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Fatou’s Lemma and Dominated Convergence Theorem

Welcome to this lecture. In this week, we are looking at limiting behavior of measure

theoretic integration. One of the major results that we has seen has been the monotone

convergence theorem, which was property involving this limiting behavior of measurable

functions and corresponding limiting behavior of the integrals. So, but we have also seen that

as a consequence of monotone convergence theorem we had the additivity property. Now, we

are going to discuss further general results that apply in limiting behaviors.

(Refer Slide Time: 00:57)



So, let us move ahead to the slides and discuss. So, we have already seen this in monotone

convergence theorem and seen these useful applications, we are now focusing towards results

specifically involving limits of this integrals.

Now, important comment is that in all of our discussion, we are going to fix this measure

space . Now, here is a very important result that is called the Fatou’s Lemma and(Ω,  ℱ,  µ)

this is applicable to a quite a general situation, and that is why, this has been referred to it as

theorem even though it is called as the Fatou’s Lemma.
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So, let's consider this situation that you are looking at this Borel measurable functions

so on that is a sequence, and then you consider a function . So, these are𝑓
1
,  𝑓

2
,  .  .  .,  𝑓

𝑛
𝑓

some collection of Borel measurable functions. Now, if it so happens that this functions𝑓
𝑛
'𝑠

are dominated from below by this function for all and if the integration of is avoiding𝑓 𝑛 𝑓

the value . So, first of all, integration of should exist and avoids the value .− ∞ 𝑓 − ∞

In this situation you can get a statement involving integration and of the sequence oflim inf

functions. And this says that you can bring out the from the integral, but you will endlim inf



up with an inequality. So, therefore, integration of of functions is less or equal tolim inf

of the integrations. So, this is the first part of the statement.lim inf

The second part says that if you have a bound going in the other direction, so, that means that

if s are dominated from above by this function f and if it so happens that the integration of𝑓
𝑛

f exists and avoiding the value then you claim the other sided inequalities, but it+ ∞

involves limits superior of the functions and their integrations.

So, here the statement says that integration of the limit superiors is at least limit superior of

the integrations. So, that is the statement here. You might recall that a similar statement was

considered for the extended version of the monotone convergence theorem. So, therefore, we

have seen such lower bounds given by a certain type of a function and we had considered the

limiting behaviors.

But here it is important that the sequence of functions in the extended version of the

monotone convergence theorem should be more monotone meaning either it should be

increasing or decreasing. But here in Fatou’s lemma we are not assuming any mode on

behavior of the sequence of the functions. And as such, it is important to note that limit of the

functions pointwise limit of the functions need not exist.

However, what we can always talk about are these functions limit superior of the sequence

and limit inferior of the sequence? These are the things that are appearing in the statement of

the Fatou’s lemma.
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So, how do you prove this Fatou’s lemma. So, consider this sequence of functions and𝑓
𝑛

using these sequence of functions consider another sequence of functions call it . So, how𝑔
𝑛

these are defined. So, you look at for integers in 1,2,3,4 so on, you look at the infimum of𝑔
𝑛
𝑠

the remaining functions. So, that means, that if your , look at and so on.𝑛 = 10 𝑓
10

,  𝑓
11

,  

Look at all those functions, look at the infimum of that.

So, pointwise infimum will define for you the corresponding function , so that is how these𝑔
𝑛

functions are defined. But then remember, infimum over a countable set of functions if the

functions are given to be Borel measurable, then you immediately get the functions to𝑓
𝑛
𝑠 𝑔

𝑛

be measurable. So, infimum will give you measurable functions. But, moreover, there are

certain interesting properties of this function .𝑔
𝑛

So, here s case when you are considering the monotone behavior, here, the infimums are𝑓
𝑘

always less equals to the individual . So, by definition, but you have also𝑓
𝑚

𝑔
𝑛

≤ 𝑓
𝑛 

assumed here in the first part that s have a lower bound given the above by the function .𝑓
𝑛

𝑓

But now, you also have that the s are increasing in and it will approximate the limit𝑔
𝑛

𝑛

inferior of the functions .𝑓
𝑛



So, here this is an important comment that this infimum of the functions that is how the s𝑔
𝑛

are defined, they increase in and increase to the limit inferior of the functions. Now, here𝑛

what you do, you have constructed a sequence of functions , which are now monotone,𝑔
𝑛

monotone increasing, and are bounded from below of function with integration of f𝑓

avoiding the value .− ∞
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So, therefore, you can apply them extended form of the monotone convergence theorem, and

you immediately get that will increase and increase to the . So that is a∫ 𝑔
𝑛

∫  𝑙𝑖𝑚 𝑖𝑛𝑓 (𝑓
𝑘
) 

statement here that applies from the extended form of the modern convergence theorem.

Now, you would like to make this connection with the actual sequence of functions s, and𝑓
𝑛
'

they are integrals. So, let us just try to compare the and . So, you want to bring in∫ 𝑔
𝑛

∫ 𝑓
𝑛

𝑓
𝑛

now, and you want to connect it with the integration of the limit inferior, which appears as a

limit of these integrations of s.𝑔
𝑛
'

Now, for every fix at n, you have this inequality because . Now, you observe this set𝑔
𝑛

≤ 𝑓
𝑛

of arguments, that , because the limit exists∫  𝑙𝑖𝑚 𝑖𝑛𝑓 (𝑓
𝑘
) = 𝑙𝑖𝑚 ∫ 𝑔

𝑛
= 𝑙𝑖𝑚 𝑖𝑛𝑓 ∫ 𝑔

𝑛
 

here, so therefore, it is equal to the limit inferior. So, that is all we are using.

But now observe that individually s integrations of that is less equals to integration of𝑔
𝑛

∫ 𝑓
𝑛

. So therefore, And, therefore, you get the required inequality,𝑙𝑖𝑚 𝑖𝑛𝑓 ∫ 𝑔
𝑛

≤  𝑙𝑖𝑚 𝑖𝑛𝑓 ∫ 𝑓
𝑛
.



that integrations of limit inferiors of the functions is less equal to limit inferior of the

integration of the functions. You get the inequality, required inequality. This proves the part 1.
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But now from part 1, you can prove part 2, by observing that limit superior of the functions

and limit inferior functions have this interesting connection, that limits superior of the

functions is equal to minus or the limit inferior of minus efference. So, now, let us go back to

that assumption in part 2. So, we are going to consider the minus s now.𝑓
𝑛
'

So, if you consider the minus s, you immediately get the lower bound given by minus f,𝑓
𝑛
'

and four minus f, the integration of that avoids that value , so that is exactly in the set off− ∞



of part 1, and therefore, you can consider , and therefore, by part 1, you get𝑙𝑖𝑚 𝑖𝑛𝑓 (− 𝑓
𝑛
)

. And just multiply both sides by , you will𝑙𝑖𝑚 𝑖𝑛𝑓 (− 𝑓
𝑛
) ≤  𝑙𝑖𝑚 𝑖𝑛𝑓 (− ∫ 𝑓

𝑛
) − 1

immediately get the required relation involving lim sup as stated in part 2.
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So, the proof of Fatou’s lemma is pretty simple, as long as you choose the right function,

right sequence of functions and you will immediately get it. So, therefore, that proves Fatou’s

lemma. But it is important to note that in part 1 of Fatou’s lemma, if all the functions are

non-negative, then we may as well take the lower bound function to be identically 0. So, this

is used sometime.

So, you are having this general form of monotone convergence theorem now, that, if all the

functions are non-negative, even though the functions are not convergent to a limit, you can

consider limiting the failure of the functions and limits superior of the functions and you can

claim certain inequalities involving the integrations of the limit inferior and limits superior.

Now, in the Fatou’s lemma, you have observed that we have only managed to prove an

inequality. So, you might ask whether we can actually improve it to an equality. See it so

happens that you will actually get a inequality you cannot improve it further. So, we are

showing this by an example of a strict inequality that might appear, so you cannot get an

equality statement. So, consider the Lebesgue measure lambda on the real line, and consider a

sequence of function .𝑓
𝑛

So, again the set of a Fatou’s lemma you do not expect these functions to be monotone, but

you should expect to get some kind of a limit inferior or limit superior. So, let us try to look at

this kind of functions given by times indicator of . So, these functions takes them𝑛 (0,  1
𝑛 ]

value on the interval , everywhere else this function takes the value 0, so that is how𝑛 (0,  1
𝑛 ]

the functions are defined.
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Now, it is easy to check that the limit function actually exists here, and therefore the limit

inferior will agree with that limit function. So, here, for any point x you can show that the

limit function is identically 0. So, therefore, integration of the limit inferior of the functions is

exactly 0. So, if you integrate this limit inferior with respect to the Lebesgue measure, limit

infinity is identical is 0, so therefore, the integration is identically 0.

But what happens to of the integrals. So, let us first compute the integrals of s. So,lim inf 𝑓
𝑛

here s, remember, they are n times the integrator of . So, therefore, follow the𝑓
𝑛

 (0,  1
𝑛 ]

definition of the integral with respect to the measure, lambda the Lebesgue measure that will

be nothing but n times the Lebesgue measure of the , but that is nothing but times(0,  1
𝑛 ] 𝑛 1

𝑛

which is 1.

So, for all positive integers , you immediately computed that the integration of is exactly𝑛 𝑓
𝑛

equal to 1. So, therefore, is exactly equal to 1. Here you are getting a strict𝑙𝑖𝑚 𝑖𝑛𝑓 ∫ 𝑓
𝑛

inequality that s is exactly equal to 0, but limited inferior of the integrations is∫ 𝑙𝑖𝑚 𝑖𝑛𝑓 𝑓
𝑛

equal to 1. So, this is a strict inequality. So therefore, you cannot improve the Fatou’s Lemma

statement further, and put it as equality, you cannot do that.
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And now we go to a more general result, and this is a very important result in measure

theoretic integration. This is called the dominated convergence theorem. So, again, we are

now going to consider limit functions and their integrations. And this is going to give us

some ideas on computing integrations by approximations.

So, here, we are considering a sequence of functions , , so on, and considered a function𝑓
1

𝑓
2

. So, suppose that sequence of functions converges to almost everywhere. So, see, we𝑓 𝑓

have now relaxed the convergence to involve this almost everywhere statement. So, what

does it mean? So, it means, that they exist a - null set such that outside the - null setµ 𝑁 µ 𝑁



on the complement of the - null set the convergence holds and the function values willµ 𝑓
𝑛

convert the function value of f.

So, for all those points outside the null set, you will get the convergence. So, we do not care

what happens on the null set, because we have already remarked that values on a null set will

not affect the integral’s values. So, we are here interested in the integration’s values.

(Refer Slide Time: 13:33)

So, if it so happens that the functions, the original functions are dominated by a fixed

function g this is very important. You need a fixed function that dominates . If it so𝑔 |𝑓
𝑛
|

happens for all and if is integrable, then you claim that the limit function is also𝑛 𝑔 𝑓

integrable and you get this exchange of limit and integration.

So, by that, I mean, is which is exactly equal to So, you are∫ 𝑓𝑑µ ∫ 𝑙𝑖𝑚 𝑓
𝑛

= 𝑙𝑖𝑚 ∫ 𝑓
𝑛
 .  

allowed to exchange the order of limit, and integration here. And that will agree with the

integration of the limit function, even though it is up almost everywhere convergence. So,

again, remember, here, the first equality immediately follows because these two functions

agree almost everywhere.

Only on a null set these functions might differ, but it does not affect the values of the integral.

Now, as for the conditions ’s are dominated by a integrable function , and therefore, ’s𝑓
𝑛

𝑔 𝑓
𝑛

are already integrable, so that is not an issue. So, but here you need to show that integration



of that is well defined and in particular you are claiming as a part of the statement of the𝑓

theorem that is integrable. So, you have to somehow establish that.𝑓
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So, how do you prove this? So, start with this bound that is given to you. So, now these

functions more different they are non-negative functions and they are dominated from above

by these integrable function . Now, here, you get the pointwise convergence of a s to f, so𝑔 𝑓
𝑛

therefore, you get that is almost everywhere, outside this null set where possibly the|𝑓| ≤ 𝑔

convergence does not hold.

So, on the null possibly the convergence may not occur. So, outside that null set you get this

point is convergence, so, therefore, you get this bound upper bound given by the function g.

Now, you consider a different function , which we are going to use as a upper bound on the𝑔
~

function . So, look at this function . So, on the situation on the points where mod of f is|𝑓| 𝑔
~

dominated by the g function there you retain the function value of g otherwise you assign the

value . So, that is how the new function is defined.∞ 𝑔
~
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So, how does look like. So, in terms of this expressions involving indicators you can write𝑔
~

it as this that multiplied by the indicator of this set where otherwise it is on𝑔(ω) |𝑓| ≤ 𝑔 ∞

the set . Now, here what is happening observe that you have already said that this set|𝑓| > 𝑔

mod of is greater than f has 0 measure, so that is good.

And here if the function is a limit of measurable function, so, that is measurable So,𝑓

measurability here is not an issue. So, therefore, the function that you have such defined is𝑔
~

a measurable function.
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Write down that argument that function is Borel measurable. But now you observe that𝑔

point wise the function is now dominated by . So, on the points where was|𝑓| 𝑔
~

|𝑓|

dominated by there you have taken that value otherwise, of course, the function value is𝑔

dominated by . So, therefore, you get a .∞ |𝑓| ≤ 𝑔
~

But what happens to So, again, on a set of measure 0 the value does not matter, so∫ 𝑔
~

∞

therefore, you just get back the value of integration of g on the set in the . But this|𝑓| ≤ 𝑔

indicator is, of course, less equal to the indicator of the whole set, therefore, you can

dominate the forced integration by integration of g itself, g is a non-negative function, so that

is not a problem.

But is given to be integrable so, therefore, that is finite. So, therefore, , is𝑔 ∫ 𝑔
~

𝑔
~

non-negative that integration is finite.
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So, therefore, you observe the inequality. Now, that integration of is dominated by .|𝑓| ∫ 𝑔
~

So, this is true because is dominated from above by . Therefore, is integrable. So, you|𝑓| 𝑔
~

𝑓

have proved the first part of the statement, but you would like to show that you can exchange

the order of integration in the limits.

So, here, what is happening, look at the limit function. So, here, almost𝑓 = lim 𝑓
𝑛
 

everywhere, but if the limit exists then you can also identify it with and .lim inf lim sup

So, here, again, we are interested in integrations, so therefore, in the following arguments

whenever we are explicitly writing down the equalities or inequalities involving integrations,

we are not going to care about this null set.

So, let us look at this equalities. So, . So, as long∫ 𝑓 𝑑µ = ∫ 𝑙𝑖𝑚 𝑓
𝑛
 𝑑µ =  ∫  𝑙𝑖𝑚 𝑖𝑛𝑓 𝑓

𝑛
 𝑑µ

as you expect that integration to exist, you have that.
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Now, what you end up having, is that, now comes out by an application of the Fatou’slim inf

Lemma. So, was inside if you bring it out, you get a less equal to inequality. Butlim inf

now, , so that is a standard argument involving𝑙𝑖𝑚 𝑖𝑛𝑓 ∫ 𝑓
𝑛
 𝑑µ ≤ 𝑙𝑖𝑚 𝑠𝑢𝑝 ∫ 𝑓

𝑛
 𝑑µ

sequences of real numbers or extended real numbers, so that you already have.

Now, you push the limits superior inside. Again, you retain that inequality that is by the

second part of the Fatou’s Lemma. So, now goes inside, but you still getlim sup

. But now observe that pointwise limit superior of the𝑙𝑖𝑚 𝑠𝑢𝑝 ∫ 𝑓
𝑛
 𝑑µ ≤ ∫ 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑓

𝑛
 𝑑µ

functions is equal to limits of the functions, and therefore, you get the equality.

So therefore, you have originally started off with , and you have ended up with itself.∫ 𝑓 ∫ 𝑓

But in between, there has been some inequalities, less equal to symbols. But you have

obtained the left-hand side term and the right-hand side term which are equal. Hence, here we

have used Fatou’s lemma twice, but somehow you have obtained that the left-hand side and

the right-hand side are equal.



Therefore, in these inequalities, you must have equalities because the left-hand side and the

right-hand side match. So, therefore, you have immediately claim that

. As a consequence, you acclaim that limit of
𝑛

lim inf ∫ 𝑓
𝑛
 𝑑µ =

𝑛
lim sup ∫ 𝑓

𝑛
 𝑑µ

integrations exists, limit of integration of a s exists, that is our first observation.𝑓
𝑛

(Refer Slide Time: 20:35)

Moreover, if all the equalities hold, then you acclaim that , it will be equal to∫ 𝑓 =  ∫ 𝑙𝑖𝑚 𝑓
𝑛

the . So, therefore, you have proved that and then that will be𝑙𝑖𝑚 ∫ 𝑓
𝑛

∫ 𝑓 =  ∫ 𝑙𝑖𝑚 𝑓
𝑛

equal to . So, here you are allowed to exchange the order of limits and integration.𝑙𝑖𝑚 ∫ 𝑓
𝑛
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So, this is possible by the boundedness assumption given by the function . So, this is an𝑔

important assumption that whenever you area considering general functions , which can𝑓
𝑛

take arbitrary values now, but as long as the functions are dominated by this integrable𝑓
𝑛

function then you can exchange the limits and integrations. So, that is a statement of the𝑔

dominated convergence theorem. And a particular case of that will also tell you that the limit

function is integrable. Even if that the limit function is taken in almost everywhere sense. So,

we have managed to prove the dominated convergence theorem.
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Now, we are going to see that this dominated convergence theorem is a very general result

and very useful in practice, we are going to use the shorthand notation DCT to refer to this

dominated convergence theorem. Now, as a consequence of this dominated convergence

theorem, we are now going to make some nice statements. So, continue with the setup of the

dominated convergence theorem.
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So, here you assume that s are converging to the function almost everywhere, and the𝑓
𝑛

𝑓

functions are dominated by integrable function so are dominated by integrable𝑓
𝑛

𝑔 |𝑓
𝑛
| 



function . Now, observe that if a s converge to almost everywhere then look at this𝑔 𝑓
𝑛

𝑓

sequence of functions that will converge pointwise to 0 almost everywhere.|𝑓
𝑛

− 𝑓| µ

Therefore, you do not care about the values that are occurring on that null set, outside the

normal set, the convergence holds, and therefore, this limit will be the 0 from. But observe

that the function can be dominated by . However, you have again said|𝑓
𝑛

− 𝑓| |𝑓
𝑛
| + |𝑓 |

that almost everywhere these things are dominated by g.

So, s are dominated by and is also dominated by almost everywhere. So, therefore,𝑓
𝑛

𝑔 |𝑓 | 𝑔

in almost everywhere statement you get bound for , but , is non-negative,2𝑔 |𝑓
𝑛

− 𝑓| 2𝑔 𝑔

is also integrable. So, as long as is integrable, is also integrable.2𝑔 𝑔 2𝑔

Therefore, you apply the DCT to this sequence of functions now, which is . And|𝑓
𝑛

− 𝑓|

the result will follow because you are just considering the exchange of limit and integration.

So, if you push the limit inside, as for the statement in this corollary, if the limit goes inside,

you consider the limit function here, and the limit function is 0, so that will contribute

integration to be 0. So, therefore, you get the statement. So, this is an important consequence

of the dominated convergence theorem.
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Now, look at further results, which are appearing as a special case of the dominated

convergence theorem. So, consider the case of probability measures, and here, we are going

to consider random variables. So, again, remember, random variables are nothing but

measurable functions, as long as you have a probability measure on your domain side.

So, let us consider this theorem, which appears as a special case of the dominated

convergence theorem. And it is known as the bounded convergence theorem. So, what do you

do? You look at a sequence of random variables all defined on the same probability space.

So, here are the sequences , , . . . and so on.𝑋
1

𝑋
2



Suppose, you get this random variable such that converges to almost surely, so, by𝑋 𝑋
𝑛

𝑋

that, I mean that our outside the null set the convergence holds pointwise. Now, if there exists

a constant key positive such that models of s are dominated by , then, you claim that all𝑋
𝑛

𝑘

the random variables , so on those random variables and limit random variable , all of𝑋
1

𝑋
2

𝑋

these are integrable, and you can exchange expectations and limits.

So, first of all will match with , but then, you allow the exchange to occur that𝐄𝑋 𝐄 (
𝑛

lim 𝑋
𝑛
)

limit can come out of the expectation, and that is what you will get as the statement. And,

moreover, you can also claim, so that . So, how do you prove this?
𝑛

lim 𝐄|𝑋
𝑛

− 𝑋| = 0

So, again, earlier we had mentioned that if you are going to bound a random variable by a

constant, positive constant, you will immediately get the integrability. So, this was discussed

in note 6 earlier, but now, the rest of the proof will follow from the DCT and the corollary

that was discussed above. Let us make a few comments just to understand the steps.
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So, again as long as these s are bounded by this constant and ’s converge to almost𝑋
𝑛

𝑋
𝑛

𝑋

surely, you will get that is bounded by almost surely. Again, by note 6, as discussed𝑋 𝑘

earlier must be integrable. In particular, this argument can also be discussed through the𝑋

proof of the dominated convergence theorem.



So, will be integrable. So, integrability is not an issue. But then if you are interested in only𝑋

integrations or expectations as in this case, will be matching with . So, that is𝐄 𝑋 𝐄 (
𝑛

lim 𝑋
𝑛
)

fine because the equality holds almost surely for the and . So, the expectations are𝑋
𝑛

lim 𝑋
𝑛

matching.

But then, by the dominated convergence theorem, you are allowed to exchange the order of

integrations and limits so expectations can be exchanged with limits in this situation. And

finally, by the corollary, you get the expectation of the modulus of difference will converge to

0 that is by the corollary. So, that proves it.
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Now, here, we have used a probability measure for our discussion, but this bounded

convergence this result can also be stated for the case when is a finite measure. So, here weµ

had taken to be a probability measure, but if you take to be a finite measure there youµ µ

cannot talk about random variables, but you can talk about measurable functions.

Here, if you can get that the measurable functions are dominated by some constant then you

can argue the same that using the fact that constant functions are integrable you will claim

that if all the measurable functions are dominated by a positive constant, then the functions

will be integrable. Then if the functions converge point-wise to a limit function almost

everywhere sense then, you will get that the limit function is also integrable.



And then finally, you are allowed to exchange the order of integration and limits. So, that

appears as a special case of the dominated convergence theorem. But in this course, we are

mostly interested in exchange of order of expectation and limits, which of course appears as a

particular case when you consider the probability measures, and random variables.

So, with that observation, we have finished the discussion about the dominated convergence

theorem, which is a pretty general result that allows us in computation of integration of the

limit function. So, as long as you know the integrations of s, you can consider the limit of𝑓
𝑛

integrations of and obtain the integration of the limit function. So, that is quite useful in𝑓
𝑛

practice

Now, in later lectures, we are going to connect Reimann integration and Lebesgue integration

and using that and using the nominator convergence theorem, we are finally ready to compute

integrations over the real line. So, we have mentioned certain integrations with respect to the

Lebesgue measure earlier, but once you have connected Reimann integration and Lebesgue

integration, then by applications of DCT, we are going to see some very, very nice results. So,

we stop the lecture here, and we are going to continue the discussion in the next lecture.


