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Riemann and Lebesgue integration

Welcome to this lecture. In the past few lectures, we have been extensively discussing about

measure theoretic integration. We have seen many of the important properties involving

certain limiting behaviors. So, with that setup, it is now a good time to understand where

these integration procedures stand with respect to our usual integration procedure, which we

call as Riemann integration.

So, in this lecture, we are going to start exploring the connection between Riemann

integration and measure theoretic integration. We move on to the slides for the discussion.

(Refer Slide Time: 01:01)

So, you are working with Riemann integration on the real line that we know about. And what

we are going to consider, as a special type of measure theoretic integration is the integration

with respect to the Lebesgue measure on the real line. So, we are going to compare theseλ

two things. Now, the second type for ease of communication shall be referred to as the

Lebesgue integration. So, any integration of a measurable function with respect to the

Lebesgue measure will be referred as the Lebesgue integration.



(Refer Slide Time: 01:40)

Now, another important notational issue, just to clarify, is that, in this lecture there will be

two types of integrals appearing. One, will be this Riemann integrations, the second one will

be Lebesgue integrations. Now, just to distinguish, which integration is being interpreted in

the Riemann sense, which integration is being interpreted in the Lebesgue sense, we want to

clarify certain notations.

So, for Riemann integrations, what we will do, we will write it in the usual integration of our

integrand with respect to dx, but in front we will write to denote Riemann integration.(𝑅)

The Lebesgue integrations will be denoted, as integration with respect to the major that isλ

as per the usual notation that has been used so far in this course.

And more explicitly, sometimes dx may be explicitly written, otherwise, it will be simplyλ

the integrand that function d , that integration symbol will refer to Lebesgue integrations.λ



(Refer Slide Time: 02:54)

So now, a few comments about Lebesgue integrations that requires justification. First start

with a measurable function on the real line, taking real numbers, as their values, and you also

fix some bounded . Now, consider this . with respect to the[𝑎,  𝑏]
[𝑎, 𝑏]

∫  𝑓 𝑑λ =  ∫ 𝑓 1
[𝑎, 𝑏]

 𝑑λ

Lebesgue measure. But now, recall, that Lebesgue measure associates mass 0 to singletons

and in particular, here, the boundary points and those singleton sets will be associated 0𝑎 𝑏

mass by the Lebesgue measure.



Now, by an earlier discussion on the Lebesgue measure, you can now claim that
[𝑎, 𝑏]

∫  𝑓 𝑑λ

will be the same, as integration of the function over this , . So, whichever(𝑎, 𝑏] [𝑎,  𝑏),  (𝑎,  𝑏)

type of intervals you prefer, as long as, these sets differ only by sets of measures 0, the

integrations will not change. So, that was the discussion made in note 4 earlier.

So, again, just to be clear, if one of these integrations exists, so does the others and the

equality holds, so that is the meaning of this here.

(Refer Slide Time: 04:37)

But this is for function defined on the real line, taking real numbers as their values. But now,

there is a related concept of restrictions of functions and measures. So, what is this? So,



continue with that interval as above. Now, what you can consider is that you can look at the

Lebesgue measure restricted to interval .[𝑎,  𝑏]

So, this was discussed earlier in note 24 of week 5. Just to recall, there, we had considered

intervals of length 1, but in general, you can look at any such closed-bonded interval [𝑎,  𝑏]

and restrict the Lebesgue measure to it. So, it does the same construction all over again.

But here you might not get a probability measure, you will get a finite measure. So, suppose

you take any measurable defined on taking real numbers as their values. Then for all𝑔 [𝑎,  𝑏]

such you can try to𝑔
[𝑎, 𝑏]

∫  𝑔 𝑑λ|
[𝑎, 𝑏]

.  

So, now living measure restricted to is a measure on this measurable space[𝑎,  𝑏] [𝑎,  𝑏]

together with the Borel - field. And here, the integration of is over the actual domain,σ 𝑔

which is . So, here, we are not looking at a subset of the domain here the domain is[𝑎,  𝑏]

itself. So, here you can consider this type of integration.[𝑎,  𝑏]

(Refer Slide Time: 06:06)

Now, just to avoid any further confusions we use this simplified notation that, we will take it

to be the limit measure itself on the closed interval . So, just to stop writing this[𝑎,  𝑏]

restriction symbol here, we will simply write here, but we will understand, as long as is𝑑λ 𝑔



given to be defined on this closed interval this is the integration of with respect to[𝑎,  𝑏] 𝑔

the restriction of the Lebesgue measure to this interval.

So, that will be the understanding, but here we are going to use this simplified notation. But

with this as the motivation, let us look at our few properties that are left as exercise for your

verification.

(Refer Slide Time: 06:50)

So, continuing with the function as described above, so here, we are taking the function𝑓 𝑓

to be defined on the real line and taking values within the real line, and you want it to be

measurable. Now, if you continue with that same interval closed-bounded interval then[𝑎,  𝑏]

you can show that restriction of this function to this interval will be measurable.

So, here you are putting the appropriate Borel’s sigma fields on both sides, on the range and

as well as the domain. So, with respect to these appropriate sigma fields, these restriction

functions becomes measurable, you can check this. But then, once you have restricted this

function, you can now consider the integration of the function the restricted function with

respect to the restricted Lebesgue measure, and that integration will be over the actual

domain here now, though the actual domain is .[𝑎,  𝑏]



But you can identify or show that these value is nothing but . So, this is in the∫  𝑓 1
[𝑎, 𝑏]

 𝑑λ

sense of integration of our real-valued function defined on the real line. So, that means, on

the right-hand side it is taken, as .
[𝑎, 𝑏]

∫  𝑓 𝑑λ

Now, this equality will hold if any one of the integrals exists, you can show the existence of

the other and you can show the equality. So, that is the idea. So, this is why, we are not

focusing on restriction of , we will in general write itself, we are not going to carry aroundλ λ

these restriction functions.

It will be clear from the context which limit measure is getting used, but the understanding

will be that the measure has to be on the appropriate domain spaces.

(Refer Slide Time: 08:55)

Now, here we start the discussion about the connection between Riemann integrations and

the Lebesgue integrations. Remember, that Riemann integration was motivated, as the area

under the curve. Similarly, when we started the discussion about measured theoretic

integration, we started by looking at area under the curve of indictor functions.

And then, both these integrations took over from there from these basic definitions, and then

we tried to extend these notions of integrations to the appropriate class of functions where the

integrations can be defined. So, this is true for, both, Riemann integration and integration

with respect to the Lebesgue measure.



Now, both these integrals are trying to compute the area under the curve for any general

function in a general notion, there are certain differences. So, before we go into the actual

theoretical results, let us just do some preliminary comparisons by looking at various forms

as examples and see if there are any differences.

(Refer Slide Time: 10:04)

So, start with if defined on the real line and taking values in the real line. So, while talking

about Riemann integrations on these closed-bounded intervals you typically work with

bounded functions, while you are talking about the Riemann integrations, you would need

these functions to be measurable.



So, a priori there are no direct connections between the hypothesis So, we will see the

connection when we do the theoretical analysis, but start with which is a indicator function𝑓 

of . So, this is a closed bounded interval . More explicitly this is the[0,  1],    1
[0, 1 ]

[0,  1]

function that takes value 1 on this interval otherwise it takes the value 0.

So, remember this function has finitely many discontinuities, discontinuities appear at this

boundary point 0 and 1, so this will be Riemann integrable, and therefore, you can also

compute the Riemann integration of this function that will be 1. That is just a simply the

integration of the constant function 1 over the interval , so that will give you the value[0,  1]

1.

(Refer Slide Time: 11:18)

What happens to the living measures situation So, if you want to integrate the function

against the Lebesgue measure observe that this is a genuine measurable function it is just a

indicator of this measurable set . So, as per definition this will be the living integration.[0,  1]

So, we are writing (L) just to highlight this distinction.

So, here, what is happening, is that, you are integrating this indicator function against the

Lebesgue measure so you get the length of the interval as the value of the integral. This is as

per definition, and that is nothing but 1. So, here you get that the Riemann integration and the

Lebesgue integration match.
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Now, you can try to check a different quantity now, you can try to integrate the function over

this interval . So, earlier this integration was over the whole real line, but now, you are[0,  1]

doing the integration only over this closed-bounded interval . And as per definition, this[0,  1]

is the integration of .𝑓 1
[0, 1]

And again, if you do the computation, it again gives you the value 1. So, for this specific

function if you do the Riemann integration or the Lebesgue integration do integrations1
[0, 1]

over these intervals or these intervals here, all are matching in this specific[0,  1] [0,  1]

situation. So, let us now take a slightly more general example.

(Refer Slide Time: 12:41)



So, suppose, you look at a set of rational numbers and look for all rational numbers contained

inside the closed interval . So, look at all sorts of rational points there. So, then define[0,  1]

the function to be 1 on those points otherwise you define it to be 0. So, this is the indicator of

the set the set of rationales contained within the closed bounded interval so that is this[0,  1]

indicator function.

(Refer Slide Time: 13:08)

Now, observe that is discontinuous on these closed contour intervals and you can𝑓 [0,  1]

show that this will not be Riemann integrable, you can take it as an exercise, but then this

function is a genuine indicator of a measurable set a Borel subset of and therefore, you canℝ

consider its integration and that is nothing but the length of this set.

And then, note, that this set here, this is a subset of the rational numbers. And since rational

numbers are countable, this subset also is countable and Lebesgue measures assigns 0 mass to

all countable sets. So, therefore, the area under the curve here in the sense of Lebesgue

integration, this is 0 here, so that is interesting.

(Refer Slide Time: 13:57)





Now, here is non-negative, so you can talk about Lebesgue integrability here. So, here the𝑓

function is not Riemann integrable, but it is Lebesgue integrable. So, this is an important

example. Now, we make the previous example slightly more complicated. So, consider this

specific set of rational numbers such that it has a form with taking values between these𝑝
𝑞 𝑞

natural numbers 1, 2 up to n, but can vary from to including 0.𝑝 − 𝑞 + 𝑞

So, only can take since is a natural number. So, you are looking at those type of𝑝
𝑞 𝑝 𝑞

rational numbers, which can be written as form which these range of and . So, here this𝑝
𝑞 𝑝 𝑞

range of is dependent on this natural number and therefore, you look at this set of𝑞 ℕ

rational and denoted by .𝑄
𝑛

Now, it is easy to check that is finite because you are only allowing finitely many choices𝑄
𝑛

of and for each choice of you are allowing finitely many choices of . So, you have that𝑞 𝑞 𝑝

this rational numbers which are of the form for this range of ’s and ’s this set of𝑝
𝑞 𝑞 𝑝

rationales is finite. But then, observe that as increases, this ’s also increase they get larger𝑛 𝑄
𝑛

and they will eventually cover the rational numbers set meaning their completely union

countable union is the rational number itself.ℚ

So, therefore, you can immediately claim that meaning this specific type of[0,  1] ∩ 𝑄
𝑛

rational numbers within will increase an increase to all rational numbers within closed[0,  1]

. But then, you can also look at the similar feature in terms of the indicators. As long as[0,  1]

these sets increase to the set you have the indicators corresponding indicators increasing to

this functions, which is also an indicator.
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Now, here, it is interesting that the functions for each fixed are Riemann integrable and𝑓
𝑛

𝑛

Lebesgue integrable, ’s are Riemann integrable, as well as Lebesgue integrable. But the𝑓
𝑛

Lebesgue function, which happens here this function indicator of rational numbers within𝑓

that indicator function this limit function is Lebesgue integrable but not Riemann[0,  1]

integral. So, limit of Riemann integrable functions need not be Riemann integrable. So, this is

a important comment about Riemann integrable functions.

(Refer Slide Time: 16:49)

So, with these observations at hand we have already noted certain important distinctions

between Lebesgue integrations and Riemann integrations. So, now, here is the concrete



theorem which we want to focus on. So, look at a bounded function defined on this closed

bounded interval taking values in the real line.[𝑎,  𝑏]

Now, start by assuming that is Riemann integrable then you can show that is Lebesgue𝑓 𝑓

integrable and the Riemann integration whatever the value will match with the Lebesgue

integration. So, again, we are highlighting (L) here just to denote that this is Lebesgue

integration. Of course, the Lebesgue measure is appearing here, but just to clarify, we are

writing (L) to denote this Lebesgue integration.

So, what we are saying is that if you have Riemann integrability then you get Lebesgue

integrability and the values match. So, therefore, if you get a function for which you can

compute the Riemann integration then you do not need to separately compute the integration

with respect to the Lebesgue measure, you can just take them value that appeared from the

Riemann integration. So, this is an important observation.

(Refer Slide Time: 18:03)

And here is an important classification or characterization of Riemann integrable functions 𝑓

is Riemann integrable then it happens if and only if the set of discontinuities meaning the set

of points where is discontinuous that set of points has Lebesgue measure 0. So, this is an𝑓

important identification of Riemann integrable functions.

Now, if it So, happens in this case, if is Riemann integrable then you get the statement that𝑓

is continuous living measure almost everywhere. So, by that I mean that outside some𝑓 



appropriate null set, which contains this set of discontinuities of is continuous. So, here this𝑓

is an important characterization of Riemann integrable functions.

(Refer Slide Time: 18:56)

So, this proof will be discussed later in the next lecture, but there are a couple of important

comments here. In particular, let's focus on part 1. So, in part 1 we are saying that is𝑓

Riemann integrable implies is Lebesgue integrable. But remember, before even you talk𝑓

about integrability you have to justify that f is measurable.

So, this will require proper justification and this will be included in the proof. So, that is

including certain appropriate technical statements. So, all these details will be discussed in

the next lecture. But now, we are going to focus on this interpretation of this result.
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So, keeping this idea at hand that whenever you can compute the Riemann integration, you

immediately get the value of the Lebesgue integration. So, that is the main content of the

previous theorem. So, with that in mind, then, what you can say is that the Lebesgue

integration as written here is essentially some kind of an extension of the Riemann

integration.

So as long as Riemann integration exists you will get the same value for the living

integrations, but there are functions, remember, there are functions which are Lebesgue

integrable, but not Riemann integrable. So, this is important. So, just to identify that living

integration is essentially an extension of the Riemann integration, we will use this simplified

notation for the Lebesgue integration.

Now, that Lebesgue integration over will be taken as . So, we will suppress[𝑎,  𝑏]
𝑎

𝑏

∫  𝑓(𝑥) 𝑑𝑥

the symbol we will simply write this. So, if you can compute it in terms of the Riemannλ

integration the same value will be given to the Lebesgue integration, but if you cannot

compute it through Riemann integration, try it directly through the Lebesgue integration.

Now, it is important that we are using this symbol, but the justification, is that, this is a

simplified symbol saying that Lebesgue integrations match with Riemann integrations

provided the Riemann integrations exist. But, remember, there are Lebesgue integrable

functions, which are not Riemann integrable. So, this is very important.
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So, now, what happens, if you want to discuss demand integrations with improper limits,

meaning infinite limits possibly about the whole real line. Now, here, we are focusing on

these types of integrations. Now, if is bounded and Riemann integrable in this situation then𝑓

you can possibly try to justify this set of equalities that Riemann integration over [− ∞,  ∞]

is essentially
𝑛→∞
lim (𝑅)

−𝑛 

𝑛

∫ 𝑓(𝑥)𝑑𝑥.

But then on this closed bounded intervals you have identified that the Riemann integration

and the living integrations match, so you just replace the Riemann integration by the

Lebesgue integration with respect to the measure . So, this is . But then,λ (𝐿)
[−𝑛, 𝑛]

∫  𝑓(𝑥) λ𝑑𝑥

if you can justify the existence of this then this functions point-wise approximate the function

what the whole real line.𝑓

So, multiplied by the indicator of this interval as increases will approximate the function𝑓 𝑛

point-wise. So, as long as these limits exist, you can justify all these equalities, then𝑓

Riemann integration and the Lebesgue integration will match over the whole real line now.

But for that you have to justify all these limits and the value that appears in the limit. So, you

have to justify all those things, but this is the formal equalities that we can use.

So, therefore, again, exactly as done for finite intervals bounded intervals, you can also do the

same for integration over the whole real line for the Lebesgue integrations that you write

, as a shorthand notation, just to identify that whenever Riemann integrations
−∞

∞

∫ 𝑓(𝑥) 𝑑𝑥

exists, it will match there. So, this is just an extension of the usual Riemann integrations.
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But then there are also improper integrations where you deal with singularities of the

function. So, singularities may appear, as an interior point of the domain or at the boundaries.

Now, here, if you can identify the Riemann integration, then it will require certain technical

justification. So, there are appropriate ways of defining Riemann integrations.

We are not going to recall this, but once you can define Riemann integration or your function

is Riemann integrable in this situation, you can consider the connection with the Lebesgue

integrations once more. What you can say is that the equalities will still continue to hold, but

to avoid these technical details, we are going to assume this equality, we are not going to

discuss in complete detail the actual equality or the proof.
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Now, we finish the discussion with a pictorial comparison of the ways of Riemann

integrations and Lebesgue intuitions. And for simplicity, we are going to work with bounded

and non-negative function defined on such close bounded interval and taking values𝑓 [𝑎,  𝑏]

in real line. So, assume that is Riemann integrable.𝑓

So, here, is where you can now compare the area under the curve in these two different ways.

One is through Riemann integration another is through Lebesgue integration. So, let us try to

look at in the Riemann integration setup.
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This is what we do, we vertically split the domain side. So, if your function graph is

something like this, you look at this domain , you split it vertically and try to fit in[𝑎,  𝑏]

some appropriate rectangles, which will approximate the area under the curve. So, you

vertically split the domain and try to compute the sum of these areas of these rectangles. So,

as long as your partitions on the domain, side shrink you get finer and finer approximations to

the actual area under the curve.

So, that is what Riemann integration is all about, but what happens for the Lebesgue

integrations? Remember, if you are dealing with this non-negative and bounded function, let

us say you have justified integrability, then what he will do, you will approximate it through

simple functions and you will use the area under the curve for simple functions as a

approximation for the area under the curve of the additional function .𝑓
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So, the idea is this. So, as soon as you are approximating this non-negative function f by

simple functions from below then what you are actually obtaining is a different type of

splitting the area under the curve. So, here, you are looking at range of values for the

functions within those specific range of values, these are now horizontal strips, so these will

denote specific range of values small range of values.

And for these strips you are approximating it through the appropriate simple function, which

takes some boundary value as the approximation of the function. So, go back to that

approximation by simple functions, try to look at the definition of the simple functions there



and you will immediately observe that the lower boundary value for the function is taken as

the approximation in simple functions well.

So, you are splitting the area under the curve in a horizontal sections now, horizontal strips,

and now you are putting them together. So, what do you do here observe that for this example

here the area here is the length, which is given by the appropriate measure on the domain side

multiplied by the function value. So, that will be the area under the curve for that simple

function that contribution.

Again, remember, that there might be situations where there are two parts in the domain,

which take the same range of values. So, for example, this dotted part here is two possibly

disjoint parts where the same range of values are being taken. Again, the values for the

function will be approximated by a lower a point here and you just look at the total length this

part dotted and this part dotted as given by the domain side measure.

So, that will give you an approximation for this area, that is the idea. Now Lebesgue measure

or Lebesgue integrations what they are doing, they are splitting the area under the curve in

horizontal strips, and in Riemann integrations you are splitting it into vertical strips. So, that

is basically the pictorial comparison of Riemann integration and Lebesgue integration.

But it so happens that all Riemann integrable functions are Lebesgue integrable but the

converse is not true. So, what is happening is that in some sense splitting it through this

horizontal strips is allowing you to integrate much more functions much more bad functions,

which need not be integrable in the Riemann sense.

So, this is a very important clarification regarding the Lebesgue integration. And this

discussion, we will formalize in the next lecture, when we prove the exact connection

between this Riemann integration and the Lebesgue integration as stated here in theorem 5

discussed earlier. We will continue this discussion in the next lecture.


