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Welcome to this lecture. This is the first lecture of week 7. So before going forward with the

discussions of this week, let us first quickly recall what we have done in the previous week

that is in week 6. So, we have defined the integration of measurable functions with respect to

the domain site measure.

We have also looked at some of the major properties of such an integration. And as an

application, we have obtained the expectations of discrete random variables. So that is, in a

nutshell, what we have discussed in the previous week. Let us go forward and look at the

slides of this lecture.
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In the previous week, we defined the measure theoretic integration of real-valued measurable

functions. And as a particular case, we also looked at the expectations of random variables.

So, these are simply the integration of these measurable functions with respect to the

underlying probability measures.

In this week, we are going to study the limiting behavior of such integrals. And of course, as

a consequence, we are also going to get limiting behavior of expectations of random

variables. These results are now being stated for real-valued measurable functions. However,

if you can obtain the existence of the integrals, you can also consider these results in the

extended real-valued functions case.



And using similar arguments you can extend or prove the results for these extended reroute

functions. The arguments are identical and we are not going to separately state the origins for

extended real-valued functions. As long as you can define the integrals for extended

real-valued functions or you get the appropriate integrability conditions you can prove this.
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But let us focus on one of the important steps that we did in week 6. We computed the

expectation for discrete random variables. And what we had used there was that the fact that

the law of these discrete random variables are convex linear combination of Dirac measures.

So, this was used quite significantly, and we had to therefore consider the integrals of the

underlying random variable with respect to these different, different probability measures or

different, different Dirac measures.

So, in many of the following arguments, similar situations will arise. In that, we have to

consider that the integrals are with respect to different measures or different probability

measures, but the measurable function or the random variable that we are going to consider

remains fixed. So, under this setup, it's important to keep track of the measure, and

underlying measure with respect to which we are doing the integration.

So, to clarify this or to keep track of this, we are going to introduce this terminology to

highlight, which measure we are using when we are doing the integration.

(Refer Slide Time: 03:21)



So, in this lecture, we are going to continue with the standard notation that will be(Ω,  ℱ,  µ)

a measure space. So that is being a measure on this measurable space . So, what areµ (Ω,  ℱ)

these terms? So, we are going to introduce these terms called integrable functions andµ µ

quasi-integrable functions.

So, what are these? So, if you have a function measurable with respect to the appropriate -σ

fields, you are going to say that this is integrable, if, is finite and is alsoµ ∫  𝑓+ 𝑑µ  ∫  𝑓− 𝑑µ

finite. So, this is exactly the integrability setup that we had considered in the previous week.

We are just adding the measure in front of the term integrable instead of just saying is𝑓

integrable we are now going to say if is integrable.µ



So, this is now highlighting the measure in question with respect to which you are doing the

integration. And similar terminology will now going through be used for quasi integrability

case where and are going to be considered.∫ 𝑓+ 𝑑µ ∫  𝑓− 𝑑µ

And if one of them is finite and the other is infinite, you are going to say, that is quasi-𝑓

integrable with respect to the measure or you can use this shorthand terminology that isµ 𝑓 µ

quasi-integrable. This is again, the same terminology that we had used in the previous week,

but we are just highlighting the measure now, by saying is integrable or is quasi𝑓 µ 𝑓 µ

integrable
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So, with these terms in hand, you can restate the results of the previous week, and that is what

you should do as an exercise. Try to write down all these statements by using the terms µ

integrable or quasi-integrable. So, now, we are going to look at the proof of the Monotoneµ

Convergence Theorem that was left out in the previous week.

So, first recall the statement that you are going to consider a sequence of non-negative Borel

measurable functions, such that, the function should be non-decreasing in . And as soon as𝑛

that happens, we had earlier explained that there will be a limit function, which you call as ℎ

and we had also mentioned that the limit function being a limit of measurable functions will

become a measurable function.

So, therefore, you can consider . Now, since you are given these functions you can∫  ℎ 𝑑µ ℎ
𝑛

also consider and we are going to say that increases to the limit value∫  ℎ
𝑛 

 𝑑µ ∫  ℎ
𝑛 

 𝑑µ

which is given by , so that was the statement of monotone convergence theorem.∫  ℎ 𝑑µ

So, before proving this a couple of comments that we should be aware of, is that the function

that we are using here in the statement is non-negative and hence, you have the existence of

all the integrals. So, these integrals will exist but can take values as . So, the values possible∞

values of these integrals are . So, this is the range of possible values.[0,  ∞]



(Refer Slide Time: 06:44)

Next thing that we have to be aware of, is that, there are these comparison type inequalities

between the functions. So, for every fixed n, , so therefore, corresponding integralsℎ
𝑛

≤ ℎ
𝑛+1

will also follow the same order. So, . But being the limit of all these∫ ℎ
𝑛
 𝑑µ ≤ ∫ ℎ

𝑛+1
 𝑑µ ℎ

non-decreasing sequence of functions, you get that is upper bound for all these functions.ℎ

So, therefore, you also get the upper bound for all these integrations as . But since∫ ℎ 𝑑µ

are increasing in you therefore, get the limit value. And as per these inequalities∫ ℎ
𝑛
 𝑑µ 𝑛



you will immediately claim that . So, that is a very simple inequality
𝑛 ∞
lim
→

∫ ℎ
𝑛
 𝑑µ ≤ ∫ ℎ 𝑑µ

that is just going to follow from the original inequality that we just mentioned.

But what the modern convergence theorem is saying, is that, in these inequality the equality

holds, as long as, you are dealing with these non-decreasing, non-negative functions. So,

non-decreasing in n. So, that is the statement of the modern convergence channel.

(Refer Slide Time: 08:04)

So, let us see how do you prove this statement. So, start with any simple function , which is𝑠

approximating the function from below So, what you are going to do is to choose thisℎ

simple function below . So, since is non-negative you are just going to choose theseℎ ℎ

simple functions between 0 and . And for the purpose of our argument we also need to fix aℎ

scalar between 0 and 1. So, you will see the usage of the scalar .α α

But use these two quantities, the function and the scalar to write down this inequality, that𝑠 α

, and so, of course, . So, you have these inequalities. So, what we are going toα𝑠 ≤  𝑠 𝑠 ≤ ℎ

do is to consider the integrations of this, but on specific type of sets.

What we are going to do is to now bring in the functions . So, the functions increased toℎ
𝑛

 ℎ
𝑛

point wise, so that is the definition of anyway so you can consider these sets . So, forℎ ℎ 𝐴
𝑛

every fixed consider the set of points on the domain such that .𝑛 ℎ
𝑛
(ω) ≥ α 𝑠(ω)



So, what is this? Look at the sequence of , they increase an increase to . So,ℎ
𝑛
(ω) ℎ(ω)

therefore, in this inequality what is going to happen is that is increasing, and increasesℎ
𝑛
(ω)

to the value of . So, therefore, it will close the value at some certain stage, so we areℎ α 𝑠(ω)

going to consider that specific event. So, this is what these events or these sets are keeping

track of.

We are going to look at . But now, if you let go up to you will{ω ∈ Ω/ℎ
𝑛
(ω) ≥ α 𝑠(ω)} 𝑛 ∞

immediately say that , as they are approximating the value , so therefore, it isℎ
𝑛
(ω) ℎ (ω)

definitely going to cross this value . So therefore, these sets increase and increase toα 𝑠(ω)

the whole set , so this is the increasing ness in .Ω 𝑛
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Now, you look at every fix at positive integer , you look at𝑘

𝑛 ∞
lim
→

∫ ℎ
𝑛
 𝑑µ ≥ ∫ ℎ

𝑘
 𝑑µ ≥ ∫ ℎ

𝑘
 1

𝐴
𝑘

𝑑µ ≥ α∫ 𝑠 1
𝐴

𝑘

𝑑µ

So, that is just by the increasing property of the functions . But now look at theseℎ
𝑛

non-negative functions and multiply by indicator of . So, these functions are, ofℎ
𝑘

𝐴
𝑘

ℎ
𝑘

course, greater or equals to , so you get this inequality here.ℎ
𝑘
 1

𝐴
𝑘



But what is happening on these sets , is that, there. So, on the sets the𝐴
𝑘

ℎ
𝑘
 ≥  α 𝑠 𝐴

𝑘

function . So, use that, and you get this relation star. So, therefore, limit ofℎ
𝑘
 ≥  α 𝑠

integrations has this interesting lower bound given by . So, this is what∫  ℎ
𝑛
 𝑑µ α∫ 𝑠 1

𝐴
𝑘

 𝑑µ 

we have observed now.

But in this inequality that we have obtained, the first term on the left-hand side that you see is

independent of the natural number . And the term that you see on the right most expression𝑘

that is dependent on . But here this ’s increased to as increases to . So, what we are𝑘 𝐴
𝑘

Ω 𝑘 ∞

going to do is to look at the limit in this relation star.

So, look at the first quantity on the left-hand side that is independent of our value . So,𝑘

therefore, you can just write this same value. So, I have just changed the indexing from to𝑛 𝑘

this is not a big change. So, therefore, this quantity of whatever this is, this is not dependent

on after you take the limit.𝑘  

But what happens on the right-hand side? So, the right-hand side here will give you these

limits here. So, you are taking limits in for the functions in between and then for the𝑘 ℎ
𝑘

functions here. So, that is all, you are writing down from the relation start.𝑠
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Observe here, that the function is kept fixed here only variation in appears to the set ,𝑠 𝑘 𝐴
𝑘

and is increased to the whole set . Now, recall the fact that for non-negative measurable𝐴
𝑘

Ω

functions, and in particular, for non-negative simple functions the integrals work sets give

you a measure. And in particular, this measure also is continuous from below. So, therefore,

as soon as the integrals here that are being considered over the sets these will increase to𝐴
𝑘

the whole integral, because is increased to the whole set .𝐴
𝑘

Ω

So, therefore, here, you have and therefore, they will increase to here. And∫ 𝑠 1
𝐴

𝑘
 
 𝑑µ ∫ 𝑠 𝑑µ

the scalar just keeps intact here. So, therefore, you get the relation double star. This hasα

been discussed in note 15 of week 6, about the continuity from below of this measure.

(Refer Slide Time: 13:47)



Now, observe that in double star, the left-hand side term is independent of , and theα

right-hand side is getting multiplied with the integral. So, here, the choice of wasα α

between 0 and 1. If you will, now, let increase to 1 in double star what do you get, you getα

that is lower bounded by , but this is true for all simple functions , suchlim ∫  ℎ
𝑘
 𝑑µ ∫  𝑠 𝑑µ 𝑠

that, .0 ≤ 𝑠 ≤ ℎ

Now, what you can do, is that, you can choose to take supremum over the right-hand side

over all such simple functions. And therefore, you are immediately going to get the inequality

𝑘→∞
lim ∫ ℎ

𝑘
 𝑑µ ≥ ∫ ℎ 𝑑µ.  

But remember, that in note 3, we had mentioned earlier, that s are dominated from aboveℎ
𝑘
'

by the function , and therefore, , and therefore, the are dominatedℎ ∫ ℎ
𝑘
 𝑑µ 

𝑘→∞
lim ∫ ℎ

𝑘
 𝑑µ 

from above by .∫ ℎ 𝑑µ

So therefore, we already had the other-sided inequality. Now, put it together with the

inequality that we have just obtained, and we are going to get the required equality as stated

in the modern convergence theorem. So therefore, we have proved the monotone

convergence theorem. Now as an important consequence of the modern convergence



theorem, in week 6, we had mentioned that linearity of measure-theoretic integration is true,

and we had used that in our arguments. But now, it is a good time to see, the proof of the

linearity or the additivity properties of measure theoretic integration.

(Refer Slide Time: 15:18)

So, let us quickly recall the statement that you are considering two real valued measurable

functions given to you. And if it so, happens that exists, also exists and then∫ 𝑓 𝑑µ ∫ 𝑔 𝑑µ

you also can make sense of , then, the statement says exists and it is∫ 𝑓 + ∫ 𝑔 ∫(𝑓 + 𝑔) 𝑑µ

equal to the addition of the integrals . Here, the , addition with∫ 𝑓𝑑µ + ∫ 𝑔 𝑑µ ∫ 𝑓 𝑑µ ∫ 𝑔 𝑑µ

is defined only if does not occur. So, that was what we had discussed earlier. ∞ − ∞
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Let us see, how do we prove this. First, consider a very simple situation that and are𝑓 𝑔

non-negative and simple. In that case, we had already mentioned that is also𝑓 + 𝑔

non-negative and simple. Therefore, what you can now try to verify, is that, the relation holds

and that will follow directly from the definition. This you can take it as a small exercise, but

it is just following from the definition of the integration, as we had considered in the previous

week. So, that takes care of the simple situation.

But then let us move ahead and try to consider the case when both m and g are non-negative

and measurable. But recall, we had discussed earlier in week 3 that we can find sequences fn

and gn of non-negative simple functions, which approximates the functions and from𝑓 𝑔

below. So, given any non-negative measurable functions, you can figure out such simple

functions which will approximate the given functions from below.
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Here you are going to apply the modern convergence theorem. You will immediately say that

and , so that is good. But observe that is also a∫ 𝑓
𝑛 

𝑑µ ↑  ∫ 𝑓 𝑑µ ∫ 𝑔
𝑛 

𝑑µ ↑  ∫ 𝑔 𝑑µ  𝑓 + 𝑔

non-negative measurable function, and are simple functions, which point wise𝑓
𝑛

+ 𝑔
𝑛

increase to the function right. So, this is simply following the definitions of a s and𝑓 + 𝑔 𝑓
𝑛
'

s.𝑔
𝑛
'

And therefore, you apply the monotone convergence theorem to these approximation now,

you will immediately say that . If you consider the integrations and then consider the𝑓
𝑛

+ 𝑔
𝑛

limits of that, that will be exactly the . So therefore, you get this equality.∫(𝑓 + 𝑔) 𝑑µ
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But then you had already mentioned that you can split the integration, you can write it as an

addition of the two individuals integrals when the functions are simple and non-negative,

which is the case here. So, therefore, you split the integration here, as and ,∫ 𝑓
𝑛
 𝑑µ ∫ 𝑔

𝑛
 𝑑µ

therefore, you do this. And individually these terms approximate and , just∫ 𝑓 𝑑µ ∫ 𝑔 𝑑µ

write that, and therefore, you get the required relation.

So, you have now proved it up to the case when both and are non-negative, and𝑓 𝑔

measurable. But the general case it will be slightly more complicated. You will need to look

at the positive part of , and negative part of . But in general, there is a technical𝑓 + 𝑔 𝑓 + 𝑔

complication which is the fact that the positive part of is not necessarily equal to𝑓 + 𝑔

, it is not really the addition of the two positive parts.𝑓+ +  𝑔+

So, what is going to happen is that we will have to be carefully do the accounting for the

positive parts and negative parts and get the required equalities. What we are going to do is to

skip the explicit arguments, we want to reduce the technicalities. We are going to assume that

this can go through for measurable functions, which are now taking signs, but here you are

assuming that the functions has integrals which exist.

So, for these cases, you can do this approximations and get the result. If you are interested,

please refer to theorem 1.6.3 from this book by Robert Ash and Catherine A. Doleans from



this book, titled, Probability And Measure Theory. So, this will be the second edition of the

book published by Academic Press.
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So, that takes care of the linearity or additivity of the integration, which was a proof

remaining from the previous week. So, now, what we are going to do is to consider extended

version of the monotone convergence theorem, which is also quite useful in practice. Again,

we are going to skip the proof and we are just going to state this result, and we are going to

use this. So, this is being stated without proof.

If you are interested you might also going to look at the book mentioned above, the book by

Robert Ash and Catherine A. Doleans Dade, and you have to look at the theorem 1.6.7. So,

what is this extended form? So, in the MCT monotone convergence theorem, we looked at

the functions, which are non-negative So, the functions already were bounded below.

Here, what we are going to consider are some other function as a lower bound, and therefore,

you will have to put some appropriate conditions on that lower bound function. So, you are

going to consider this sequence of functions as in the previous case so, you will take ,ℎ
1

ℎ
2

and as shown that will give you the sequence, you are going to consider the point wise limit

as as considered earlier, but now, as a bound you are going to consider the function .ℎ 𝑔
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So, there are two statements, here. So, if you have that ’s are lower bounded by thisℎ
𝑛

function , and if exists in the sense that it is greater than , so, you are allowing𝑔 ∫ 𝑔 𝑑µ − ∞

to exist and you need the integral value to be not equal to . So, you are allowing∫ 𝑔 𝑑µ − ∞

as a possible.+ ∞



So, in this case, if ’s increase to the function , so, it is approximating the function fromℎ
𝑛

ℎ ℎ

below then the integrals will increase and increase to the , so that is the first∫ ℎ
𝑛
 𝑑µ ∫ ℎ 𝑑µ

statement. And the other statement, which you might expect is the exact opposite relation, is

the case, when the functions are decreasing.

Here you will require an upper bound, again, we are writing it in terms of the function g. So,

if all the functions are upper-bounded by this function , and if is avoiding the value𝑔 ∫ 𝑔 𝑑µ

, so, here can take the value , but you are not letting it be equal to .∞ ∫ 𝑔 𝑑µ − ∞ + ∞

In this case, if the functions decrease to the function then you are going to get that theℎ
𝑛

ℎ

will decrease, and is going to go to this value, which is . So, we have now∫ ℎ
𝑛
 𝑑µ ∫ ℎ 𝑑µ

discussed the proof of modern convergence theorem, the additivity properties of the integrals,

and we have finally seen the extended form of MCT where you can use instead of the 0

function you can use other functions as possible lower or upper bounds for the cases of

increasing or decreasing sequences of functions. We are going to continue this discussion in

the next lecture.


