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Computations involving Lebesgue Integration

Welcome to this lecture. This is the last lecture of week 7. In this week, we have looked at the

limiting behavior of measure-theoretic integration and also explored the connection between

Riemann integration and Lebesgue integration.

So, in particular, the applications of this limit theorems involving integrations, and the proof

of the connection between Riemann and Lebesgue integrations were incomplete. So, we will

discuss this in this lecture. So, let us move ahead to the slides, and start the discussion.

(Refer Slide Time: 00:56)

So, in the previous lecture, we started this discussion on the connection between Riemann

and Lebesgue integration, and there, the main theorem was theorem 5, which said that the

existence of Riemann integration will imply the existence of Lebesgue integration. So, we

said that we will do it in this lecture, so let us start with that.



(Refer Slide Time: 01:22)

So, starting with Azure mean that you have a function defined on this closed-bounded

interval a bounded function such that it is Riemann integrable. In that case, what do[𝑎, 𝑏]

you do? You look at this sequence of partitions, let us denote them by , such that this{℘
𝑘
}

sequence of partitions has this property that the mesh size or the length of the largest sub

interval that goes to 0 as .𝑘 → ∞

So, you are taking finer and finer partitions of the domain set . And you can also[𝑎, 𝑏]

without loss of generality assume that is a refinement of . So, this is true for all , so℘
𝑘+1

℘
𝑘

𝑘

you can assume that.



(Refer Slide Time: 02:12)

So, under this setup if provided that you have the existence of this Riemann integration, what

do you do, you look at the limit of the upper Riemann sum and lower Riemann sum. So, how

are they defined? So, for any partition you look at these expressions where you have these℘

and .𝑀
𝑗
: = 𝑠𝑢𝑝{𝑓(𝑡) / 𝑡 ∈ [𝑡

𝑗−1
,  𝑡

𝑗
]} 𝑚

𝑗
: = 𝑖𝑛𝑓{𝑓(𝑡) / 𝑡 ∈ [𝑡

𝑗−1
,  𝑡

𝑗
]}

So, provided you have these two quantities and what do you do, you just approximate𝑀
𝑗

𝑚
𝑗

the area under the curve from above by this upper sum and from the below by this lower

Riemann sums. So, for any partition where the points are made up of this℘ 𝑡
0
,  𝑡

1
,  .  .  .,  𝑡

𝑛 



these many points, you can rewrite it in this formulation. So, these are the upper Riemann

sum and the lower Riemann sum.

And provided the Riemann integration exists, so for this sequence of partitions that you have

chosen, you must have that the limit of upper Riemann sum will be equal to the limit of lower

Riemann sums and that should equal this value, which is the definition of Riemann

integration. Fine. Now, we would like to make the connection with Lebesgue integration. So,

so far, what we have discussed are recalling facts about Riemann integration. So, let us move

ahead.

(Refer Slide Time: 03:53)

So, now, for any such partition P, you can consider a simple function defined on this closed

bounded interval a, b. So, what is this? So, look at . So, what is this? I look at these kinds𝑓
℘

of indicators of (𝑡
𝑗−1

, 𝑡
𝑗
].

So, look at that indicator and multiply by the supremum value of the function within that

interval, and look at their summation. Similarly, you would look at in terms of this𝑓℘

combination of these indicators of the intervals multiplying it by this infimum of the function

within the interval.

So, now, observe that if you were to look at these simple functions, here, if you integrate the

F super bar function with respect to the Lebesgue measure, you will get back multiplied𝑀
𝑗



by the length of the interval and that is nothing but , so that(𝑡
𝑗−1

, 𝑡
𝑗
] 𝑀

𝑗
(𝑡

𝑗
− 𝑡

𝑗−1
)

summation.

So, therefore, you are just getting back the upper Riemann sum for that specific partition.

Similarly, if you are going to look at this that function, then if you integrate it against the𝑓

Lebesgue measure, you are again going to get back that summation . So, that is𝑚
𝑗
(𝑡

𝑗
− 𝑡

𝑗−1
)

going to give you back the lower Riemann sum.
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Now, with this observation, what you can now claim is that you have some connection with

the upper Riemann sum and lower Riemann sum and certain kind of integrations involving

these kind of simple functions that you have chosen based on the partitions. But let us explore

these f Superbad and functions a bit more.𝑓

So, for that given sequence of partition look at and , so consider this. But f is given to℘
𝑘

𝑓‾ 𝑓

be bounded, so therefore, these functions by definition and these functions are bounded,𝑓 𝑓‾

bounded by that same constraint that bounds actual function f. So, these are bounded simple

functions defined on these closed-bounded interval .[𝑎,  𝑏]

Now, it can also be checked very easily that is a non-increasing in and is𝑓‾
℘

𝑘 𝑘 𝑓
℘

𝑘

non-decreasing in . So, you can easily check this. Now, once you have this fact you will𝑘

immediately look at the limit function. So, once you have some kind of a monotonicity

behavior, you can look at the pointwise limits in .𝑘

So, for every fixed point in the domain you let get that limit value that will give you𝑘 → ∞

these functions and . So, for that specific choice of the partitions that you have started𝑓 𝑓

off with look at this limit functions and . But observe that these functions are limit of𝑓 𝑓

measurable functions. In particular these functions are limit of simple functions. So,

therefore, this and must be Borel measurable.𝑓 𝑓
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But now, recall, that Lebesgue measure, if you are restricting your attention to this

closed-bound interval that is a finite measure. And then, we had discussed earlier in[𝑎,  𝑏]

note 13, that there is a version for bounded convergence theorem for finite measures. So, as

long as you have the functions, the sequence of functions are uniformly bounded and you are

dealing with integrations with respect to a finite measure, you can talk about the bounded

convergence theorems.

Say in particular, here, look at the integration of over this interval . Now, this by the𝑓‾ [𝑎,  𝑏]

bounded convergence theorem, will be exactly the limit of the integration of the



approximating sequence of functions. So, that is, , so pointwise it converges to this, so𝑓‾
℘

𝑘

you can exchange the order of limits and integrations.

But observe that integration with respect to the Lebesgue measure that we have𝑓
℘

𝑘

identified as the upper Riemann sum for the partition , so therefore, you have this equality℘
𝑘

now. But this, as per definition agrees with the actual Riemann integration of the given

function f.

So, this is the integration with respect to the Riemann sense, but then, that also agrees with

the limit of the lower Riemann sums, but then lower Riemann sums, you can identify it as the

integration of Pk with respect to the Lebesgue measure lambda. But then again, you push𝑓

the limit inside, again you apply the bounded convergence theorem, you end up with the fact

that this is the integration of with respect to the Lebesgue measure.𝑓

So now, all these expressions are equal, but observe the leftmost term that is involving the 𝑓‾

function and the rightmost term that is involving the f lower word function. By definition,

, you have that so this is by construction. And you also have that these functions have𝑓‾ ≥  𝑓 

this nice integrations and they are equal.

So, you can immediately claim that the difference function , if you look at that𝑓‾ −  𝑓

function, that is a non-negative function and that integration with respect to the Lebesgue

measure is 0.
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Now you will hear about this non-negative function whose integration is 0 and by an earlier

proposition you will immediately claim that these two functions must match almost

everywhere. So, that is good. So, we have now made some identification about these two

functions and .𝑓‾ 𝑓

But observe that when this equality holds at the points whenever this equality holds, you have

by definition that is equal to the actual function value at x and that will agree with the f𝑓‾

lower about function evaluated at x. So, all these three functions will agree, once you have

the equality between the and .𝑓‾ 𝑓

So, why is this? This is following the fact that by definition, the function value, the actual

function value f falls between and . So, this is easy fact to check this is by definition of𝑓‾ 𝑓

the functions and . So, once you have that, you claimed that and agree almost𝑓‾ 𝑓 𝑓‾ 𝑓

everywhere, so therefore, you have actually this equality.

So, remember, if you have so far not shown anything about the measurable structure of the

function f it is just taken to be bounded function defined on the closed-end bounded interval

a, b, but you are now saying that it is matching with these measurable functions almost

everywhere. So, you have this function and , these are all nice Borel measurable𝑓‾ 𝑓

functions, which turned out to be limits of certain simple functions.

Now, the given function is agreeing with Borel measurable function, Lebesgue measure𝑓

almost everywhere. Provided this happens, it can now be shown that f is actually measurable

with respect to the Lebesgue -field. So, remember, we had discussed this Lebesgue -fieldσ σ

in note 8 earlier.

So, what we had mentioned was that the Borel -field with respect to the Lebesgue measureσ

is not complete, meaning, it does not contain all subsets of measures 0 sets. If you include all

those subsets of measures 0 sets and generate a further -field., you will get the Lebesgueσ σ

-field. So, that is an enlarged .σ

And with respect to that, you can now claim that if an arbitrary function matches with a Borel

measurable function almost everywhere you can actually claim that , the given function𝑓



must be measurable with respect to this bigger - field. So, it is not necessarily measurableσ

with respect to the Borel -field but it is measurable with respect to the Lebesgue -field.σ σ

So, this is an important clarification that was required if you want to consider the integration

of the function f with respect to the Lebesgue equation. So, remember, you can only talk

about integrations of measurable functions. So, that is why this clarification was necessary.



(Refer Slide Time: 13:05)

But just to avoid all these technical details associated to completion of -fields and regardingσ

this connection with almost everywhere identifications with measurable functions, we avoid

the details we want to avoid that. And we are just saying that, this fact is true. We will just

take this as true, and we will continue the discussion.

Now, the upshot is this that you have so far shown that f that general function that you have

taken if it is Riemann integrable then it turns out to be measurable with respect to an

appropriate -field, which is the Lebesgue . But then, you can now consider the integrationσ σ

of the function with respect to the Lebesgue measure. You have a measurable function you𝑓

can consider this.



But then, by the identification of the equalities that you have observed, you can now claim

that since f agrees with and almost everywhere then their integrations will also match if𝑓‾ 𝑓

you consider the integration with respect to the Lebesgue measure. So, the last equality here

is true, because two functions f and both are now measurable and both agree almost𝑓

everywhere, so therefore, their integrals will match.

So, here, you are using the fact that the Borel measurable functions and are also𝑓‾ 𝑓

measurable with respect to the Lebesgue -field. This is easy to check, because as long as allσ

the pre-measures are in the Borel -field, it is also in the enlarged -field which is theσ σ

Lebesgue -field.σ

So, measurability of and is not an issue. So, you have this equality, but you have earlier𝑓‾ 𝑓

shown that the integration of and that agrees with the actual Riemann integration of the𝑓‾ 𝑓

given function f, so that is equality that are listed right here in front. So, let us just go back.

So, you had earlier approved this equality. 𝑆

o, you heard, just look at this part here, this part immediately tells you that integration of 𝑓‾

and match and that agrees with the actual Riemann integration of the given function f. So,𝑓

with that, what you have managed to show is that is now integrable in the Lebesgue sense.𝑓

So, you are now considering Lebesgue integration of the function f and that is matching with

Riemann integration of the given function . So, this was the statement of the first part. So,𝑓

this was the first statement in the theorem file.
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Now, the second half gave a characterization of Riemann integration. So, for completeness,

we are just going to discuss this proof very, very briefly. So, again, all these verifications can

be done explicitly, but let us focus on the main parts here. So again, go back to this partitions

Pk. So this is this shrinking sequence of partitions. By shrinking, I mean, the mesh size

decreases and decreases to 0.

So, now look at these endpoints of all the sub-intervals that are listed under these partitions.

So, if you consider any fixed partition, it has finite number of intervals listed and each

sub-interval there will have two endpoints. If you look at all the endpoints of all the

sub-intervals in all the partitions then you end up with a countable set.

Now, here note that on this countable set, the Lebesgue measure associates 0 mass, so you do

not want to care about these endpoints, and you do not want to care about the function values

at these endpoints. So, while considering integrations, we do not want to care about the

function values on this endpoint. So, ignore this set of measures 0 first.

(Refer Slide Time: 17:09)



Now, while determining this set of discontinuities of this function, which is the effectively the

statement that characterizes the Riemann integration, as we are trying to show, we are going

to ignore the endpoints because that anyway is a set of measures 0. So, now, we ignore that

set and we focus purely on the interior points of all these subintervals, and we want to check

whether certain discontinuities are occurring there or not.

Now, for all the other points inside the interval you have this inequality. Again, this is[𝑎,  𝑏]

by definition that a is greater or equals to given function f is greater or equal to . But now𝑓‾ 𝑓

remember that almost everywhere this equality holds. So, f and matches lambda almost𝑓‾ 𝑓

everywhere, meaning, outside some appropriate null set the function values match.



Now, you can show that if this happens then f is actually continuous at that point. Now, that

immediately tells you that on these points where these function hellos match you immediately

we claim that f is continuous, and therefore, the set of discontinuity points will have measure

0. So, you have to throw out all these points where the discontinuous are not occurring.

So, these are all the points where f is continuous. So, only possible discontinuities occur

when is not equal to , that is when possible discontinuities of the given function f might𝑓

occur. So, this is a statement that we will take it as a fact.

(Refer Slide Time: 18:55)

So, therefore, the proof now follows that you have started off with this Riemann integration

structure, and then you have identified the Riemann integration with the Lebesgue

integration, and you have also identified the characterization of human integration functions,

as in terms of the set of points of discontinuance.

Now, we are going to focus on applications of this result. So, we are now using the fact that

we have discussed these limiting behaviors of integrable functions, and we have also

discussed these connections between Riemann and Lebesgue integration. So now, let us focus

on the applications of this, and we will look at our explicit example of limit of integrations.



Look at these functions . So, look at these functions on the interval . Look at
𝑛 sin 𝑥

𝑛( )
𝑥(1+𝑥2)

[0,  ∞]

their integration and look at Call that limit as , we want to compute this
𝑛 ∞
lim
→ 0

∞

∫
𝑛 sin 𝑥

𝑛( )
𝑥(1+𝑥2)

 𝑑𝑥 𝐴

limit . Now, what do you do first? This is a given Riemann integration for each fix at .𝐴 𝑛

You want to first go to the Lebesgue integration and that is where you are going to apply the

appropriate dominated convergence here.

(Refer Slide Time: 20:22)

So, let us look at this identification in terms of the linear integration. So, choose a sequence

fn of non-negative measurable functions given by this. So, you are looking at functions on



this interval , so here what is happening is that you ignore the value at 0, so that is fine(0,  ∞)

because Lebesgue measure anyway associates 0 mass two singletons, so therefore, you ignore

the function value there.

So, you are just multiplying by this indicator to get rid of all these other values. So, now look

at the actual function, which is given function look at this. Now, you want to
𝑛 sin 𝑥

𝑛( )
𝑥(1+𝑥2)

compute that limit a, right. So, now, this Riemann integration is nothing but the integration of

the function fn with respect to the Lebesgue measure.

So, therefore, you simply write that limit of integrations of with respect to the𝐴 = 𝑓
𝑛

Lebesgue measure. Now, you want to apply the DCT, but before that, you would like to first

compute the pointwise limit of this function .𝑓
𝑛
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Now, you are focusing your attention only on the positive part of the real line because,

anyway, on the other parts, the function value is 0, so that will not contribute to this

integration. So, let us look at . In this case, look at this expression and let , so𝑥 > 0 𝑛 → ∞

this is the point wise limit.

So, bring out that does not depend on anyway, now write the remaining part as1

1+𝑥2 𝑛

. Now, for any fixed , goes to 0. So therefore, you have this standard limit which
 sin 𝑥

𝑛( )
𝑥
𝑛

𝑥 𝑥
𝑛

goes to 1, so therefore, you will end up with this limit function which is .1

1+𝑥2



So, therefore, the limit functions of these functions fn is exactly on the interval ,1

1+𝑥2 (0,  ∞)

otherwise, the limit function is 0.

(Refer Slide Time: 22:30)

Now, our idea is to obtain a uniform bound of these functions in terms of a integrable

function. In preparation for that, let us first consider this function defined on this interval𝑔

, and taking values in the set of real numbers. So, how is this defined? So, for positive[0,  ∞)

look at the ratio at the point assign the value 1. What you can now easily𝑦 𝑠𝑖𝑛 (𝑦)
𝑦 𝑦 = 0

check, is that, this function is bounded and continuous. So, please take this as an exercise.

This function will be used to obtain the bound for the functions .𝑓
𝑛
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Now, let us see via positive quantity such that this function is bounded by that constant .𝑔 𝑐

So, you have proof that this function, as defined above, is bounded and continuous, so,𝑔

therefore, we will get some positive real number which will bound this. Now, look at the

bound of fn given by these constants.

So, how? So, look at this modular’s quantity, so that is again in the form of the function g.

Now, is uniformly bounded by this constant , so therefore, you get the bound𝑔 𝑐 𝑐 1

1+𝑥2

multiplied by the indicator. Now, to apply the dominated convergence theorem, you need the

integrability of the bound function.

So, this is the upper bound function, and you need the integrability of that. So, just try to

integrate this. I am ignoring the constant here, it does not matter because is some positive𝑐

constant. So, now, this one is nothing but the usual Riemann integration . So, this is
0

∞

∫ 𝑑𝑥

1+𝑥2

the usual Riemann integration.

Now, here you can use the standard trigonometric transformation that and𝑥 = tan θ

compute this. There are other methods of computing this, but this is one of the methods and

that will give you some finite value. So, therefore, this non-negative function is integrable.
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And therefore, you are now allowed to apply DCT, to push the limit insight in this

computation. So, limit value that is a can be computed at integration of the limit functions.

But then you have computed the limit function as multiplied by the indicator. So,1

1+𝑥2

therefore, again you go back to the usual Riemann integration and that will be just ,
0

∞

∫ 𝑑𝑥

1+𝑥2

which you have already computed, that will be some finite quantity anyway.

So, this is an application of the DCT, as well as the connection between Riemann and living

integrations. So, you have seen that in many of the steps we have moved back and forth

between Riemann and Lebesgue integrations. So, as soon as you can compute this final

integration in the Riemann sense, you will get back the value of the limit, but in between we

had applied this measure theoretic arguments to apply the DCT. That allowed us to push the

limit inside.

(Refer Slide Time: 25:30)



So, now, we have seen this applications of this limit theorems. But there are some few

comments about certain more general notions of integrations. So, the first comment here is

about Riemann stieltjes integrations with respect to distribution functions. So, if you take a

distribution function so, that is a function defined on the real line taking values between 0 and

1 and it is nondecreasing light continuous limit at is 1 limit at 0 to take such a∞ − ∞

function .𝐹

Now, take another function , which is defined on the interval taking real values. And𝑓 [𝑎,  𝑏]

then, consider this limit for any partition like this. So, choose a partition of the

closed-bounded interval and look at this quantity. So, this is the usual Riemann sum[𝑎,  𝑏]

except that in Riemann sum you will look at this , but here you are looking at the𝑡
𝑖+1

− 𝑡
𝑖

increment of the distribution function.

So, instead of looking at this , you are looking at the increment of the distribution𝑡
𝑖+1

− 𝑡
𝑖

function that is the only difference, which you are considering here. So, with some

appropriate hypothesis you can establish the existence of the limit for appropriate functions 𝐹

and .𝑓
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So, now here what is happening is that once you get this limit this is what is known as the

Riemann stieltjes integration. So, we are not going into the exact definition of the Riemann

stieltjes integration we are just indicating the idea. Now, once you have this integration from

to , you can also possibly consider integration so far the whole real line and this will be𝑎 𝑏

similar in definition, as considered for the Riemann integration case. So, you can consider

integrations of functions with respect to distribution functions.𝑓

(Refer Slide Time: 27:26)

Now, there is a general version of this which is called the Lebesgue stieltjes integration. So,

again, you start with a distribution function, but now you start with a measurable function as



the integrand. And then given this function you get a probability measure defined on𝐹 µ
𝐹

the, this measurable space real line together with the production method.
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Now, try to integrate this measurable function with respect to this probability measure. If you

can define it then you call it the Lebesgue stieltjes integration of with respect to the𝑓

distribution function . So, this is the notation that we are introducing. This is nothing, but𝐹

the integration of the with respect to the corresponding probability measure.𝑓

Now, once you have considered this , integration that integration you can also− ∞ + ∞

consider integrations over intervals like, so, that will run similar to the earlier discussions.

Here once you have these measure theoretic structures, it is just defined as integration of 𝑓(𝑥)

multiplied by this indicator function here. So, that is just cutting off the function values

outside this interval.

So, outside this interval this product is 0, so that does not contribute to the integral. So, that is

basically the idea behind this definition, so this is what we had also considered in Lebesgue

integrations or measure theoretic integrations.
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Now, we have this identification between Riemann integrations and Lebesgue integration, so

that was discussed in theorem 4. But you can also get a identification between Riemann

stieltjes integration and Lebesgue stieltjes integrations. So, you can state this in a similar

fashion and prove it with appropriate justifications, so we are not going into the details.

(Refer Slide Time: 29:13)



But here is something, which is quite interesting, since we are interested in expectations of

random variables. So, you can identify the expectation of random variables as some kind of a

a Lebesgue stieltjes integration. So, how do you do this? So, look at a random variable

defined on some probability space , then its law is and you can also(Ω,  ℱ,  ℙ) ℙ ◦ 𝑋−1

consider the corresponding distribution function .𝐹
𝑋

Then for any measurable function, you can now consider and that is, by an𝐸(𝑔(𝑥))

appropriate change of measure argument can be written as integration of the function with𝑔

respect to . So, this we had discussed earlier. But now, as per the discussion in thisℙ ◦ 𝑋−1

lecture is exactly the probability measure corresponding to the distribution function,ℙ ◦ 𝑋−1

and therefore, you will immediately write it as a Lebesgue stieltjes integration of the function

with respect to the distribution function.𝑔

So, this last integration is being interpreted as a Lebesgue stieltjes integration, and that will

exist provided you can make sense of this integration with respect to this appropriate

probability measure . So, you can write down expectations as some kind of a limitℙ ◦ 𝑋−1

such an integration with respect to distribution functions.
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Now, an important function in these discussions about random variables is called a

characteristic function. So, now that we have discussed about integrations with respect to

measures, you can now come back to this specific type of function. So, what do you do?

Again, continue with a random variable and consider this function denoted as .𝑋 𝐹
𝑋

So, that is a function defined on the real line, and takes values in the set of complex numbers.

So, this is defined as follows. So, for any fixed in the real line, you will look at expected𝑢 

value of , and that is by definition .𝑒𝑖𝑢𝑥

Ω
∫ 𝑒𝑖𝑢𝑋(ω) 𝑑ℙ(ω)

But, now, what does this function look like, so split it into real part and imaginary part. So,

here this is nothing but in terms of cosines and sins. So, this is a familiar formula to you.

Now, once you look at this formula, these are now integrations of nice measurable functions

with respect to a probability measure. So, that is what we are looking at here.

So, these are now nice random variables these compositions are nice random variables and

you are integrating it with receptor probability measure. So, therefore, these things are well

defined. So, integrations existence is fine, but then you change variables and you go to

integration with respect to .ℙ ◦ 𝑋−1

Once you do that, you get back this familiar formula that this is integration of with𝑒𝑖𝑢𝑥

respect to the law. So, you will see more calculations involving this in later, but what you can

now try to do, is that, you can take discrete random variables and try to compute these



characteristic functions and this will match with whatever you have earlier seen in your basic

probability course.
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And an important comment here is that these random variables and , whichcos(𝑢 𝑋) sin(𝑢 𝑋)

we had used in these integrations, they are actually bounded random variables. So, for any

fixed , these are bounded random variables and therefore, they are integrable with respect to𝑢

the probability measure.

And hence for any fixed this quantity is well defined. So, this always exists. By definition,𝑢

this is taking values in the set of complex numbers. So, this is called the characteristic

function of the random variable .𝑋



(Refer Slide Time: 33:16)

And as discussed earlier, as we have just mentioned that for the case of discrete random

variables, you can write down expressions or computations of these characteristic functions.

So, the competitions will run similar to whatever we have discussed earlier in week 6.

(Refer Slide Time: 33:40)

Now, the case for absolutely continuous random variables will be discussed in next week. But

it is a fact that given this characteristic function, you can recover the law of the random

variable so, this is a very, very important fact. Another way to state this is that the

characteristic function uniquely determines the law or distribution of the random variable .𝑋

So, this is a very important statement.



(Refer Slide Time: 34:00)

Now, another point to note is that we have defined this cost function, as taking values in the

set of complex numbers. You can actually consider the measurable structure with respect to

the complex numbers together with the Borel -field by appropriated defining the Borelσ σ

-field on the set of complex numbers.

But we are not going into the details here. We take the easier route, we go via the real part

and imaginary part and make sense of their integrations.
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So, final comment as we stop, is that, if are talking about these random variables with

specified law, we are going to use this notation , meaning has this law or . So,𝑋 𝑋 µ 𝑋 ∼  µ

this symbol refers to the fact that is a random variable with law . These notations shall be𝑋 µ

used extensively in our discussion next week.

So, there, we will put everything together that you have learned in this course so far. And we

will also discuss about the absolutely continuous random variables. So, that discussion we

will do in the next week's discussion. We stop here.


