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Welcome to this lecture, this is the final lecture of week 6. So, before proceeding with the

discussion of this lecture, let us first quickly recall what we have been discussing in this

week. So, in this week, we have looked at the integration of measurable functions with

respect to the given measure on the domain side. We have also seen some major properties of

search integration.

And in particular, in the last lecture, we have finally discussed the linear structure of such an

integration. In this lecture, we are going to use all these properties and restrict our attention to

the special class of random variables, which is the class of discrete random variables, and

compute their expectations.

So, we are going to see that the expressions that come out while computing these

expectations of discrete random variables will be the same as considered in the case when we

discussed it in the basic probability courses. So, let us move on to the slides and discuss

things in more concrete detail.

(Refer Slide Time: 01:30)

So, let us start with this idea that the expectation of a random variable as defined in this

course, is through that measure theoretic integration. Now, we restrict our attention to these

discrete random variables, and we would like to simplify that definition to a more



manageable level and we would like to see how it comes out. And we would like to say that it

will at the end reduce to the familiar series expression for discrete random variables.

(Refer Slide Time: 02:17)

So, before going to the explicit computations, we require a few more results. So, the first

result in this reduction is called the change of variables or change of measure. So, you start

off with one measure space , so, that will be taken on the domain side and then(Ω
1
,  ℱ

1
,  µ

1
)

take a measurable space on the range side. And what you do is that you look at measurable

function call it f from the first measurable space to the second measurable space.

Now, you are going to construct a set function call it if which is on the range side. So,µ
2

ℱ
2

this should be a set function taking values between . So, we define it through the[0,  ∞]



pre-images of all arbitrary sets on the range side under the function . So, you look at these𝑓

pre-images and this set is now on the domain side -field by the measurable structure ofσ ℱ
1

the function f and you can consider the measure with respect to . So, what is this measure,µ
1

that values get associated to this set function. So, we first claim that this set function does

define is a measure.

(Refer Slide Time: 03:32)

Further, we want to claim that for any measurable function, now, on the range side, defined

on the range side taking values in the real line, call them , we have this integral relation. So,𝑔

you are changing measures from to where you are considering the integrations overµ
1

µ
2

µ
2

for sets coming from the range side and when you are considering integration with respect to

you are of course considering sets on the domain side.µ
1

But here note that corresponding to the integration over a set on the range side, you are𝐴

going to look at the integration of the pre-image of that set. So, that is where the integration

will be concentrated on when you are considering the domain side of it. So, this is the relation

that will allow you to do a change of measures from to or back to . This relationµ
1

µ
2

µ
2

µ
1

will hold when at least one of the integrals will exist.



(Refer Slide Time: 04:42)

So, before proving this, let us first see what this result suggests. So, take the set to be the𝐴 

whole set on the range side. Then, what does it say? It says that you have this relation

between and . So, here we are using the fact that since is a function
Ω

1

∫  𝑔 ◦ 𝑓 𝑑µ
1

Ω
2
 

∫ 𝑔 𝑑µ
2

𝑓

with range, which is possibly a subset of , so the pre-image of is nothing but the wholeΩ
2

Ω
2

domain. So, that is what is being used here. So, that is all, that is all we will allow you to

write down this equality.

Now, let us focus our attention to the case of random variables for random variables on the

domain side, we are given a probability space and on the range side, we are given this



familiar measurable space, which is the real line together with the Borel -field. Now,σ

consider the previous case, the general case as given in that theorem. So, what you do is that

you take the domain side measure space to be the probability space and the range(Ω,  ℱ,  ℙ)

side measurable space to be the real line together with the Borel -field.σ

And take the function measureable function to be the random variable , then you enter the𝑓 𝑋

familiar picture that the measure that you have thus defined is nothing but , whichµ
2

ℙ ◦ 𝑋−1

is the law of . So, we have extensively discussed about the measure theoretic properties of𝑋

this and the fact that is a measure that also has been discussed earlier.ℙ ◦ 𝑋−1 ℙ ◦ 𝑋−1
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So, following the similar argument, you can now try to prove that this now, this is aµ
1
◦ 𝑓−1

more general structure as stated in theorem 3 above. So, this is the more general structure, but

it follows the same proof same argument that will allow you to show that will become aµ
2

measure. So, for the case of random variables, you actually had that is a probabilityℙ ◦ 𝑋−1

measure, but in general, for general measures and general measurable functions you willµ
1

𝑓

only end up with a measure.

So, the push forward of a measure by a measurable function remains a measure. So, this

argument is left as exercise, but as mentioned earlier, this discussion simply is the same as

done for the case of the law of a random variable.ℙ ◦ 𝑋−1
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Now continue with this situation. Now, choose this function from to itself and assume𝑔 ℝ ℝ

that it is Borel measurable. So, choose this function the identity function. Then by𝑔(𝑥) = 𝑥

theorem 3, what you can now say that for the whole range side, take the set to be the whole𝐴

range side, then what is a pre-image?

Pre-image is the whole domain. And therefore, you have this change of measure relation that

that we have been considering while talking about the can now be
Ω
∫ 𝑋(ω) 𝑑ℙ(ω) 𝐸(𝑋)

written as an integration over by changing the measure from to .ℝ ℙ ℙ ◦ 𝑋−1

So, that is all is the application of theorem 3, when you are talking about random variable.

So, you are changing the integration from over to the over and you have this integrationΩ ℝ

now, that will come from the choice of the function as the identity function, which takes a𝑔

real number to itself.𝑥

(Refer Slide Time: 08:30)



So, therefore, you have now written as integration over the real line with respect to the𝐸(𝑋)

law , where is a genuine probability measure on . So, therefore, yourℙ ◦ 𝑋−1 ℙ ◦ 𝑋−1 ℝ

original definition that was via this probability measure on the domain side now getsℙ

transferred to the range side in terms of the law , and this relation will hold providedℙ ◦ 𝑋−1

one of the integral exists.

So, this is as per the theorem 3 above. Now, this is allowing us to write in terms of the𝐸(𝑋)

law, . So, this is, therefore, saying that fact that expected value is purely dependentℙ ◦ 𝑋−1

on the law, . So, you do not have to worry about the actual probability measure , orℙ ◦ 𝑋−1 ℙ

the actual random variable . As long as you know the law , just look at the𝑋 ℙ ◦ 𝑋−1

integration over the real line . And if you can compute this, you can get
ℝ
∫ 𝑥 𝑑ℙ ◦ 𝑋−1(𝑥)

𝐸(𝑋)

(Refer Slide Time: 09:42)



Say again continuing with this, but let us now choose a more general function here. So,𝑔

instead of the function , now choose a more general function. So, what do you do𝑔(𝑥) = 𝑥

here? Now here what will happen is that you can now consider the expected value of the

random variable composed with or . And that as per definition is𝑔 𝑋 𝑔(𝑋)

But again, if you change variables, you again end up with this integration,
Ω
∫ 𝑔(𝑋(ω)) 𝑑ℙ(ω).

which is over the real line now. So, you are trying to integrate this measureable function g on

the real line with respect to the property measure . So, again, if you can make senseℙ ◦ 𝑋−1

of one of the integrations, then this equality holds.

And moreover, if you can compute the integration over the real line, as given here, you do not

have to compute the integration with respect to the probability measure , you can just takeℙ

that same value and consider it as . So, this is the advantage that you are transferring𝐸(𝑔(𝑋))

all the information in terms of .ℙ ◦ 𝑋−1



(Refer Slide Time: 10:54)

Now here the, here is an interesting observation, choose the function . What will𝑔(𝑥) = |𝑥|

happen here is that then you are getting the fact that or that is exactly equal𝐸(|𝑔(𝑥)|) 𝐸(|𝑥|)

to . So, instead of checking these complicated integration of with
ℝ
∫ |𝑥| 𝑑ℙ ◦ 𝑋−1(𝑥) |𝑥|

respect to the probability measure , you may alternatively check this conditionℙ

.
ℝ
∫ |𝑥| 𝑑ℙ ◦ 𝑋−1(𝑥)

So, instead of doing the integration over the domain side , you do the integration over theΩ

range side which is on . So, this is the alternative condition, and may be easier to work out.ℝ

Great, so, with these observations at hand, let us now go to the proof of theorem 3.



(Refer Slide Time: 11:56)

So, again, we take our familiar approach here, these are fixed, the function f is(Ω
1
,  ℱ

1
,  µ

1
)

fixed, and what you want to do is to show that for any measurable function , will have this𝑔 𝑔

relation appropriate relation. So, that is what we want to show. First comment is that 𝑔 ◦ 𝑓

that will be measurable, because composition preserves measurability, so, as long as the

composition is defined, you will get a measurable function.

So, here is defined on the domain, with the -field , and the range as the real line𝑔 ◦ 𝑓 Ω
1

σ ℱ
1

together with the Borel -field. Now, what do you want to show is that you want to show thatσ

appropriate change of variable formula or change of measure formula holds. To do that we

follow our familiar approach, we want to prove it for indicator functions first, and then we



would like to take it over by linearity to simple functions by limiting arguments to

non-negative measurable functions.

And then finally, by linearity to general measurable functions. So, let us verify the equality

when g is an indicator. Choose a set B on the domain side, for . Here, what is happening is𝑔

that you want to verify this integration equals something else with respect to the integration

with respect to . So, let us start with this expression and put the fact that g is nothing butµ
2

this .1
𝐵

So, when you put that in, put in the definition, so this is , we are checking whether it is𝑓(ω
1
)

in the set B or not. But then that can be rewritten in terms of , and you can just check𝑓−1(𝐵)

whether the point sample point small omega1 belongs to the set . So, observe that𝑓−1(𝐵)

if and only if .𝑓(ω
1
) ∈ 𝐵 ω

1
∈ 𝑓−1(𝐵)

So, that is all we are using here. But then the integration is over the set . So, if you𝑓−1(𝐴)

put in the definition for integrations like that, then all you have to do is to look at the

integration about the whole set and multiply by the appropriate indicator of that set. So,

earlier, the integration of was over , you just brought in this indicator of , and𝑓−1(𝐴) 𝑓−1(𝐴)

you could now do the integration over the whole set omega1.
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Now, this is the product of two indicators. So, therefore, as observed earlier, this is nothing

but the indicator of the intersection of the two sets, we will just write that down. But then you

are now saying that you are going to integrate the indicator of some set with respect to the

measure . Now, using the properties of the pre-image you can also rewrite it asµ
1

. Now since you are just doing the integration of this indicator function then this𝑓−1(𝐴 ∩ 𝐵)

is nothing but .µ
1
(𝑓−1(𝐴 ∩ 𝐵))

So, that is all you are doing here. Great but that as per definition, is nothing but ( ),µ
2

µ
1

𝑓−1

and therefore, that is all you write that this is , but then you can easily write it asµ
2
(𝐴 ∩ 𝐵)

. So, this is the integration of this indicator function with respect to the measure
𝐴
∫ 1

𝐵
𝑑µ

2
µ

2

over the set . So, that is just rewriting this integration procedure.𝐴



(Refer Slide Time: 15:39)

So, therefore, you have now proved the required equality, when is a indicator. Now follow𝑔

the standard approach, use linearity and limiting behavior to extend it to any general

measurable function provided the integrations makes sense. So, that completes the proof for

theorem 3, and this allows us to state this result that change a variable or change of measure

is possible when you are talking about this measure theoretic integration.



(Refer Slide Time: 16:09)

And in particular, we have already commented earlier that one of the useful implications of

this theorem is the rewriting of the expression for , which can be written as now,𝐸(𝑥)

. So, now, before doing these explicit computations, we need a couple of
ℝ
∫ 𝑥 𝑑ℙ ◦ 𝑋−1(𝑥)

more results, and which are stated below. So, these will help us to do the simplification in our

arguments.

(Refer Slide Time: 16:42)

So, let us start with any measurable function defined on the real line. So, here, we are talking

about real valued measurable functions defined on the real line. So, what do you want to do

we want to first look at the integration of any such measurable function with respect to a𝑓



Dirac measure. So, choose a point in the real line and look at the Dirac measure supported𝑎

at the point . .𝑎
ℝ
∫  𝑓(𝑥) 𝑑δ

𝑎
(𝑥)

Then we claim that the integration of this measurable function with respect to the Dirac

measure is nothing but the evaluation of the function at the point, i.e. . So, this is a very𝑓(𝑎)

simple relation. This says that once you try to integrate a function with respect to the Dirac

measure, all you have to do is to evaluate the function at that point. So, how do you verify

this again, follow the standard approach, first verify it for the case when is an indicator.𝑓𝑓

(Refer Slide Time: 17:35)



So, let us see this. So, if is for some Borel set then put in the definition. So, . But𝑓 1
𝐵

𝐵 1
𝐵

(𝑥)

now, this is nothing but the Dirac measure applied to the set , this is as per definition so if𝐵

you integrate indicator function, all you have to do is to look at the size of the set with respect

to the given measure. So, that is all you are doing, but observe that Dirac measure associates

these values, that if then you associate the value 1, otherwise you associate the value𝑎 ∈ 𝐵

0.

But you can rewrite this in terms of the indicator in this way that this is the evaluation of the

indicator function at the point , this is just rewriting the relation or the values of Dirac𝑎

measure in terms of an indicator now. But now, what was ? So that was your choice for1
𝐵

𝑓

in this simple case. So, you have verified the equality when is an integrator, but then what𝑓

do you do for the general case, you apply the appropriate linearity and limiting arguments to

go to the general case.

So, as soon as you verify it for indicator functions, and then standard procedure takes over, as

long as all the integration makes sense, the equalities will continue to hold on. So, this is one

of the main results that will help us in computation of expectations for discrete random

variables.



(Refer Slide Time: 19:08)



But then, there is one more result that we need to recall from our earlier discussions in week

2. So, recall from this exercise 5, that addition of measures gives other measures. So, what

was this that if you have a sequence of measures, let us say, then, what you will get is that

, will give you a measure, you can also state the same result for finiteµ
1

+ µ
2

+ µ
3

+.  .  .  

such number of measures.

So, if you have up to R measures, then , that finite sum willµ
1

µ
𝑛

µ
1

+ µ
2

+ µ
3

+.  .  . + µ
𝑛
 

also be a measure. But then there is also another operation which was scalar multiplication.

So, if you choose positive scalars and multiply it to a measure, then you get other measures.

So, in fact, we had use such operations to scale finite measures to probability measures. But

of course, given any general measure, you can multiply by a positive scalar and get other

examples of measures.

So, with that result in mind, we now look at the integration of measurable functions with the

measures thus constructed. So, in particular, let us take two measures and . And weµ
1

µ
2

claim that integration of this measurable function over this measurable space omega f, where

we are assuming that all the measures are defined. So, if you are going to integrate the

function f with respect to the measure , all you have to do is to separately integrateµ
1

+ µ
2

the function with respect to , and with respect to and then add them up.µ
1

µ
2

And the same relation is true when you are talking about this infinite combination of . So,µ
𝑛

all you have to do is to individually integrate them and then add up the results. And finally,

for scalar multiplications, if you multiply this measure by this positive scalar , then thisα α



can simply come out of the integration and all you have to do is to integrate the function with

respect to the given measure .µ

So, these results will continue to hold provided the integrations that you are looking at or the

terms that you are looking at on the right-hand side makes sense. In particular, if you are

looking at this infinite linear combinations, you cannot have situations anywhere.∞ − ∞

So, again, as long as these summations make sense, you can get these equalities. Expression

on the right hand side hold, as long as they exist, you can talk about the appropriate

equalities. So, this is one other result that is going to help us in computing the expectation for

discrete random variables.
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So, how do you prove this? So, let us go back to the statements 1, 2, and 3. So, the statement

2 is just a generalization of finite addition to infinite additions. So, once you prove it, for the

finite additions case, the argument will follow by some appropriate limiting procedure so that

we will be left as an exercise. So, let us first focus our attention to I and III. So, in I, we are

talking about finite additions, finite number of additions, and in III, we are talking about

scalar multiplication.

So, let us try to work them out. And again, we are going to use this familiar procedure that we

are going to work with indicator functions. So, let us choose this function f to be , where1
𝐵

𝐵

is coming from the domain side. So, let us look at the integration now. So, is chosen to be𝑓

, and you want to integrate it with respect to the measure, , but that is nothing but1
𝐵

µ
1

+ µ
2

the measure of the set with respect to the measure .𝐵 µ
1

+ µ
2

Now, as per definition, this is measure of the set with respect to , and you are going to𝐵 µ
1

add to it the measure of the set with respect to the measure . So, that is as per definition𝐵 µ
2

of the set function . But then, individually, they are nothing but andµ
1

+ µ
2

∫ 1
𝐵

 𝑑µ
1

and therefore you get the required relation when is the indicator function.∫ 1
𝐵

 𝑑µ
2

𝑓

(Refer Slide Time: 23:32)

Let us try to verify same irrelevant equalities when f is an integrator, and the measure is

getting multiplied by a positive scalar. So, let us try to look at this. So, let us again put in that



as , and then again, put in the definition. So, this is the measure of the set with respect𝑓 1
𝐵

𝐵

to the measure , but again, as per definition of the set function , this is nothing butαµ αµ

.αµ(𝐵)

But then you write as . And that is nothing but . So, therefore, you haveµ(𝐵) ∫ 1
𝐵

 𝑑µ α∫ 𝑓 𝑑µ

verified the required relations when is an indicator, and the general case will follow for by𝑓

the standard arguments, all you have to check is that the necessary integrals exist. If the

integrals exist, you can ensure that the equality holds by this standard procedure.

(Refer Slide Time: 24:38)



So, we are now ready to compute the expectations of discrete random variables. So, this is the

culmination of all the things that we have been discussing so far. So, let us try to describe the

setting and then we will do the computation. So, let us start with this random variable ,𝑋

defined on a probability space and taking values in the real line. So, the measureable(Ω,  ℙ)

structure will be taken with respect to the -field on the domain side and the Borel -fieldσ ℱ σ

on the range side.

So, suppose this is a discrete random variable, so, you can now specify where the jumps are

occurring. So, suppose the jump points are , which you put in the support S and then what𝑥
𝑗

is the jump size so, that is nothing but . And another way of writing these jumpsℙ(𝑋) = 𝑥
𝑗

size in terms of the law is nothing but . So, this is the size of the singleton setℙ ◦ 𝑋−1({𝑥
𝑗
})

with respect to the law of .{𝑥
𝑗
} ℙ ◦ 𝑋−1

So, this we had discussed earlier. Now, recall from note 22 of week 4 that, in this case the law

can be written as a linear combination, a convex linear combination of the Dirac masses

situated at this jump points . And the sum is over all points in the support. And the weights𝑥
𝑗

that you put are exactly the jump sizes for for the point , you just look at the size of the𝑥
𝑗

𝑥
𝑗

singleton set with respect to the law .{𝑥
𝑗
} ℙ ◦ 𝑋−1

And that as we have already mentioned, this is . So, this is the linear combination,ℙ(𝑋) = 𝑥
𝑗

the convex linear combination of the Dirac masses situated at the points in the support, and



that is going to give you back the law of . So, is nothing but a convex linearℙ ◦ 𝑋−1 ℙ ◦ 𝑋−1

combination of these Dirac masses. Now, remember, we have done integration with respect to

the Dirac masses, we have also learned how to do how to split the integration of over linear

combinations of measures.

So, this was discussed in proportions 4, and 5. So, use that results and what do you get, you

have to now compute these kind of an integration that appeared in the expectations. So, here,

you first use the change of variable formula to move the integration over the domain side ,Ω
2

integration over the range side with respect to the measure . So, that is our first step.ℙ ◦ 𝑋−1

Now, you rewrite the the law as a linear combination of the Dirac masses.ℙ ◦ 𝑋−1

And as for propositions earlier, this scalar simply come out the summation simply come out

and you only have to do integrate this function which is the identity function here with𝑥

respect to the Dirac mass. And for Dirac masses, if you want to integrate any measurable

function, all you have to do is to evaluate that function at that point where the Dirac mass is

situated.

And therefore, integration of the identity function over this point over this Dirac mass is𝑥
𝑗

nothing but . This is just the evolution of the identity function at the point that is all𝑥
𝑗

𝑥
𝑗

therefore, you get back your familiar series expression for expectation of discrete random

variables.

So, this is the exact same expression that you have already seen in your basic probability

course. So, here are what we have just done, we have started off with the measure theoretic

definition of , which was defined to be integration of the measurable function with𝐄 𝑋 𝑋

respect to the probability measure and the integration was over the domain set , then weℙ Ω

use change of variable formula to move to integration over the law .ℙ ◦ 𝑋−1

And once you change this variable or measure, you end up with the integration over the real

line and you are integrating the identity function x here. But then you observe that isℙ ◦ 𝑋−1

nothing but a convex linear combination of the Dirac masses. So, therefore, you first bring

out that summation and then bring out the appropriate corresponding scalars these are all

again non-negative scalars positive scalars because jumps are non-trivial jumps and then all

you have to do is to integrate this identity function with respect to the Dirac mass.



So, these are all the things that you are using to get back your familiar expression that you

had seen in your basic probability courses. So, the general measure theoretic integration that

we have done already gives you your familiar expression for discrete random variables. Later

on, we are going to see that this general definition while restricted to other special cases give

you back your familiar expressions.

So, therefore, the measure theoretic integration is a general structure and once you prove any

result in this general structure, all these particular cases will follow and you can apply all

these general results to all these particular cases. So, that is the power of measure theory.
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So, with this in hand, once you know how to compute these expectations, you can now make

some interesting comments. So, this is these are listed in this exercise. So, what do you do?

You start by looking at discrete random variable and let f be measurable. So, now look at the

composition of with , so, that is nothing but . So, you can immediately claim that𝑓 𝑋 𝑓(𝑋)

is a random variable, call it . Now, what the first thing that you need to show is that𝑓(𝑋) 𝑌

which we are now calling as is a discrete random variable. So, that is the first𝑓(𝑋) 𝑌

statement.

Now, once you have a discrete random variable, you can now try to look at its law. So, first

thing that you will do is that you can try to rewrite the law in terms of the functionℙ ◦ 𝑌−1  𝑓

and the law . So, use these two quantities, the function and the law of to writeℙ ◦ 𝑋−1(𝑥) 𝑓 𝑋

down the law of , so, that is a second expression.𝑌

The third thing is that once you have managed to identify the law, you can also try to write

down the probability mass function of , since is given to be discrete, you can talk about𝑌 𝑌

the probability mass function. So, therefore, the property mass function of , you can try to𝑌

write it down in terms of the function and the PMF of . So, that is good.𝑓 𝑋
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And the interesting comment here is that you can now talk about the expectation of the

random variable y and as for our understanding, you have to do integration of the identity

function with respect to the law of y which is and the integration has to take placeℙ ◦ 𝑌−1

over the real line.

But now, we are saying this integration if it exists, it will be equal to an integration over the

law of x and this integration is still over the real line, but you are now supposed toℙ ◦ 𝑋−1

integrate the measurable function . So, this is another way to compute that is through the𝑓 𝐄 𝑌

law of . So, provided one of the integrals exists the other one will also exist. So, this is𝑋

again application of the change of variable formula, try to work this out.

But then using this observation, you can now justify the following for this special case that

we are discussing. So, here everything is discrete, so, is nothing but this linear𝐄 𝑌

combination over the support of . So, denote the support of but then you have this𝑌 𝑆
𝑌

𝑌

series expression, which can be rewritten in terms of the summation over the support of the

original random variable .𝑋

So, what do you do here, you look at and weight it with or factor it with these jumps𝑓(𝑥)

sizes. So, if you combine these things together, you will get back . So, this is simply𝐄 𝑌

another familiar expression to you, that will allow you to compute expectations of functions

of random variables. So, all you have to do is to choose the right measureable function and𝑓

just do these computations.



So, again here we are doing the summation over on the left hand side here and here we are𝑆
𝑌

doing the summation over the support of the original random variable on the right hand𝑋

side.
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And as mentioned earlier, you can choose this appropriate functions to talk about moments𝑓

of the random variable . So, you can talk about this -th moments of about any point .𝑋 𝑛 𝑋 𝑐

So, all you have to do is to choose this function to be defined for any real𝑓 (𝑥 − 𝑐)𝑛

numbers . So, if you choose such appropriate functions, you can combine or compose with𝑥

and you can get these moments.𝑋



So, you can now try to compute these kind of moments for the cases when is some known𝑋

standard discrete random variable. For example, you can choose to be a degenerate random𝑋

variable or from Bernoulli binomial or Poisson random variables. So, in all of these cases, try

to work out what is the expression for the moments following this measure theoretic

discussion.

So, try to work out the values and you will expect that you will get back your familiar

expressions that you have already seen in your basic probability theory. So, this completes the

discussion for computation of expectations for discrete random variables. And we have now

seen these as an application of the measure theoretic integration.

For the other type of random variables, including the absolutely continuous random variables,

we have to develop this measure theoretic structure a little more, but then we would like to

make similar comments about absolutely continuous random variables and their expectations

and moments. This we are going to see in later lectures. We shall continue this discussion. In

the next week. We stop here.


