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Decomposition of Measures

Welcome to this lecture. This is the first lecture of week 8. In this lecture, we are going to

study some important structural properties of measures. Using these results and consolidating

whatever we have learned throughout this course, later in the week we are going to make

some very interesting comments. In particular, as promised in a later lecture we are going to

finally talk about Absolutely Continuous Random Variables and their expectation.

In particular, we are going to see that as seen for the case of discrete random variables the

usual formulations that you have seen in your basic probability theory, agree with the major

theoretical structure, but all of these are now coming under the umbrella of measure-theoretic

structures and this is a very very general framework now. So let us move ahead and discuss

the structural properties of measures.
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In this lecture we are going to focus on certain results which are usually referred to as

decomposition of measures. And using these results later on we are going to talk about

absolutely continuous random variables and their expectations. Before proceeding let us first

fix the notation, for us we will work with measure on some measurable space , soµ (Ω,  ℱ)

will construct a measure space.(Ω,  ℱ, µ)
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Let us first recall this result from week 6 that given any non-negative and measurable

function , if you fix the measure and fix that measurable function but vary the sets over𝑓 µ 𝑓

which this integration is being conducted, you are going to get back a measure and we have

also remarked earlier that there are some special cases where if you are dealing with to be𝑓

integrable, so that integration of is nothing but integration of which is finite, is given|𝑓| 𝑓 𝑓

to be non negative.

So , so integration of equals integration of itself and if is integrable these|𝑓| = 𝑓 |𝑓| 𝑓 𝑓

integrations are finite, but this is the total mass associated to the set under the measure .Ω ν

Therefore, this becomes a finite measure under this condition that is integrable withν 𝑓

respect to the measure .µ

So, here integrability refers to the original measure and moreover you can also make this

statement that for a general non-negative measurable function you expect to get a measure ν

to be -finite provided your given measure is -finite. So you have these structures for suchσ µ σ

new set function, great.
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But also consider this more general case that if you are dealing with a measurable function

now, you can take positive or negative values, but if you assume that this is new integrable,

so that is as per definition integrations of and both should be finite. Then separately𝑓+ 𝑓− 𝑓+

and are non negative measurable functions and therefore, you can talk about this new set𝑓−

functions which we write as and .ν+ ν−

What are these? You have fixed the function f, so and these functions are also fixed.𝑓+ 𝑓−

They are non-negative and integrable. Now if you work with different sets coming from your

domain side -field you are going to construct these set functions and . So these are justσ ν+ ν−

integrating this non-negative functions and , which are also integrable so as mentioned𝑓+ 𝑓−

earlier these will be finite measures.



But recall earlier that we had mentioned that these functions and cannot be𝑓+ 𝑓−

simultaneously positive at a point, so the set of points such that takes positive valuesω 𝑓+

and takes positive values that set is an empty set. This was mentioned in note 17 of week𝑓−

3.
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Therefore, you observe that which is defined in terms of the function that will be 0 ifν+ 𝑓+

you are working with sets where is strictly positive, so their must be 0. On the other𝑓− 𝑓+

hand, if your set is contained in the set being positive, so there the function is 0,𝐴 𝑓+ 𝑓− 

therefore, if you integrate there will give you the value 0.ν−

So, that is what it happens that you get these two distinct sets, disjoint sets where you get

these measures are providing masses separately, correct? So, with this observation, we now

make this definition of mutually singular measures. So, what is the definition? That you take

two measures and on the same measurable space.µ
1

µ
2

You say that is singular with respect to or is singular with respect to or andµ
1

µ
2

µ
2

µ
1

µ
1

µ
2

are mutually singular. So, all these three terminologies are the same, so you can refer to µ
1

being singular with respect to or you can say is singular with respect to or just to beµ
2

µ
2

µ
1

very clear you can just say and are mutually singular.µ
1

µ
2

So, all of these mean the same thing and that is defined as follows that you can find some set

in your -field such that associates 0 mass to that set, but associates 0 mass to itsσ µ
1

µ
2

complement so it is as if you are dividing the whole domain into two parts and . OnΩ 𝐴 𝐴𝑐

the first part assigns 0 mass, so is essentially focusing on part.µ
1

µ
1

𝐴𝑐



assigns 0 mass to A complement, so essentially is concentrating its attention on the firstµ
2

µ
2

part A. So, therefore, if you get any subsets of , there will associate 0 mass. If you get a𝐴 µ
1

set which is a subset of there will associate 0 mass, that is the idea. So, this is what is𝐴𝑐 µ
2

known as Mutual singularity and in this case so this is the perpendicular notation symbol that

we are using to denote this situation.
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So, what are examples? Whatever we have mentioned earlier in note 2, we had mentioned

two measures and , so let us just go back. So, what we said was that if you look at thisν+ ν−

general measurable function which is given to be integrable and look at its positive part and𝑓

negative part. There you focus on and .ν+ ν−

Now, observe this we had mentioned that assigns 0 mass to such sets and assign 0 Mustν+ ν−

to subsets and we can always ignore the set where the function the given function takes 0𝑓

values. That anyway you can ignore because that is where there will be no contribution of the

integration of f.

f takes 0 value there anyway if you wish you can include that set to any of these sets where

is positive or is positive. Either way you get these sets two distinct sets where on one𝑓+ 𝑓−

side assign 0 mass on another side assign 0 mass. Therefore, with this observation andν+ ν−

this definition putting them together you will write this that and are mutually singular.ν+ ν−

Let us see a more explicit example of mutually singular measures.
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Consider these two measures on the real line, the first one being the Dirac measure supported

at the point 0, the other one is the Lebesgue measure. Consider this set which is the𝐴

non-zero part of the real line, the complement of the singleton set 0. Here what do we get?

We get delta 0 assigns 0 mass to this set but on , assign 0 mass because , the Lebesgue𝐴𝑐 λ λ

measure assigns 0 mass to all singleton sets.

Therefore, as per definition we have split the whole real line into two parts and . On one𝐴 𝐴𝑐

part Dirac 0 that assigns 0 mass, on another part the other measure Lebesgue measure assigns

0 mass. As for definition the Dirac measure supported at 0 and the Lebesgue measure are

mutually singular.

But you can expect now that you can extend this example to involve any arbitrary Dirac

measure and say that for any such Dirac measure it will be mutually singular with the

Lebesgue measure, but then more generally remember that a discrete random variable has the

law which is a convex linear combination of Dirac measures. So what you can now try to

claim that if is such a law then you can try to show that is mutually singular with respectµ µ

to the Labesgne measure.

So that is the idea that you can extend the class of examples for mutual singularity with

respect to the Lebesgue measure. So originally you had Dirac measures but we are now

observing that convex linear combinations we will also do, but convex linear combinations of

Dirac measures are nothing but laws for discrete random variables. You can try to work out

this exercise, great!
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Now in this above examples what we have actually done is that for these explicit examples

we have used this Null set with respect to the Lebesgue measure. Recall from earlier

discussion in week 5 in note 22 that there is an example of an uncountable set with 0 mass,𝐴

and we had called such an example to be a Cantor set. This is a very specific example of a set

which is uncountable and has Lebesgue measure 0, so this is a very specific set.

Now if you have any probability measure such that it assigns full mass to this set then whatµ

will happen, is that it will assign 0 mass to the complement if is a probability measure andµ

if it assigns full mass to the set then on the complement of it you will assign 0 mass, and𝐴

therefore, you now get this exact observation that for such a probability measure you will get

that is mutually singular with the Lebesgue measure.µ

This is a somewhat of an extension of the type of mutual singularity that you have already

observed. In particular there are examples of probability measures which assigns full mass to

the Cantor set but its distribution function is continuous.𝐹
µ

(Refer Slide Time: 12:22)



So, we are not going into the details if you are interested, please refer to pages 13 and 14 and

page 31 from this book by Kai Lai Chung, the book title is “A Course in Probability Theory”

this is the third edition of this book published by Academic Press. We are not going to go into

the details it involves many technical constructions.

There is a opposite type of a structure involving measures this is something called Absolute

Continuity of measures, so again start with two measures and we are going to compare them

in some aspect so these two measures are defined on this measurable space . Say that(Ω,  ℱ)

is absolutely continuous with respect to , which we denote by this symbol absolutelyµ
2

µ
1

µ
2

continuous with respect to if Null sets are also Null sets.µ
1

µ
1

µ
2



So, what do I mean that if you get any Null set for and try to check its size under that𝐴 µ
1

µ
2

must also be 0 so any kind of an impossible event with respect to the first measure mustµ
1

be impossible under the second measure. By impossible event we mean Null sets, sets with or

events with probability 0. Here we are comparing two measures now great.
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Let us try to understand what this concept actually implies, to do this there are these very

simple exercises. Continue with this and as in note 1 earlier, what are this andµ ν µ ν

know so let us go back to this note one, so in note one we looked at this proposition from

week six which said that for non-negative measurable functions if you integrate them against

these various sets you get a measure. That was this construction so remember this choice of

and . Here what we now claim is that there is some such a relation between this measureµ ν ν

and the original measure Mu.

That is the concept that is being discussed here. We are claiming in this exercise part one of it

that the measure is absolutely continuous with respect to the original measure Mu, checkν

this. Again, in note 2 what did? We do we took a general measurable function but µ

integrable. In this case what happened was that we split it into positive parts and negative

parts and correspondingly defined the set functions and , and these also turned out to beν+ ν−

finite measures provided the original function was integrable.𝑓 µ

In this case again you can try to show that both these measures and both are absolutelyν+ ν−

continuous with respect to the original measure . These are very explicit examples ofµ

absolute continuity of measures, and now you shall ask how does absolute continuity and

mutual singularity relate?
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To do this there is these very simple exercises once more please try to work at it. Choose

three measures , , and defined on the same measurable space. If it happens that isµ
1

µ
2

µ
3

µ
2

absolutely continuous with respect to and is mutually singular to then you can claimµ
1

µ
1

µ
3

that and are mutually singular. That is the first statement.µ
2

µ
3

The second statement says that if is absolute continuous with respect to and isµ
2

µ
1

µ
3

absolutely continuous with respect to then if you combine them together you can claimµ
2

that is also absolutely continuous with respect to . Again, here you are just comparingµ
3

µ
1

the Null sets, so please check this exercise. And the final statement says forget about lookµ
3

at and if it so happens that is absolutely continuous as well as mutually singularµ
1

µ
2

µ
2

with respect to then what you can try to show is that that measure assigns 0 mass to allµ
1

µ
2

the sets, so this is the 0 measure.

This you can try to check, so this is what is connecting the mutual singularity and absolute

continuity of measure. These are certain important structural properties, and in the next

theorem we are going to use the structural properties to discuss a very important

decomposition result for measures. We are not going to state the proof we are just going to

state the result.
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Recall from earlier that in week 2 we had mentioned that we can add measures and get

examples of measures. In particular we had used such structures to compute expectations of

discrete random variables by saying that the law of a discrete random variable is basically a

convex linear combination of certain Dirac masses. This is a more general structure than that

here we are adding up measures, so this theorem is known as the Lebesgue decomposition

theorem.

Take two measures and suppose they are -finite, both of them are defined on the sameµ ν σ

measurable space and they are -finite, Now provided these two measures what you can do isσ

that you can find out measures and such that the second measure has a decompositionν
1

ν
2

ν

like , so you can add them up you can split it up like this and measure is mutuallyν
1
+ ν

2
ν

1

singular with respect to and measure is absolutely continuous with respect to Mu.µ ν
2

There are these two parts; one part is absolutely continuous another part is mutually singular

with respect to the first measure Mu. Moreover, this decomposition is also unique in the

following sense if you can split the measure into two parts, let us say , such thatν ν
~

1
 + ν

~
2

ν
~

1
 

is Mutually singular with respect to and is absolutely continuous with respect toµ ν
~

2
µ

then you can show that is and is .ν
1

ν
~

1
 ν

2
ν
~

2

This decomposition of choices of and are fixed, given these two measures and youν
1

ν
2

µ ν

can split the second measure according to the information coming from the first measure.



That is the Lebesgue decomposition theorem, but then how do you apply it? Our interests are

involving probability measures.

Let us work in -dimension, this results also applies to the one dimensional case by choosing𝑑

dimension d equal to 1. What do you do? Choose a probability measure . By this Lebesgueν

decomposition theorem you can split this measure in two parts, and such that the firstν ν
1

ν
2

one, the first part is mutually singular with respect to the Lebesgue measure in d dimension

and the second part is absolutely continuous with respect to the Lebesgue equation.

So, remember probability measures are finite measures and in particular they are -finite.σ

Lebesgue measure we have already seen to be -finite. So, this is where we are applying theσ

Lebesgue decomposition theorem and splitting up a given probability measure in terms of the

information coming from the Lebesgue measure. We know a lot of information about the

structural properties of the Lebesgue measure and would like to use that information in

analyzing the probability measure , so that is the idea here. ν
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You can now ask, can you say something more about this absolute continuity? So, for mutual

singularity you do not expect to say anything more given the information about the Lebesgue

measure. So if you go back to this, is mutually singular, Lebesgue measure will associate 0ν
1

mass to that set where is associating possibly non-negative values possibly non-trivialν
1

values.

There the Lebesgue measure is not going to give you any information because Lebesgueλ

measure is associating 0 mass there, so you cannot say anything about this but can you say

anything about in the absolute continuous part of it? That is this theorem, the next theorem,

this is going to characterize all measures which are absolutely continuous with respect to a

given - finite measure.σ

Now, we have mentioned earlier about these examples in exercise 2. So, in exercise 2 what

we essentially said was that if you are given a measure and if you integrate functionsµ

non-negative measurable functions you are going to get certain measures. These are some

examples at hand now we would like to say are there any other examples of absolute

continuous measures with respect to ? So that is what we are trying to understand.µ

And the next result says that these are all the things, so this is known as the Radon--Nikodyn

Theorem, and again we are just going to state it we do not go into the proof. This is again

stated for the -finite measures case; again, take two measures on the same measurable spaceσ

such that the second measure is absolutely continuous with respect to the first one.
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Now the statement says that there exists a non-negative measure of function such that the𝑓

second measure can be written as an integration involving the functions with respect to the𝑓

first measure. You can figure out such a function which is non-negative and measurable.𝑓

Therefore, we are saying that given this measure which is the first measure if you askµ

what are all the absolute continuous measures are, you will immediately say that thoseν

which are given by such a expression or such a structure as an integration over some

appropriate non negative measurable function .𝑓

All you have to do is to vary this set and you are going to get back the size of the sets under𝐴

the new measure. Moreover, you can say something more about this representation that this

function is unique in this following sense. What is this idea is that if you can write it as a𝑓

integration of g d over a set . So if you can write it that way for another such functionµ 𝐴

which is also non negative and measurable then it can be shown that almost𝑓 = 𝑔

everywhere with respect to the first measure .µ

Outside a Null set possibly these two functions may not agree but overall, almostµ

everywhere these two functions match. That is the uniqueness of this function . Here given𝑓

these two measures if the second measure is absolutely continuous with respect to the first

one you can write down such a structural property. That is the statement of this theorem.

With this theorem at hand, we now make this definition, call this function this almost

everywhere unique function that you have obtained as the Radon-Nikodyn derivative or

Radon-Nikodyn density of the second measure with respect to the first measure and weν µ

are going to denote this by .𝑑ν
𝑑µ

This is the idea that given this second measure which is absolutely continuous with respectν

to the first measure you can get this function which is almost everywhere unique andµ 𝑓 µ

you are going to call it the Radon-Nikodyn derivative or Radon-Nikodyn density of withν

respect to and you are going to write in symbols this.µ
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Let us try to understand what this Radon-Nikodyn density is all about. So choose three -σ

finite measures , and on the same measurable space and suppose you start with thatµ ν γ

setup of the Radon-Nikodyn theorem that the second measure is absolutely continuousν

with respect to the first measure .µ

Then what you can do is that for Borel measurable functions call them , if you want toℎ

integrate it with respect to the second measure all you have to do is to multiply theν

function h by the Radon-Nikodyn density and integrate that multiplied function that function

which is now measurable with respect to the first measure , and this equality will hold if theµ

integrals exist.

That is the important statement that is coming out. If you want to integrate a Borel

measurable function with respect to the second measure all you have to do is to go back to the

first measure multiply the function by the appropriate density function. If you do that allℎ

you have to do is to compute it in terms of the original measure .µ

How do you show this? Here is a hint for this exercise that you try to verify this equality

when is some indicator function and then go to simple functions and use the standardℎ

procedure of proving such equalities between integrations, but first try to do it for an

indicator function. Now, we have taken this third measure gamma which we have not used so

far so what is the use of this?

If it so happens that gamma is absolutely continuous with respect to the second measure ν

then gamma is also absolutely continuous with respect to . In this case by theµ

Radon-Nikodyn theorem you will get density functions of gamma with respect to .µ

And we are saying that it can be split as a product of the derivative of gamma with respect to

and multiplied by derivative of with respect to the measure . That is the statementsν ν µ

here again please try to check this. This will follow from the uniqueness of the density

function.

We had started off with assuming that is absolutely continuous with respect to , but if itν µ

also happens the other way that two measures are absolutely continuous with respect to each

other, if it so happens then you can try to show that there is a relation between the density



functions of with respect to and with respect to , so that they are exactlyµ ν ν µ

reciprocal of each other. Please try to check this.
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As soon as we have this Radon-Nikodyn theorem and Radon-Nikodyn densities, we are now

going to apply it to probability measures on . Again, starts with the probability measureℝ𝑑

call it on together with the Borel -field, so that is the measurable space. Suppose itν ℝ𝑑 σ

happens that this probability measure is absolutely continuous with respect to the Lebesgue

measure on these d dimensions. Again, what we are trying to do is to use the information that

is already captured in the Lebesgue measure.

So, if it can happen, if you can do that then you get this Radon-Nikodyn derivative or density

function for this probability measure with respect to the Lebesgue measure and this

Radon-Nikodyn derivative or density function that you get is called the probability density

function or PDF in short of the property measure .ν

If is absolutely continuous with respect to the Lebesgue measure you get the derivativeν

Radon-Nikodyn derivative or Radon-Nikodyn density function and that you are going to refer

to as the probability density function. This gives you existence of the probability density

functions for probability measures absolutely continuous with respect to the Lebesgue

measures.

In this setup if it so happens that you are going to get some function as the PDF of this𝑓

probability measure then observe that this function is non-negative and measurable, soν 𝑓

that is as part of the statement in the Radon-Nikodyn theorem and moreover you can talk

about probability of events or sets of Borel sets as an integration of this function that is this𝐴

density function with respect to the Lebesgue measure that is as per the structural property of

the Radon-Nikodyn theorem.

But if you choose the set to be the whole of what happens? You are going to get back theℝ𝑑

of , but is a probability measure, therefore, the total value is 1. Therefore, all you areν ℝ𝑑 ν

saying that this non-negative measurable function integrates to 1. So, this is an integrable𝑓

function with respect to the Lebesgue measure. So, this is already non negative and you have

shown its integration is finite, therefore this turns out to be integrable with respect to the

Lebesgue measure in this d dimensional case.
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But continue with these notations a bit more you are also going to make this identification

with the distribution function. What do you do choose a point x with components x 1 up to x

d and look at this set which is a default product of such kind of intervals that on the ith𝐴

component you are going to take the interval . Take a look at such an interval so(− ∞,  𝑥
𝑖
]

then what happens you are going to get the distribution function by looking at size of this

product of intervals.

The size of this product of intervals under the measured is given by integration of theν

function over that set. That is as per the structural property given by the Radon-Nikodyn

theorem and here you are doing the integration with respect to the Lebesgue measure in this 𝑑

dimensional case but then remember in the discussion involving the Lebesgue measures and



Lebesgue integrations in connection with Riemann integrations we have seen that in one

dimensional case Riemann integrations if it exists it will match with the Lebesgue integration.

In higher dimensions what will happen is that you are going to get these iterated integrals as

Riemann integration. If you can make sense of these integrations as riemann integrations by

the similar logic by similar arguments you can also get back the same integration in terms of

the Lebesgue measure, so that is this equality that is being used here.

But more generally since the Lebesgue integration is extension of d dimensional Riemann

integrations or -dimensional such iterated integrals then all you are going to say is that using𝑑

the same notational structure that was introduced in one dimensions that you are going to use

the same notations for the integrations with respect to the Lebesgue measures also just for the

convenience of notations.

So, you are going to write this equality. Even if the original function is not Riemann𝑓

integrable you just say that Lebesgue integration is nothing but some kind of an extension of

Riemann integration so you may be able to integrate more functions so you are going to use

the same notations for notational convenience. That is why we are going to write down these

iterated integrals as the expression for the distribution function of the probability measure Nu.

This is now your familiar expression of the distribution functions and its connection to

probability density functions.
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Now, in the next lecture we are going to talk about random variables and random vectors

corresponding to these various types of probability measures. Remember earlier what we had



discussed? We had discussed discrete random variables coming from discrete distribution

functions, which connected to probability measures which were convex combinations of

Dirac masses, but we have now said that convex combinations of Dirac masses are mutually

singular with respect to the Lebesgue measure.

But we have also discussed this type of probability measures which are absolutely continuous

with respect to the Lebesgue measure. Corresponding to every probability measure you can

construct random variables, what we are going to see are these different types of random

variables corresponding to these probability measures, which are absolutely continuous with

respect to the Lebesgue measure.

We are also going to see random variables which are of different structures which are not

falling in the structure of discrete random variables or the absolutely continuous case, it is

going to follow a different kind of structure that will be connected to the type of examples

that we mentioned under Cantor set that we have such probability measures where you get

the distribution function is continuous.

It does not have any jumps so you cannot categorize as discrete random variables. There will

be these three types of random variables corresponding to these three types of probability

measures, which are classified according to its relation with respect to the Lebesgue measure.

We are going to continue this discussion in the next lecture.


