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Welcome to this lecture. In this week, we are focusing on the limiting behavior of measure

theoretic integration, and we are also going to see applications of this in obtaining other

major properties. So, in the first lecture of this week, we have already seen proof of the

monotone class theorem, and as an application, we have seen a brief sketch of the proof of

the additivity of the integration. So, we are continuing that discussion, and we are going to

look at the structures that follow when we focus on the limiting behaviors. So, let us move

ahead and start the discussion with the notes.
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So, in this lecture, we are going to discuss the effect of null sets in integration. So, what do I

mean by null sets? Null sets mean, the sets of measures 0 in the given -field. So, for theσ

purpose of the discussion we are going to fix this measure space .  (Ω,  ℱ,  µ)



(Refer Slide Time: 01:24)

First definition is about certain properties holding almost everywhere. What does it mean?µ

Property P, is said to hold almost everywhere if there exists a null set in your -field. So,℘ µ σ

that means, that it has measured 0, such that, outside the null set on the complement of the

null set the property holds at that points .℘ ω

So, therefore, you are going to obtain some null set outside which you are going to get the

required property or you can verify the property on those points. So, shorthand notation for

this kind of a situation will be a . e . almost everywhere. So, that will be short handµ µ

notation that we are going to use.
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So, let us first try to understand what do these almost everywhere statements look like and

what do they mean. So, consider some function , it need not be measurable, but suppose,ℎ

you know that there is a function , such that, on the points where takes negative values,ℎ ℎ

that set has measured 0. Suppose you are given this fact, then you are going to say that ℎ ≥ 0

, is non-negative, a. e.ℎ µ

So again, on the complement of this set, you get the other condition which is . So, thatℎ ≥ 0

is what you are looking for, you are looking for such null sets outside, which your property or

the statement hold. A similar situation might involve two functions or more functions. So, let

us look at this situation.

So, again, let us consider functions and , again, this need not be measurable. As long as𝑓 𝑔

you know that the set of points where , if that measure is 0, then, what you say𝑓(ω) > 𝑔(ω)

is that , a. e. So, therefore, as long as the measure of the complimentary event gets 0𝑓 ≤ 𝑔 µ

mass or if the complimentary event is contained in a set of measures 0, then you are going to

say that this happens almost everywhere.
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However, you have to introduce a separate terminology for the special case when you are

dealing with a probability measure. So, suppose, you are dealing with a probability measure

and you are going to talk about this almost everywhere statements. So instead of using this

term, almost everywhere here, what do we prefer to use is the term almost surely or a.s. Ifℙ

the probability measure is clear from the context.ℙ

So, once you have fixed it beforehand and then started the discussion, then you might just go

with almost surely or a.s. You do not have to mention the probability measure explicitly. But

we are going to focus on such situations, and we are going to look at what is the effect of

such sets in integration.
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So here is the first result. So, consider a measurable function now, call it . It is real-valuedℎ

function. Such that a. e. So, then, we are going to claim that is 0. So, to proveℎ = 0 ∫ ℎ 𝑑µ

such a statement we are going to follow the usual procedure the standard procedure that you

are going to work with indicators of simple functions then you go to non-negative measurable

functions and finally, to general measurable functions.

So, let us start with the case of a simple function. So, let us see what happens here. So, you

have a linear combination where you have , that is a standard representationℎ =
𝑖=1

𝑛

∑ 𝑥
𝑖
 1

𝐴
𝑖

for a simple function. Now, if it so happens that for some value , you have that is nonzero.𝑥
𝑖

So, suppose you have that then you observe that the corresponding set will be contained in𝐴
𝑖

the set of points where takes nonzero values. Why?ℎ

First of all, s are taken to be pairwise disjoint. So therefore, on the points inside , these𝐴
𝑖

 𝐴
𝑖

indicator will only contribute other terms will not contribute. So therefore, on those points,

the value of will be exactly . And if is nonzero, you get the value of is nonzero there.ℎ 𝑥
𝑖

𝑥
𝑖

ℎ

So therefore, if for some i, is nonzero, then the set is contained in the set of points where𝑥
𝑖

𝐴
𝑖

takes nonzero quantities. Then, use the fact that, measure associates 0 mass to such aℎ(ω) µ



set, you use the fact to claim that is 0 whenever the is nonzero, so you have thatµ(𝐴
𝑖
) 𝑥

𝑖

conclusion.

Now let us look at the . So as per definition, we have to make sense of this summation∫ ℎ 𝑑µ

first, that you are going to multiply the scalars by the size or the measure of the sets . But𝑥
𝑖

𝐴
𝑖

here something interesting happens. Either, the value of is 0, in which case the product is 0.𝑥
𝑖

Here we are using the fact that 0. is taken as 0. Otherwise, if ’s are nonzero they are∞ 𝑥
𝑖

some real numbers, but you are multiplying sets of measures 0 here, so you are considering

sets of measure 0 here, is 0. So therefore, .µ(𝐴
𝑖
) 𝑥

𝑖
µ(𝐴

𝑖
) = 0

So, therefore, all the terms here are 0. If you sum them up, you still end up with 0. So,

therefore, what you have obtained is that exists and s 0. So, here we first made sense∫ ℎ 𝑑µ

of this summation as per the definition.

(Refer Slide Time: 07:58)

Let us move ahead, and consider the case when is non-negative and measurable. In thisℎ

case, what do you do? Follow the definition, take any simple function , which falls between𝑠

0 and the function . In this case, observe that the points where the simple function takesℎ

nonzero values on those set of points, each will also take nonzero values. Why? Because you

are dealing with functions and s to be non-negative.ℎ



And if you know that s takes strictly positive values, so these are the points exactly where s

takes nonzero values. So, on those points also must take nonzero values, as it is taking atℎ

least that much value on those points. So, it is above the function s. So, therefore, you have

this inclusion. But now, since the set of points where takes nonzero values, that set of pointsℎ

has 0 mass, you will immediately claim that the set of points where s takes nonzero values

that also has 0 mass. And, hence, you now apply the result that you have obtained in the

previous paragraph for simple functions.

You immediately claim, that the integration of such a simple function must be 0. But you

have chosen the simple functions to be below , such that, it falls between 0 and . And forℎ ℎ

all such simple functions, you have no claim that the integration is 0 and by definition∫ ℎ 𝑑µ

is the supremum of all these quantities, therefore, it turns out to be 0. So therefore, you have

shown that here it is defined, and it takes the value 0.∫ ℎ 𝑑µ

(Refer Slide Time: 09:49)

So, let us move ahead to the case of general measurable functions, which takes now real

values it can take positive values or negative values. So, you follow the definition and split

the function into its positive part and negative part. So, again, observe that the set of pointsℎ

where takes positive values on those points you know that the negative part will beℎ ℎ−

taking 0 value. This identification has been discussed earlier.



Therefore, on the points, where is strictly positive on those points must be nonzero.ℎ+ ℎ(ω)

Similarly, you can make the same statement for that the set of points for takes nonzeroℎ− ℎ−

values it is contained in the set of points where takes non-zero follows, but you are givenℎ

that the set of points for takes nonzero values that has measures 0 and hence, he will claimℎ

that both for and the set of points where these functions takes nonzero values that hasℎ+ ℎ−

measures 0.

But since and separately they are non-negative and measurable functions. So,ℎ+ ℎ−

therefore, using the previous steps argument you will claim that the and both∫ ℎ+ 𝑑µ ∫ ℎ− 𝑑µ

must be 0. And hence, as a difference of these two quantities will have a integral, soℎ ∫  ℎ𝑑µ

exists and takes the value 0. So, to complete the proof for all the type of functions that you

consider in measure theory.

So, one important step that we would like to highlight is that in the above proof in each step

we have established the existence of and then we are showing that is∫  ℎ 𝑑µ ∫  ℎ 𝑑µ

actually. So, let us just go back to the statement just to highlight this fact.

(Refer Slide Time: 11:58)



So, in the statement, we are not saying that has integral or exists, we are directlyℎ ∫  ℎ𝑑µ

claiming that we are starting off with a measurable function so we do not know whether

exists, but it is a part of the statement that exists and takes the value 0. So,∫  ℎ 𝑑µ ∫  ℎ 𝑑µ

this clarification is important.

(Refer Slide Time: 12:24)

So, let us see what happens if you try to use this result, and obtain further nice properties. So,

here you start off with two measurable functions and now. And suppose it happens that𝑔 ℎ

a. e. So, that means, the set of points where inequality holds will be contained in a𝑔 = ℎ µ

set of measures 0. So that is good.

So, therefore, you can now try to say about their connection involving the or∫  𝑔 𝑑µ ∫  ℎ 𝑑µ

. So, here the statements says, that if one of the integrals exists, then so does the other and

they must be equal. So, how do you show this?



(Refer Slide Time: 13:22)

So, suppose you start by assuming without loss of generality, that exists then you∫  𝑔 𝑑µ

consider the function , which is . So, and separately they are given to the𝑓 𝑔 − ℎ 𝑔 ℎ

measurable functions, so therefore, they are difference which is is also measurable. But𝑓

then you are given the fact that almost everywhere and therefore, you will claim that𝑔 = ℎ 𝑓

must be 0 almost everywhere.

So therefore, by the previous proposition, you will immediately claim that the exists∫  𝑓 𝑑µ

and it is 0. Now, look at the fact that now can be expressed as . And as such, you areℎ 𝑔 − 𝑓



going to use the additivity property to claim that exists. Why? You have assumed∫ ℎ 𝑑µ

exists and you have shown that exists, so therefore, their difference makes∫ 𝑔 𝑑µ ∫ 𝑓 𝑑µ

sense, and will imply the existence of .∫ ℎ 𝑑µ

But then, what is the value? The value is exactly the difference of the two integrations, but

the second integration is nothing but 0, so therefore, you get back the value of itself.∫ 𝑔 𝑑µ

So, therefore, if one of the integrations exists, and the functions match almost everywhere,

you get the same value for the other functions integral. So, this is a very important property.

Now you can try to extend this kind of a notion when you are dealing with external

real-valued functions and their integrations. So, suppose, you consider and to be extended𝑔 ℎ

real value, and Borel measurable then consider integrable functions. So again, here you areµ

assuming that is finite. Then the statements says that the set of points where∫ |ℎ| 𝑑µ |ℎ|

takes as its value that has measure 0.+ ∞

So, and restatement of this, in terms of the function is this where the function takesℎ ℎ ± ∞

as its value that set as measure 0. Now, there is a way to state this in terms of almost

everywhere statements, and you are going to say, that is finite a. e. By that we mean thatℎ µ

takes these infinite values on sets of measures 0 or such possibilities are included inℎ ± ∞

our set of measures 0.
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We prove this by contradiction. So, assume, that the set of points consisting of the situations

where takes values, so that set of points, if it has positive mass under the measureℎ(ω) ∞ µ

then consider the . So, here, is a non-negative function, and therefore, its integrals∫ |ℎ| 𝑑µ |ℎ|

exists could be , but let us look at this lower bound.+ ∞

So, we consider the multiplication by this specific indicator. So, this is exactly the set where

is taking value . So, we are just multiplying by , and therefore,|ℎ| + ∞ 1
(|ℎ|=±∞)

|ℎ| ≥ |ℎ| 

. So, we are using that inequality for the integrations. But on this set, takes the1
(|ℎ|=±∞)

|ℎ|

value , so it is just a simple function here.+ ∞

So, you get this value while you compute the integration as per the definition. So, this is the

value of the function multiplied by the size of the set. And that turns out to be since, the∞

measure of this set is assumed to be positive. Therefore, we ended up with the fact that

is infinity, but this will contradict the fact that is integrable.∫ |ℎ| 𝑑µ ℎ

Remember, is integrable means, that is finite. So, you have a contradiction, whichℎ ∫ |ℎ| 𝑑µ

arise in from this condition, which we assume that this set of points has positive mass. So,

therefore, this set of points must have 0 mass, and that will tell you or give you the result.
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So, let us move forward and use this observation in the next result. Consider a non-negative

function now, so then, you can always consider the . But if it so happens that theℎ ∫ ℎ 𝑑µ

is 0, then we can claim that almost everywhere. So, again, how do you∫ ℎ 𝑑µ ℎ = 0 µ

approach this. So, it is given, that is non-negative, so you do not have to worry aboutℎ ℎ

taking negative values. So, forget about that situation.

So now we only have to consider two situations when h takes the value 0, and h takes

positive values. So, now, you want to show that a. e. so it is therefore enough toℎ = 0 µ

show that takes positive values on a set of measures 0, so that is the target. Now this set,ℎ

instead of directly working with it, considered a slightly different set, so for integers n 12,3,4,

and so on, consider this sequence of sets where .ℎ > 1
𝑛

So, you just considered this set of values. So, we first claim that these set has 0 mass under

the measure . If the claim is true, then observe that the set taking positive values that setµ ℎ

has this approximation from below by the sets ( . So, that is all you have to observeℎ > 1
𝑛 )

and use the continuity from below of the measure .µ

Now if it so happens, that assigns mass 0 to type sets, then the limit value is also 0.µ ℎ > 1
𝑛

And that will tell you that takes positive values on a set of measure 0. So that will end theℎℎ



argument as soon as you prove the claim. So, you want to prove that for all natural numbers 𝑛

, , that set of points will get 0 mass.ℎ > 1
𝑛

(Refer Slide Time: 20:02)

Again, use a contradiction argument. So, this is a proof by contradiction. So, suppose for

some natural number n naught, it so happens that the measure of this set is positive then try to

compare the functions and times the indicator of this set. So, here we have assumed thatℎ ℎ

the measure of this set is positive. But observed that is non-negative so, therefore,ℎ

inequalities pointwise holds and therefore, the same inequality holds for the integrations.



But on this set , so you get this lower bound for the integration. Remember, it isℎ > 1
𝑛

0

always greater equals to here. So, now, you put that lower bound here and then consider1
𝑛

0

the indicator function. So, that is all we are writing down, but then this is no a simple

function, write down the integration so, that is positive.

So, now, what does it tell you? It says that is strictly positive. So, that will contradict∫ ℎ 𝑑µ

the hypothesis. And, therefore, this contradiction is arising from the assumption that for some

natural number and not measured up this set is positive. So, therefore, we must have that for

all possible natural numbers measure of is 0, so we must have that.ℎ > 1
𝑛

(Refer Slide Time: 21:28)

Now, you use this while comparing two functions. So, if it so happens that you take two

measurable functions and and you observe that that is a non-negative functionℎ 𝑔 |ℎ − 𝑔|

integration of that is 0 then you will claim that almost everywhere. So, how do youℎ = 𝑔 µ

prove this? So, here, you take the function to be . So, this is now a non-negative𝑓 |ℎ − 𝑔|

function, which integration is 0.

So, therefore, by the previous part you will immediately claim that must be 0 a. e. But𝑓 µ

that will immediately tell you that on this set of points where the function is taking value 0,𝑓

there you must have that is pointwise happens. So, therefore, outside the appropriateℎ = 𝑔

null set, you must have , so that completes the proof.ℎ = 𝑔
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But now here is an interesting question. So, suppose it so happens that instead of assuming

that h is non-negative throughout you assume that is non-negative almost everywhere,ℎ µ

and take it together with the fact that is 0, then, can you show that a. e. So,∫ ℎ 𝑑µ ℎ = 0 µ

this is the only difference in the hypothesis.

Now, that we had earlier assumed that is non-negative throughout, but now we are sayingℎ ℎ

is non-negative almost everywhere, but we are taking the to be 0 then can you nowµ ∫ ℎ 𝑑µ

claim that h is 0 one most everywhere, take it as an exercise. But an important fact that weµ



have understood from all this discussion is that the hellos have a measurable function on a set

of measure 0 will not affect the value of the integration.

So, you can forget about the values of the function, whatever they are on a set of measure 0.

And more generally, in the setup of this proposition where we had done all these

compositions of functions and so on, if we are only interested in the integration part, then the

equality almost everywhere may be treated as an equality of functions. So, let us𝑔 = ℎ µ

just go back to this proposition 2 once more.
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So, in proposition two, we stated that if two functions are measurable, and they agree almost

everywhere, if one of the integrals exists, then so does the other, you also get the equality of

the integration. So, if you are only interested in the equality of the integration and existence

of the integration, then, you can as well treat the functions and to be the same in the𝑔 ℎ

setup.

So, if two functions agree, and you are only interested in the integration value, then you treat

the two functions to be the same. So, in the setup of this proposition 2, you are going to

consider that two functions agreeing almost everywhere is almost equivalent to equality of

functions.
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But we have also mentioned in proposition , that you can talk about this external real valued3

functions, but they are integrable, then this is essentially real-value. So, we said that this is

finite valued, finite valued means it is real value. So therefore, it can only take the values

on a set of measure 0. It cannot take on a set of positive measure.± ∞ ± ∞

So, therefore, here also you can treat it as a real-valued function, as long as you are dealing

with integrations. So, as long as the function is integrable then the function cannot take ,± ∞

as its value on a set of positive measure.

(Refer Slide Time: 25:23)

So, with that understanding let us now consider the case of random variables. So, we have so

far discussed the situation for general measurable functions, but suppose you want to discuss

things when the measure, the given measure is a probability measure. So, highlight that

problem dimension here and you consider the random variable .𝑋

If it so happens that you get this bound point wise that there exists a constant such that𝐶 > 0

is dominated from above by this constant for all points, then you get this|𝑋(ω)| ≤ 𝐶,  ∀ω

bound for the integration and therefore the expectation. So, is , but if the𝐄 |𝑋| ∫ |𝑋| 𝑑ℙ

function is dominated from above by this constant function, , you observe this|𝑋| 𝐶

inequalities and find that is finite. So therefore, is integrable in this situation.𝐄 |𝑋|  𝑋 



So, if is bounded by such constants, is integrable. However, in the discussion above, we𝑋 𝑋

have considered these kind of inequalities in the almost sure framework. So, whenever you

are talking about proclamations you talk about instead of saying almost everywhere you say

almost surely, so a.s.
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So, suppose this happens then for again an appropriate null set you get these appropriateℙ

statements that these domination holds, but what happens to this inequality now. So, here you

already have a bound on n complement. So, if is the null set, then on the complement of𝑁

the null set you get the bound. So, that is what almost surely statements imply.

But you can consider this inequality that . Observe that this|𝑋(ω)| ≤ 𝐶. 1
𝑁𝑐 

 +  ∞.  1
𝑁

inequality holds now point for all points in the domain. Now, try to look at the bound

function here. So, here you are using the constant value on and then value on the set𝐶 𝑁𝑐 ∞

of measured 0.

So, now try to show that this upper bound that you have constructed this function is

integrable and that will tell you that will also be integrable. So, verify that is integrable if𝑋 𝑋

is bounded from above by a constant almost surely. So, you can reduce the, this restriction𝑋

that it has to be bounded point-wise to bounded almost surely. So, try to work this out this is

left as an exercise.
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So, now here is an interesting comment. So, look at this very specific situation that is a setΩ

of three elements and consider the Dirac measures portrayed at the point c here, .{𝑎,  𝑏,  𝑐} δ
𝑐

Now, spatially you consider this -field ={ , , } these four sets. So, you canσ ℱ Φ {𝑎,  𝑏} {𝑐}, Ω

immediately verify that this is a -field. Now consider that Dirac measure here, and considerσ

these two special functions. So, and , so , but take the function like this, that𝑔 ℎ 𝑔 = 1
{𝑎, 𝑏}

ℎ 

you define the function value , , . So, we will see the reason forℎ(𝑎) = 1 ℎ(𝑏) = 2 ℎ(𝑐) = 0

these choices.
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Now, observe here that the will not put any mass on so that will be 0. Here, oneδ
𝑐

{𝑎,  𝑏}

important comment, is that, we have not included the subsets, and in the -field. So,{𝑎} {𝑏} σ

remember, our - field is made up of the empty set, the doubleton set, and the singleton setσ

and the whole set . So, the singleton sets or are not there in the -field.Ω {𝑎} {𝑏} σ
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So, here, I have this set of measure 0, which is this doubleton set, but its subsets and{𝑎} {𝑏}

singleton sets are not included in the -field. So, what we have observed is that subsets ofσ

null sets, here the doubleton set is a null set, the subsets of it need not be in the -field. So,σ

this gives you an interesting observation. But now consider this situation for the set of points

where and does not agree.𝑔 ℎ
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So again, let us just go back to the values of and . So, takes the value 1 on the points𝑔 ℎ 𝑔 𝑎

and , takes the value 0 on the point . So, therefore and defers only on the point , all𝑏  𝑐 𝑔 ℎ 𝑏

the other points and , the functions and match. So, only at the point the functions do𝑎 𝑐 𝑔 ℎ 𝑏

not agree. So, if you consider the set of points where and do not agree so that will be the𝑔 ℎ

singleton set , but this is the subset of this null set that we have just observed. But this{𝑏}

specific null set is not having this property that all its subsets are also in the -field. So,σ

specifically, this subset of singleton set is not included in the -field.{𝑏} σ
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Now, by definition almost surely, Dirac measure is a probability measure, so you use𝑔 = ℎ

the term almost surely. So, it does not agree with these function only on a set of measures.ℎ

So, you can, as well consider this set that will be a superset of the points where and{𝑎,  𝑏} 𝑔

do not agree, and the super set has 0 mass.ℎ

But here you note that , which is indicator of the doubleton set is measurable because𝑔 {𝑎,  𝑏}

the doubleton set is in the -field, but is not a measurable function. So, observe this thatσ ℎ 𝑔

is measurable, agrees with almost surely, but is not a measurable function. So, this is an𝑔 ℎ ℎ

important observation. So, please check this.
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In continuation of this observation given a measure, we usually are going to enlarge the σ

-field by including all subsets of null sets. So, typically it may not be true that all subsets of a

null sets are already included. Now, if you include all these possible subsets of null sets, this

procedure of enlarging the -field is known as the completion of the -field. So, by includingσ σ

all the null sets and by an appropriate construction you can get a -field once more, whichσ

will be containing a larger number of sets. Now, this is known as completion of the -fieldσ

with respect to the given measure.
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So, here what we are considering is the Dirac measure here, and we had observed that the

singleton set was not there. If you include this by considering that these are subsets of{𝑏}

measure 0 sets under the measure that will be the competition, if you include all thoseδ
𝑐

appropriate subsets.
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So, here, we are not going to discuss this topic in further detail. We shall, however, briefly

connect this topic in a later lecture. There we are going to talk about the Lebesgue measure

on the Borel -field. So, take it as a fact that the Borel -field is not complete with respect toσ σ

the Lebesgue measure, by that I mean, not all subsets of null sets are included. And what we

are going to do is, to include all the subsets of measure 0 sets included in the Borel - field.σ

And if you include all those subsets, which are subsets of measures 0 sets, you are going to

enlarge the Borel -field, and you are going to get a -field by an appropriate constructionσ σ

that is referred to as the Lebesgue -field. This latter -field now contains all subsets of theσ σ

null sets with respect to the Lebesgue measure.

We are going to use this -field in as very specific construction, but otherwise, we are alwaysσ

going to work with the Borel -field. So, we are assuming the fact that Borel -field is notσ σ

complete with respect to the Lebesgue measure by that, I mean, not all subsets are measure 0

sets are included. However, we are not going to discuss the completion structure, the

procedure of completion in further detail. So, we stop here and we will continue the

discussion in the next lecture.


