it is as if you are dividing the whole domain () into two parts A and A°. On

the first part i assigns 0 mass, so i, is essentially focusing on A part.



W, assigns 0 mass to A complement, so essentially W, is concentrating its attention on the first

part A. So, therefore, if you get any subsets of 4, there p ) will associate 0 mass. If you get a

set which is a subset of A° there W, will associate 0 mass, that is the idea. So, this is what is

known as Mutual singularity and in this case so this is the perpendicular notation symbol that

we are using to denote this situation.
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So, what are examples? Whatever we have mentioned earlier in note 2, we had mentioned

+ - . : : .
two measures v and v , so let us just go back. So, what we said was that if you look at this

general measurable function f which is given to be integrable and look at its positive part and

. + -
negative part. There you focusonv andv .

: . + . - .
Now, observe this we had mentioned that v assigns 0 mass to such sets and v assign 0 Must
to subsets and we can always ignore the set where the function the given function f takes 0
values. That anyway you can ignore because that is where there will be no contribution of the

integration of f.

f takes O value there anyway if you wish you can include that set to any of these sets where
+ . . - . . .

f 1is positive or f 1is positive. Either way you get these sets two distinct sets where on one
R = : : :

side v assign 0 mass on another side v assign 0 mass. Therefore, with this observation and

this definition putting them together you will write this that v and v are mutually singular.

Let us see a more explicit example of mutually singular measures.
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Consider these two measures on the real line, the first one being the Dirac measure supported
at the point 0, the other one is the Lebesgue measure. Consider this set A which is the

non-zero part of the real line, the complement of the singleton set 0. Here what do we get?

We get delta 0 assigns 0 mass to this set but on AC, A assign 0 mass because A, the Lebesgue

measure assigns 0 mass to all singleton sets.

Therefore, as per definition we have split the whole real line into two parts A and A°. On one
part Dirac 0 that assigns 0 mass, on another part the other measure Lebesgue measure assigns
0 mass. As for definition the Dirac measure supported at 0 and the Lebesgue measure are

mutually singular.

But you can expect now that you can extend this example to involve any arbitrary Dirac
measure and say that for any such Dirac measure it will be mutually singular with the
Lebesgue measure, but then more generally remember that a discrete random variable has the
law which is a convex linear combination of Dirac measures. So what you can now try to
claim that if p is such a law then you can try to show that p is mutually singular with respect

to the Labesgne measure.

So that is the idea that you can extend the class of examples for mutual singularity with
respect to the Lebesgue measure. So originally you had Dirac measures but we are now
observing that convex linear combinations we will also do, but convex linear combinations of
Dirac measures are nothing but laws for discrete random variables. You can try to work out

this exercise, great!
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Now in this above examples what we have actually done is that for these explicit examples
we have used this Null set with respect to the Lebesgue measure. Recall from earlier
discussion in week 5 in note 22 that there is an example of an uncountable set A with 0 mass,
and we had called such an example to be a Cantor set. This is a very specific example of a set

which is uncountable and has Lebesgue measure 0, so this is a very specific set.

Now if you have any probability measure p such that it assigns full mass to this set then what
will happen, is that it will assign 0 mass to the complement if p is a probability measure and
if it assigns full mass to the set A then on the complement of it you will assign 0 mass, and
therefore, you now get this exact observation that for such a probability measure you will get

that p is mutually singular with the Lebesgue measure.

This is a somewhat of an extension of the type of mutual singularity that you have already
observed. In particular there are examples of probability measures which assigns full mass to

the Cantor set but its distribution function F . 1S continuous.
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So, we are not going into the details if you are interested, please refer to pages 13 and 14 and
page 31 from this book by Kai Lai Chung, the book title is “A Course in Probability Theory”
this is the third edition of this book published by Academic Press. We are not going to go into

the details it involves many technical constructions.

There is a opposite type of a structure involving measures this is something called Absolute
Continuity of measures, so again start with two measures and we are going to compare them
in some aspect so these two measures are defined on this measurable space (£, F). Say that

W, is absolutely continuous with respect to W which we denote by this symbol W, absolutely

continuous with respect to p_ if p_ Null sets are also u_ Null sets.
p 1 1 2



So, what do I mean that if you get any Null set A for i, and try to check its size under W, that
must also be 0 so any kind of an impossible event with respect to the first measure p , must

be impossible under the second measure. By impossible event we mean Null sets, sets with or

events with probability 0. Here we are comparing two measures now great.
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Let us try to understand what this concept actually implies, to do this there are these very

simple exercises. Continue with this @ and v as in note 1 earlier, what are this pu and v

know so let us go back to this note one, so in note one we looked at this proposition from
week six which said that for non-negative measurable functions if you integrate them against
these various sets you get a measure. That was this construction so remember this choice of

p and v. Here what we now claim is that there is some such a relation between this vmeasure
and the original measure Mu.
That is the concept that is being discussed here. We are claiming in this exercise part one of it

that the v measure is absolutely continuous with respect to the original measure Mu, check

this. Again, in note 2 what did? We do we took a general measurable function but p
integrable. In this case what happened was that we split it into positive parts and negative

parts and correspondingly defined the set functions v'and v, and these also turned out to be

finite measures provided the original function f was p integrable.

. . + -
In this case again you can try to show that both these measures v and v both are absolutely
continuous with respect to the original measure p. These are very explicit examples of
absolute continuity of measures, and now you shall ask how does absolute continuity and

mutual singularity relate?
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To do this there is these very simple exercises once more please try to work at it. Choose

three measures TP and i, defined on the same measurable space. If it happens that I, is
absolutely continuous with respect to W, and W is mutually singular to i, then you can claim

that p . and p , are mutually singular. That is the first statement.

The second statement says that if p 5 is absolute continuous with respect to p ) and i, is
absolutely continuous with respect to p 5 then if you combine them together you can claim
that i, is also absolutely continuous with respect to W, Again, here you are just comparing
the Null sets, so please check this exercise. And the final statement says forget about W, look
at | and p . if it so happens that p 5 is absolutely continuous as well as mutually singular
with respect to W, then what you can try to show is that W, that measure assigns 0 mass to all

the sets, so this is the 0 measure.

This you can try to check, so this is what is connecting the mutual singularity and absolute
continuity of measure. These are certain important structural properties, and in the next
theorem we are going to use the structural properties to discuss a very important
decomposition result for measures. We are not going to state the proof we are just going to

state the result.
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Recall from earlier that in week 2 we had mentioned that we can add measures and get
examples of measures. In particular we had used such structures to compute expectations of
discrete random variables by saying that the law of a discrete random variable is basically a
convex linear combination of certain Dirac masses. This is a more general structure than that
here we are adding up measures, so this theorem is known as the Lebesgue decomposition

theorem.

Take two measures i and v suppose they are o-finite, both of them are defined on the same
measurable space and they are o-finite, Now provided these two measures what you can do is

that you can find out measures v L and v 5 such that v the second measure has a decomposition
like v .+ V,, s0 you can add them up you can split it up like this and measure v, 1s mutually

singular with respect to p  and measure v, is absolutely continuous with respect to Mu.

There are these two parts; one part is absolutely continuous another part is mutually singular

with respect to the first measure Mu. Moreover, this decomposition is also unique in the

following sense if you can split the measure v into two parts, let us say v L, TV, such that v )

is Mutually singular with respect to p  and v, is absolutely continuous with respect to p

~ ~

then you can show that v, is v, and v, is v,

This decomposition of choices of v, and v, are fixed, given these two measures L and v you

can split the second measure according to the information coming from the first measure.



That is the Lebesgue decomposition theorem, but then how do you apply it? Our interests are

involving probability measures.

Let us work in d-dimension, this results also applies to the one dimensional case by choosing

dimension d equal to 1. What do you do? Choose a probability measure v . By this Lebesgue
decomposition theorem you can split this measure v in two parts, v, and v, such that the first

one, the first part is mutually singular with respect to the Lebesgue measure in d dimension

and the second part is absolutely continuous with respect to the Lebesgue equation.

So, remember probability measures are finite measures and in particular they are o-finite.
Lebesgue measure we have already seen to be o-finite. So, this is where we are applying the
Lebesgue decomposition theorem and splitting up a given probability measure in terms of the
information coming from the Lebesgue measure. We know a lot of information about the
structural properties of the Lebesgue measure and would like to use that information in

analyzing the probability measure v , so that is the idea here.
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You can now ask, can you say something more about this absolute continuity? So, for mutual
singularity you do not expect to say anything more given the information about the Lebesgue

measure. So if you go back to this, v, is mutually singular, Lebesgue measure will associate 0
mass to that set where v L is associating possibly non-negative values possibly non-trivial

values.

There A the Lebesgue measure is not going to give you any information because Lebesgue
measure is associating 0 mass there, so you cannot say anything about this but can you say
anything about in the absolute continuous part of it? That is this theorem, the next theorem,
this is going to characterize all measures which are absolutely continuous with respect to a

given o- finite measure.

Now, we have mentioned earlier about these examples in exercise 2. So, in exercise 2 what
we essentially said was that if you are given a measure p and if you integrate functions
non-negative measurable functions you are going to get certain measures. These are some
examples at hand now we would like to say are there any other examples of absolute

continuous measures with respect to u? So that is what we are trying to understand.

And the next result says that these are all the things, so this is known as the Radon--Nikodyn
Theorem, and again we are just going to state it we do not go into the proof. This is again
stated for the o-finite measures case; again, take two measures on the same measurable space

such that the second measure is absolutely continuous with respect to the first one.

(Refer Slide Time: 22:51)
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Now the statement says that there exists a non-negative measure of function f such that the
second measure can be written as an integration involving the functions f with respect to the

first measure. You can figure out such a function f which is non-negative and measurable.

Therefore, we are saying that given this measure B which is the first measure if you ask
what are all the absolute continuous measures v are, you will immediately say that those
which are given by such a expression or such a structure as an integration over some

appropriate non negative measurable function f.

All you have to do is to vary this set A and you are going to get back the size of the sets under
the new measure. Moreover, you can say something more about this representation that this
function f is unique in this following sense. What is this idea is that if you can write it as a
integration of g d u over a set A. So if you can write it that way for another such function
which is also non negative and measurable then it can be shown that f = g almost

everywhere with respect to the first measure .

Outside a p Null set possibly these two functions may not agree but overall, almost
everywhere these two functions match. That is the uniqueness of this function f. Here given
these two measures if the second measure is absolutely continuous with respect to the first

one you can write down such a structural property. That is the statement of this theorem.

With this theorem at hand, we now make this definition, call this function this almost
everywhere unique function that you have obtained as the Radon-Nikodyn derivative or

Radon-Nikodyn density of the second measure v with respect to the first measure p and we

are going to denote this by Z—L’l.

This is the idea that given this second measure v which is absolutely continuous with respect
to the first measure p you can get this function f which is p almost everywhere unique and
you are going to call it the Radon-Nikodyn derivative or Radon-Nikodyn density of v with

respect to 1 and you are going to write in symbols this.

(Refer Slide Time: 25:34)
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Let us try to understand what this Radon-Nikodyn density is all about. So choose three o-

finite measures p, v and y on the same measurable space and suppose you start with that
setup of the Radon-Nikodyn theorem that the second measure v is absolutely continuous

with respect to the first measure p.

Then what you can do is that for Borel measurable functions call them h, if you want to

integrate it with respect to the second measure v all you have to do is to multiply the

function h by the Radon-Nikodyn density and integrate that multiplied function that function
which is now measurable with respect to the first measure 1, and this equality will hold if the

integrals exist.

That is the important statement that is coming out. If you want to integrate a Borel
measurable function with respect to the second measure all you have to do is to go back to the
first measure multiply the function h by the appropriate density function. If you do that all

you have to do is to compute it in terms of the original measure p.

How do you show this? Here is a hint for this exercise that you try to verify this equality
when h is some indicator function and then go to simple functions and use the standard
procedure of proving such equalities between integrations, but first try to do it for an
indicator function. Now, we have taken this third measure gamma which we have not used so

far so what is the use of this?

If it so happens that gamma is absolutely continuous with respect to the second measure v

then gamma is also absolutely continuous with respect to p. In this case by the

Radon-Nikodyn theorem you will get density functions of gamma with respect to p.

And we are saying that it can be split as a product of the derivative of gamma with respect to

v and multiplied by derivative of v with respect to the measure p. That is the statements

here again please try to check this. This will follow from the uniqueness of the density

function.

We had started off with assuming that v is absolutely continuous with respect to , but if it

also happens the other way that two measures are absolutely continuous with respect to each

other, if it so happens then you can try to show that there is a relation between the density



functions of p  with respect to v and v with respect to p , so that they are exactly

reciprocal of each other. Please try to check this.
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As soon as we have this Radon-Nikodyn theorem and Radon-Nikodyn densities, we are now
going to apply it to probability measures on ]Rd. Again, starts with the probability measure
call it v on ]Rd together with the Borel o-field, so that is the measurable space. Suppose it

happens that this probability measure is absolutely continuous with respect to the Lebesgue
measure on these d dimensions. Again, what we are trying to do is to use the information that

is already captured in the Lebesgue measure.

So, if it can happen, if you can do that then you get this Radon-Nikodyn derivative or density
function for this probability measure with respect to the Lebesgue measure and this
Radon-Nikodyn derivative or density function that you get is called the probability density

function or PDF in short of the property measure v.

If v is absolutely continuous with respect to the Lebesgue measure you get the derivative

Radon-Nikodyn derivative or Radon-Nikodyn density function and that you are going to refer
to as the probability density function. This gives you existence of the probability density
functions for probability measures absolutely continuous with respect to the Lebesgue

measures.

In this setup if it so happens that you are going to get some function f as the PDF of this

probability measure v then observe that this function f is non-negative and measurable, so

that is as part of the statement in the Radon-Nikodyn theorem and moreover you can talk
about probability of events or sets of Borel sets A as an integration of this function that is this
density function with respect to the Lebesgue measure that is as per the structural property of

the Radon-Nikodyn theorem.

But if you choose the set to be the whole of R” what happens? You are going to get back the
v of ]R{d, but v is a probability measure, therefore, the total value is 1. Therefore, all you are

saying that this non-negative measurable function f integrates to 1. So, this is an integrable
function with respect to the Lebesgue measure. So, this is already non negative and you have
shown its integration is finite, therefore this turns out to be integrable with respect to the

Lebesgue measure in this d dimensional case.
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But continue with these notations a bit more you are also going to make this identification
with the distribution function. What do you do choose a point x with components x 1 up to x
d and look at this set A which is a default product of such kind of intervals that on the ith

component you are going to take the interval (— oo, xi]. Take a look at such an interval so

then what happens you are going to get the distribution function by looking at size of this

product of intervals.

The size of this product of intervals under the measured v is given by integration of the
function over that set. That is as per the structural property given by the Radon-Nikodyn
theorem and here you are doing the integration with respect to the Lebesgue measure in this d

dimensional case but then remember in the discussion involving the Lebesgue measures and



Lebesgue integrations in connection with Riemann integrations we have seen that in one

dimensional case Riemann integrations if it exists it will match with the Lebesgue integration.

In higher dimensions what will happen is that you are going to get these iterated integrals as
Riemann integration. If you can make sense of these integrations as riemann integrations by
the similar logic by similar arguments you can also get back the same integration in terms of

the Lebesgue measure, so that is this equality that is being used here.

But more generally since the Lebesgue integration is extension of d dimensional Riemann
integrations or d-dimensional such iterated integrals then all you are going to say is that using
the same notational structure that was introduced in one dimensions that you are going to use
the same notations for the integrations with respect to the Lebesgue measures also just for the

convenience of notations.

So, you are going to write this equality. Even if the original function f is not Riemann
integrable you just say that Lebesgue integration is nothing but some kind of an extension of
Riemann integration so you may be able to integrate more functions so you are going to use
the same notations for notational convenience. That is why we are going to write down these
iterated integrals as the expression for the distribution function of the probability measure Nu.
This is now your familiar expression of the distribution functions and its connection to

probability density functions.

(Refer Slide Time: 33:48)

s meofon. Son ol dimengiens,
(S"('\ F\;"\C, 'Y\th \QQ&\M\Q’ We O\\SQ\ASS
fordem  Noahiee o/ Necons CDMQSFM\W

Ao dne Tyber of ﬁsho“oo\\:\h‘% m&gw\u

Alecnssad W s \eekue.

Now, in the next lecture we are going to talk about random variables and random vectors

corresponding to these various types of probability measures. Remember earlier what we had



discussed? We had discussed discrete random variables coming from discrete distribution
functions, which connected to probability measures which were convex combinations of
Dirac masses, but we have now said that convex combinations of Dirac masses are mutually

singular with respect to the Lebesgue measure.

But we have also discussed this type of probability measures which are absolutely continuous
with respect to the Lebesgue measure. Corresponding to every probability measure you can
construct random variables, what we are going to see are these different types of random
variables corresponding to these probability measures, which are absolutely continuous with

respect to the Lebesgue measure.

We are also going to see random variables which are of different structures which are not
falling in the structure of discrete random variables or the absolutely continuous case, it is
going to follow a different kind of structure that will be connected to the type of examples
that we mentioned under Cantor set that we have such probability measures where you get

the distribution function is continuous.

It does not have any jumps so you cannot categorize as discrete random variables. There will
be these three types of random variables corresponding to these three types of probability
measures, which are classified according to its relation with respect to the Lebesgue measure.

We are going to continue this discussion in the next lecture.



