Measuring Theoretic Probability 1
Professor: Suprio Bhar
Department of Mathematics & Statistics,
Indian Institute of Technology, Kanpur
Lecture 33
Fatou’s Lemma and Dominated Convergence Theorem

Welcome to this lecture. In this week, we are looking at limiting behavior of measure
theoretic integration. One of the major results that we has seen has been the monotone
convergence theorem, which was property involving this limiting behavior of measurable
functions and corresponding limiting behavior of the integrals. So, but we have also seen that
as a consequence of monotone convergence theorem we had the additivity property. Now, we

are going to discuss further general results that apply in limiting behaviors.
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So, let us move ahead to the slides and discuss. So, we have already seen this in monotone
convergence theorem and seen these useful applications, we are now focusing towards results

specifically involving limits of this integrals.

Now, important comment is that in all of our discussion, we are going to fix this measure
space (£, F, ). Now, here is a very important result that is called the Fatou’s Lemma and
this is applicable to a quite a general situation, and that is why, this has been referred to it as

theorem even though it is called as the Fatou’s Lemma.
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So, let's consider this situation that you are looking at this Borel measurable functions
f Y f R fn so on that is a sequence, and then you consider a function f. So, these are

some collection of Borel measurable functions. Now, if it so happens that fn's this functions

are dominated from below by this function f for all n and if the integration of f is avoiding

the value — oo. So, first of all, integration of f should exist and avoids the value — oo.

In this situation you can get a statement involving integration and lim inf of the sequence of

functions. And this says that you can bring out the lim inf from the integral, but you will end



up with an inequality. So, therefore, integration of lim inf of functions is less or equal to

lim inf of the integrations. So, this is the first part of the statement.

The second part says that if you have a bound going in the other direction, so, that means that

if f _sare dominated from above by this function f and if it so happens that the integration of

f exists and avoiding the value + oo then you claim the other sided inequalities, but it

involves limits superior of the functions and their integrations.

So, here the statement says that integration of the limit superiors is at least limit superior of
the integrations. So, that is the statement here. You might recall that a similar statement was
considered for the extended version of the monotone convergence theorem. So, therefore, we
have seen such lower bounds given by a certain type of a function and we had considered the

limiting behaviors.

But here it is important that the sequence of functions in the extended version of the
monotone convergence theorem should be more monotone meaning either it should be
increasing or decreasing. But here in Fatou’s lemma we are not assuming any mode on
behavior of the sequence of the functions. And as such, it is important to note that limit of the

functions pointwise limit of the functions need not exist.

However, what we can always talk about are these functions limit superior of the sequence
and limit inferior of the sequence? These are the things that are appearing in the statement of

the Fatou’s lemma.
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So, how do you prove this Fatou’s lemma. So, consider this sequence of functions fn and
using these sequence of functions consider another sequence of functions call it g, So, how
these g sare defined. So, you look at for integers in 1,2,3,4 so on, you look at the infimum of
the remaining functions. So, that means, that if your n = 10, look at f " f 1 and so on.

Look at all those functions, look at the infimum of that.

So, pointwise infimum will define for you the corresponding function g0 that is how these

functions are defined. But then remember, infimum over a countable set of functions if the

functions fns are given to be Borel measurable, then you immediately get the functions g, to

be measurable. So, infimum will give you measurable functions. But, moreover, there are

certain interesting properties of this function g,

So, here f S case when you are considering the monotone behavior, here, the infimums are
always less equals to the individual fm. So, g, < fn by definition, but you have also
assumed here in the first part that fns have a lower bound given the above by the function f.
But now, you also have that the g s are increasing in n and it will approximate the limit

inferior of the functions f .



So, here this is an important comment that this infimum of the functions that is how the g,s

are defined, they increase in n and increase to the limit inferior of the functions. Now, here

what you do, you have constructed a sequence of functions g, which are now monotone,

monotone increasing, and are bounded from below of function f with integration of f

avoiding the value — oo.
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So, therefore, you can apply them extended form of the monotone convergence theorem, and
you immediately get that [ g, will increase and increase to the [ lim inf (f k) . So that is a
statement here that applies from the extended form of the modern convergence theorem.

Now, you would like to make this connection with the actual sequence of functions f n's, and

they are integrals. So, let us just try to compare the [ g, and [ fn. So, you want to bring in fn

now, and you want to connect it with the integration of the limit inferior, which appears as a

limit of these integrations of gn's.
Now, for every fix at n, you have this inequality because g, < fn Now, you observe this set

of arguments, that [ liminf (fk) = lim | g, = liminf [ g, - because the limit exists

here, so therefore, it is equal to the limit inferior. So, that is all we are using.
But now observe that individually g.s integrations of that is less equals to integration of | fn

. So therefore, lim inf [ g,< liminf [ fn. And, therefore, you get the required inequality,



that integrations of limit inferiors of the functions is less equal to limit inferior of the

integration of the functions. You get the inequality, required inequality. This proves the part 1.

(Refer Slide Time: 25:41)

< &.Lm‘\v\Q g@n dr
e \iﬂ\w% ?Mxt Q)
Yok () %\\om& %\om Gy ond e obZenvedion

ol kw:f“% 'gr\ =" ?\““m‘j‘\l (_ rgn} ‘

‘. T \gm\\- ) @. Fofows \th\G\) .\,3:

%“70 ¥r,  Ahen W e Toka fg:o_

et fJ{,’ﬂQH., be Rondl meatuneble

r%xn-\t\'\w .

© Te 428 ¥n o B4 >-w,

; e o \epnn

e (i G dp € Voo (6 4

©) T,g"fg“ ¢L Nn, ond, S'Etif« <,

Frex S a\ims\» > L [3 -

et B dpe 2 Ko Sy

But now from part 1, you can prove part 2, by observing that limit superior of the functions
and limit inferior functions have this interesting connection, that limits superior of the

functions is equal to minus or the limit inferior of minus efference. So, now, let us go back to

that assumption in part 2. So, we are going to consider the minus f n's Now.

So, if you consider the minus fn's, you immediately get the lower bound given by minus f,

and four minus f, the integration of that avoids that value — oo, so that is exactly in the set off



of part 1, and therefore, you can consider lim inf (— fn), and therefore, by part 1, you get

liminf (— fn) < liminf (— ffn) . And just multiply both sides by — 1, you will
immediately get the required relation involving lim sup as stated in part 2.
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So, the proof of Fatou’s lemma is pretty simple, as long as you choose the right function,
right sequence of functions and you will immediately get it. So, therefore, that proves Fatou’s
lemma. But it is important to note that in part 1 of Fatou’s lemma, if all the functions are
non-negative, then we may as well take the lower bound function to be identically 0. So, this

1s used sometime.

So, you are having this general form of monotone convergence theorem now, that, if all the
functions are non-negative, even though the functions are not convergent to a limit, you can
consider limiting the failure of the functions and limits superior of the functions and you can

claim certain inequalities involving the integrations of the limit inferior and limits superior.

Now, in the Fatou’s lemma, you have observed that we have only managed to prove an
inequality. So, you might ask whether we can actually improve it to an equality. See it so
happens that you will actually get a inequality you cannot improve it further. So, we are
showing this by an example of a strict inequality that might appear, so you cannot get an
equality statement. So, consider the Lebesgue measure lambda on the real line, and consider a

sequence of function fn.

So, again the set of a Fatou’s lemma you do not expect these functions to be monotone, but

you should expect to get some kind of a limit inferior or limit superior. So, let us try to look at

this kind of functions given by n times indicator of (0, %]. So, these functions takes them

value n on the interval (0, %], everywhere else this function takes the value 0, so that is how

the functions are defined.
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Now, it is easy to check that the limit function actually exists here, and therefore the limit
inferior will agree with that limit function. So, here, for any point x you can show that the
limit function is identically 0. So, therefore, integration of the limit inferior of the functions is
exactly 0. So, if you integrate this limit inferior with respect to the Lebesgue measure, limit

infinity is identical is 0, so therefore, the integration is identically 0.

But what happens to lim inf of the integrals. So, let us first compute the integrals of fns. So,

here fn s, remember, they are n times the integrator of (0, %]. So, therefore, follow the

definition of the integral with respect to the measure, lambda the Lebesgue measure that will
be nothing but n times the Lebesgue measure of the (0, %], but that is nothing but n times %

which is 1.

So, for all positive integers n, you immediately computed that the integration of fn is exactly
equal to 1. So, therefore, lim inf [ fn is exactly equal to 1. Here you are getting a strict

inequality that [ lim inf fns is exactly equal to 0, but limited inferior of the integrations is

equal to 1. So, this is a strict inequality. So therefore, you cannot improve the Fatou’s Lemma

statement further, and put it as equality, you cannot do that.
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And now we go to a more general result, and this is a very important result in measure
theoretic integration. This is called the dominated convergence theorem. So, again, we are
now going to consider limit functions and their integrations. And this is going to give us

some ideas on computing integrations by approximations.

So, here, we are considering a sequence of functions f o f ,» SO on, and considered a function

f. So, suppose that sequence of functions converges to f almost everywhere. So, see, we
have now relaxed the convergence to involve this almost everywhere statement. So, what

does it mean? So, it means, that they exist a p- null set N such that outside the p- null set N



on the complement of the p- null set the convergence holds and the function values fn will

convert the function value of f.

So, for all those points outside the null set, you will get the convergence. So, we do not care
what happens on the null set, because we have already remarked that values on a null set will

not affect the integral’s values. So, we are here interested in the integration’s values.
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So, if it so happens that the functions, the original functions are dominated by a fixed

function g this is very important. You need a fixed function g that dominates | fn|. If it so

happens for all n and if g is integrable, then you claim that the limit function f is also

integrable and you get this exchange of limit and integration.

So, by that, I mean, [ fdu is which is exactly equal to J lim fn = lim ffn. So, you are

allowed to exchange the order of limit, and integration here. And that will agree with the
integration of the limit function, even though it is up almost everywhere convergence. So,
again, remember, here, the first equality immediately follows because these two functions

agree almost everywhere.

Only on a null set these functions might differ, but it does not affect the values of the integral.

Now, as for the conditions fn’s are dominated by a integrable function g, and therefore, fn’s

are already integrable, so that is not an issue. So, but here you need to show that integration



of f that is well defined and in particular you are claiming as a part of the statement of the

theorem that f is integrable. So, you have to somehow establish that.
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So, how do you prove this? So, start with this bound that is given to you. So, now these
functions more different they are non-negative functions and they are dominated from above

by these integrable function g. Now, here, you get the pointwise convergence of a fns to f, so

therefore, you get that |[f| < g is almost everywhere, outside this null set where possibly the

convergence does not hold.

So, on the null possibly the convergence may not occur. So, outside that null set you get this

point is convergence, so, therefore, you get this bound upper bound given by the function g.
Now, you consider a different function g, which we are going to use as a upper bound on the

function |f|. So, look at this function g. So, on the situation on the points where mod of f'is

dominated by the g function there you retain the function value of g otherwise you assign the

value c. So, that is how the new function g is defined.
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So, how does g look like. So, in terms of this expressions involving indicators you can write
it as this that g(w) multiplied by the indicator of this set where |f| < g otherwise it is o on
the set |f| > g. Now, here what is happening observe that you have already said that this set

mod of is greater than f has 0 measure, so that is good.

And here if the function f is a limit of measurable function, so, that is measurable So,

measurability here is not an issue. So, therefore, the function g that you have such defined is

a measurable function.
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Write down that argument that g function is Borel measurable. But now you observe that

~

point wise the function |f| is now dominated by g. So, on the points where |f| was

dominated by g there you have taken that value otherwise, of course, the function value is

dominated by oo. So, therefore, you geta |f| < g.

But what happens to [ g So, again, on a set of measure 0 the value o does not matter, so

therefore, you just get back the value of integration of g on the set in the |f| < g. But this
indicator is, of course, less equal to the indicator of the whole set, therefore, you can
dominate the forced integration by integration of g itself, g is a non-negative function, so that
is not a problem.

~ ~

But g is given to be integrable so, therefore, that is finite. So, therefore, [ g, g is

non-negative that integration is finite.
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So, therefore, you observe the inequality. Now, that integration of |f| is dominated by [ g.

~

So, this is true because |f| is dominated from above by g. Therefore, f is integrable. So, you
have proved the first part of the statement, but you would like to show that you can exchange

the order of integration in the limits.
So, here, what is happening, look at the limit function. So, here, f = lim fn almost
everywhere, but if the limit exists then you can also identify it with lim inf and lim sup .

So, here, again, we are interested in integrations, so therefore, in the following arguments
whenever we are explicitly writing down the equalities or inequalities involving integrations,
we are not going to care about this null set.

So, let us look at this equalities. So, [ fdu = [ lim fn dp = [ liminf fn du. So, as long

as you expect that integration to exist, you have that.
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Now, what you end up having, is that, lim inf now comes out by an application of the Fatou’s

Lemma. So, liminf was inside if you bring it out, you get a less equal to inequality. But

now, liminf [ fn du < limsup [ fn du, so that is a standard argument involving
sequences of real numbers or extended real numbers, so that you already have.

Now, you push the limits superior inside. Again, you retain that inequality that is by the

second part of the Fatou’s Lemma. So, lim sup now goes inside, but you still get

limsup [ fn du < [ limsup fn du. But now observe that pointwise limit superior of the

functions is equal to limits of the functions, and therefore, you get the equality.

So therefore, you have originally started off with [ £, and you have ended up with [ f itself.

But in between, there has been some inequalities, less equal to symbols. But you have
obtained the left-hand side term and the right-hand side term which are equal. Hence, here we
have used Fatou’s lemma twice, but somehow you have obtained that the left-hand side and

the right-hand side are equal.



Therefore, in these inequalities, you must have equalities because the left-hand side and the

right-hand side match. So, therefore, you have immediately claim that
lim inf [ f du = limsup f f du As a consequence, you acclaim that limit of
n n

integrations exists, limit of integration of a f 8 exists, that is our first observation.
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Moreover, if all the equalities hold, then you acclaim that [ f = [ lim fn, it will be equal to
the lim [ fn. So, therefore, you have proved that [ f = [lim fn and then that will be

equal to lim [ fn. So, here you are allowed to exchange the order of limits and integration.

(Refer Slide Time: 21:08)
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So, this is possible by the boundedness assumption given by the function g. So, this is an

important assumption that whenever you area considering general functions fn, which can
take arbitrary values now, but as long as the functions fn are dominated by this integrable

function g then you can exchange the limits and integrations. So, that is a statement of the
dominated convergence theorem. And a particular case of that will also tell you that the limit
function is integrable. Even if that the limit function is taken in almost everywhere sense. So,

we have managed to prove the dominated convergence theorem.
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Now, we are going to see that this dominated convergence theorem is a very general result
and very useful in practice, we are going to use the shorthand notation DCT to refer to this
dominated convergence theorem. Now, as a consequence of this dominated convergence

theorem, we are now going to make some nice statements. So, continue with the setup of the

dominated convergence theorem.
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So, here you assume that fns are converging to the function f almost everywhere, and the

functions fn are dominated by integrable function g so | fn| are dominated by integrable



function g. Now, observe that if a fns converge to f almost everywhere then look at this

sequence of functions | fn — f| that will converge pointwise to 0 p almost everywhere.

Therefore, you do not care about the values that are occurring on that null set, outside the
normal set, the convergence holds, and therefore, this limit will be the 0 from. But observe

that the function | fn — f| can be dominated by | fn| + |f |. However, you have again said

that almost everywhere these things are dominated by g.

So, fns are dominated by g and |f | is also dominated by g almost everywhere. So, therefore,
in almost everywhere statement you get bound 2g for | fn — f], but 2g, g is non-negative,

2g is also integrable. So, as long as g is integrable, 2g is also integrable.

Therefore, you apply the DCT to this sequence of functions now, which is | fn — f] . And

the result will follow because you are just considering the exchange of limit and integration.
So, if you push the limit inside, as for the statement in this corollary, if the limit goes inside,
you consider the limit function here, and the limit function is 0, so that will contribute
integration to be 0. So, therefore, you get the statement. So, this is an important consequence

of the dominated convergence theorem.
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Now, look at further results, which are appearing as a special case of the dominated
convergence theorem. So, consider the case of probability measures, and here, we are going
to consider random variables. So, again, remember, random variables are nothing but

measurable functions, as long as you have a probability measure on your domain side.

So, let us consider this theorem, which appears as a special case of the dominated
convergence theorem. And it is known as the bounded convergence theorem. So, what do you
do? You look at a sequence of random variables all defined on the same probability space.

So, here are the sequences X o X o and so on.



Suppose, you get this random variable X such that X _ converges to X almost surely, so, by

that, I mean that our outside the null set the convergence holds pointwise. Now, if there exists

a constant key positive such that models of X S are dominated by k, then, you claim that all
the random variables X o X , S0 on those random variables and limit random variable X, all of

these are integrable, and you can exchange expectations and limits.

So, first of all EX will match with E (lim X n), but then, you allow the exchange to occur that
n

limit can come out of the expectation, and that is what you will get as the statement. And,

moreover, you can also claim, so that lim E|X o~ X| = 0. So, how do you prove this?
n

So, again, earlier we had mentioned that if you are going to bound a random variable by a
constant, positive constant, you will immediately get the integrability. So, this was discussed
in note 6 earlier, but now, the rest of the proof will follow from the DCT and the corollary

that was discussed above. Let us make a few comments just to understand the steps.
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So, again as long as these an are bounded by this constant and Xn’s converge to X almost

surely, you will get that X is bounded by k almost surely. Again, by note 6, as discussed
earlier X must be integrable. In particular, this argument can also be discussed through the

proof of the dominated convergence theorem.



So, X will be integrable. So, integrability is not an issue. But then if you are interested in only

integrations or expectations as in this case, E X will be matching with E (lim X n). So, that is
n

fine because the equality holds almost surely for the X and lim X . So, the expectations are
n

matching.

But then, by the dominated convergence theorem, you are allowed to exchange the order of
integrations and limits so expectations can be exchanged with limits in this situation. And
finally, by the corollary, you get the expectation of the modulus of difference will converge to

0 that is by the corollary. So, that proves it.
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Now, here, we have used a probability measure for our discussion, but this bounded
convergence this result can also be stated for the case when p is a finite measure. So, here we
had taken p to be a probability measure, but if you take p to be a finite measure there you

cannot talk about random variables, but you can talk about measurable functions.

Here, if you can get that the measurable functions are dominated by some constant then you
can argue the same that using the fact that constant functions are integrable you will claim
that if all the measurable functions are dominated by a positive constant, then the functions
will be integrable. Then if the functions converge point-wise to a limit function almost

everywhere sense then, you will get that the limit function is also integrable.



And then finally, you are allowed to exchange the order of integration and limits. So, that
appears as a special case of the dominated convergence theorem. But in this course, we are
mostly interested in exchange of order of expectation and limits, which of course appears as a

particular case when you consider the probability measures, and random variables.

So, with that observation, we have finished the discussion about the dominated convergence
theorem, which is a pretty general result that allows us in computation of integration of the

limit function. So, as long as you know the integrations of fns, you can consider the limit of
integrations of fn and obtain the integration of the limit function. So, that is quite useful in

practice

Now, in later lectures, we are going to connect Reimann integration and Lebesgue integration
and using that and using the nominator convergence theorem, we are finally ready to compute
integrations over the real line. So, we have mentioned certain integrations with respect to the
Lebesgue measure earlier, but once you have connected Reimann integration and Lebesgue
integration, then by applications of DCT, we are going to see some very, very nice results. So,

we stop the lecture here, and we are going to continue the discussion in the next lecture.



