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Lecture 29
Monotone Convergence Theorem

Welcome to this lecture. In this week, we have been discussing about integration of

measureable functions with respect to a given measure on the domain set. So, far we have

concentrated our attention on obtaining properties for this integration procedure. In this

lecture, we are going to look at a very important theorem involving this integration procedure

that finally allows us to make comments about the linearity of the integration procedure. So,

let us move ahead with the slides and discuss that result.
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So, this result is called the monotone convergence theorem. So, so far, we have restricted our

attention to basic algebraic properties, such as multiplication by scalars and certain

comparison type inequalities. In the previous lecture, we have restricted our attention to a

very specific type of integrals over sets. And we had seen that for non-negative measurable

functions, by fixing that function and varying the set over which the function is getting

integrated, we can get a measure.

So, that is some kind of a continuity behavior of this integration procedure. We are going to

discuss that in more detail in later lectures. But for now, we are going to look at certain

limiting behaviors for special type of sequences of measurable functions. And that is the

content of this modern convergence theorem.

So, in this lecture, we are going to state it and look at certain applications of this monotone

convergence theorem. But the proof will be discussed in the next week that is week 7. So, we

are going to assume this and apply this the proof does not require any linearity property, and

we are going to actually prove the linearity property as an application of the monotone

convergence theorem. So, this is a very, very important theorem in the context of integration

of measureable functions.
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So, what do we do we start off with non-decreasing the sequence of measurable functions.

So, by that I mean if you take this sequence , then . And you also assume that{ℎ
𝑛
} ℎ

𝑛
≤ ℎ

𝑛+1

these ’s are bounded below in particular, you can assume them to be non-negative.ℎ
𝑛

So, for such a sequence of measurable functions defined on the same measurable space with

this given measure mu on the domain side, we are going to consider their integrals, but since

this sequence of functions are non-decreasing, so, point wise you can consider the limit

function. So, this limit function of course, will become measurable, so, we will comment

about that in a minute, but let us look at the integration of this limit function h.



Now, since , we have already mentioned earlier that integrals will also follow theℎ
𝑛

≤ ℎ
𝑛+1

same inequality that means, . So, therefore, these quantities whatever∫ ℎ
𝑛
𝑑µ ≤ ∫ ℎ

𝑛+1
𝑑µ

they are they are also non decreasing in n. So, therefore, this has a limit. Now, since ’s areℎ
𝑛

going to this limit function and are non-decreasing each is dominated from above byℎ ℎ
𝑛

ℎ
𝑛

h.

So, therefore, you have dominated for above by . What you are saying is that∫ ℎ
𝑛
 𝑑µ ∫ ℎ 𝑑µ

this limit is exactly the not the inequality that you get. So, this is the exact equality∫ ℎ 𝑑µ

that the limit of this is exactly . So, a several comments before we go intoℎ
𝑛

∫ ℎ 𝑑µ

applications as already mentioned, we are going to prove this in the next week not now.
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So, this monotone convergence theorem is very, very important and it is used multiple times.

So, for our reference, we are going to call it as MCT. So, this is for ease of notations, we are

going to call it MCT to refer to monotone convergence theorem. So, in the MCT, you have

this measurable function because it is a point-wise limit of measurable functions. So, asℎ

long as you have the existence of the limit, so here you have the to be non-decreasing. So,ℎ
𝑛

there therefore, you have the point-wise limits.

So, therefore is measurable with respect to the given sigma fields. So, measurability is notℎ

an issue for the limit function. But it can happen that the limit function takes values in theℎ

extended real line in particular, it might take values , it might take that value the MCT+ ∞

will continue to hold. So, even if the ’s are real valued their limits could be for someℎ
𝑛

+ ∞

point. So, therefore, the limit function may take .+ ∞

So, even then there is no issue because we have already mentioned that integration of

extended real world functions goes in the similar way. So, again by this approximation by

simple functions and all those procedure. Anyway we need to interpret in the case∫ ℎ 𝑑µ

when is taking values in the extended real line as an integration of extended real valueℎ

measurable function. So, it is not a problem. So, you can define this, but the MCT is

applicable even in this case.
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But important point to note is that given any non-negative and measurable function by this

earlier theorem, in week 3, what we had done there is that we had approximated this

non-negative and measurable function by simple functions. So, these simple functions

approximated are general measurable function which is non-negative from below. So, then

these simple functions, we had given explicit construction of that, such that these simple

functions increase and increase to that given non-negative measurable function.

So, this falls in exactly in the setup of the MCT that these ’s are certain nice functionsℎ
𝑛

simple of course, in particular, then they will be measurable and then ’s will be dominatedℎ
𝑛

from below by 0. So, therefore, ’s are non-negative and they increase to h. So, this is allℎ
𝑛

falling in the exact setup of MCT.
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So, with this observation, you can now look at this point that given a non-negative and

measurable function choose the sequence of non-negative and simple functions asℎ ℎ
𝑛

mentioned in the previous point IV, continue with that sequence of simple functions, then as

for MCT can be computed as .∫ ℎ 𝑑µ lim ∫ ℎ
𝑛
 𝑑µ

So, if you can compute the integration of simple functions, which is appearing on the right

hand side, consider the limit of that, then you have the value of , but remember we had∫ ℎ 𝑑µ

earlier defined the integration of non-negative measurable functions as a supremum over aℎ



certain class of simple functions below . Here, we have a alternative definition alternativeℎ

expression in terms of a limit, not a supremum of course, these increase so, therefore, thisℎ
𝑛

limit is nothing but a supremum over this countable set of values.

But, what is happening is that instead of using supremum says in the general case general

definition limits are much easier to handle. So, this is a very important observation that by

using MCT and using that approximation from below by simple functions, you can compute

the integration of non-negative measurable functions by this limit of integration of the

corresponding simple functions. Now, this will allow us to do computations in an easier

fashion when we want to compute the .∫ ℎ 𝑑µ
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But in the setup of this monotone convergence theorem, we had earlier written that ’s ifℎ
𝑛

they are simple functions and increase to we had used this symbol. So, this was mentionedℎ

earlier in the construction of the simple functions that the simple function increased to andℎ

that will denote by this upper arrow symbol.

But then in the setup of MCT, we can use any general sequence of non-negative measurable

functions instead of a simple function, you can use a non-negative measurable function even

then the limit holds. So, that is the statement of the MCT. And in particular of course, this

applies to the case of simple functions approximation by simple functions.

Therefore, since this is a slightly more general statement in the MCT, where ’s are nowℎ
𝑛

non-negative and measurable, then we will use the same upper arrow notation to denote that

limiting behavior that these measurable functions are now approximating the function fromℎ

below. Now, given this structure that is a point wise limit of this functions. So, MCT givesℎ

a sufficient condition for exchanging the order of limit and integration.

So, given a limit function of the limit of these functions , if you consider these sufficientℎ ℎ
𝑛

conditions that ’s are non-negative, and ’s are non-decreasing. Under these sufficientℎ
𝑛

ℎ
𝑛

conditions, you are allowed to exchange the order of limit and integration, so, that is what

this is saying because is nothing but the so that is as per the monotonelim ∫ ℎ
𝑛
 𝑑µ ∫ ℎ 𝑑µ

convergence theorem, but observe that inside is the point wise limit.ℎ



So, therefore, we were just exchanging the order of limit and integration. So, in later lectures,

we are going to study more results of this type, which will allow us to exchange the order of

limit and integration. So, this is a very important result, which allows us to exchange the

order of limit and integration.
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With that understanding of the monotone convergence theorem, we are now ready to discuss

certain important applications of the monotone of convergence theorem. The first one being

that linearity property that we have been after for a long time. So, take two measurable

functions and if you know that exists, also exists then you consider the𝑓 𝑔 ∫ 𝑓 𝑑µ ∫ 𝑔 𝑑µ



integration of , but you would like to connect it with . So, you have to𝑓 + 𝑔 ∫(𝑓 + 𝑔) 𝑑µ

make sense of .∫ 𝑓 𝑑µ +  ∫ 𝑔 𝑑µ

So, if it so, happens that does not occur that means, that and∞ − ∞ ∫ 𝑓 𝑑µ = ∞

if such a equation does not occur or vice versa meaning and∫ 𝑔 𝑑µ =− ∞ ∫ 𝑓 𝑑µ =− ∞

. So, if this does not occur, then is well defined. Because∫ 𝑔 𝑑µ = ∞ ∫ 𝑓 𝑑µ +  ∫ 𝑔 𝑑µ

is not occurring, in such a situation, you can now show that and is∞ − ∞ ∫(𝑓 + 𝑔) 𝑑µ

equal to the sum of the individual integrations.

So, this is the result that we have been after for a long time and this follows from the

application of MCT. We are going to discuss this proof of this theorems, this theorem two,

which is this linearity property and the MCT, which is theorem one in week 7. But we are

going to use these facts in the discussions now.
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So, with this additive property at hand, we can now say that, if is integrable, then𝑓 |𝑓|

integrable. So, why is this so, if is integrable we are given by definition, that is𝑓 ∫  𝑓+  𝑑µ

finite, is also finite, but then is nothing but and therefore, by the∫  𝑓−  𝑑µ |𝑓| 𝑓+ +  𝑓−

additive property, we immediately get that which is is equal to∫  |𝑓|  𝑑µ  ∫(𝑓+  +  𝑓− )𝑑µ

the separate integrations, but if both of these are given to be finite, then is also∫  |𝑓|  𝑑µ

finite.



But, hence, what is happening is that is a non-negative measureable function whose|𝑓|

integration is finite therefore, is a finite integrable function but this corollary which we|𝑓|

have just proved states that is integrable implies that is integrable.𝑓 |𝑓|

(Refer Slide Time: 13:25)

This is the converse of note 9 where we stated that is integrable implies is integrable.|𝑓|  𝑓

Therefore, if you combine these results, you have the equivalence of these two statements

that f is integrable if and only if is integrable.|𝑓|

And integrability is a is nothing but that that is finite. And just a quick|𝑓| ∫ |𝑓|  𝑑µ

observation once more that here we are looking at , the is now computed as the∫ 𝑓 𝑑µ ∫ 𝑓 𝑑µ

difference of the integration of and if both are given to be finite in this case, the𝑓+ 𝑓−

difference is a real number. So, that is an observation when is integrable you have these𝑓

things. But these results for measurable functions, you can now state it for random variables.
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And you are now just restating these observations for random variables by this that is𝑋

integrable if and only if is integrable if and only if is finite. Remember, is|𝑋| 𝐄 |𝑋| 𝐄 |𝑋|

nothing but the integration of with respect to the given probability measure. So, therefore,|𝑋|

is integrable if and only if is finite that is is finite.𝑋 ∫ |𝑋| 𝐄 |𝑋|

And in this case of course, is a real number, but then if is quasi integrable, you have to𝐄 𝑋 𝑋

be careful in this case exactly one of and has a finite integrable other has infinite𝑋+ 𝑋−

integral. In this case, is the addition of these two quantities, one of them is finite, other𝐄 |𝑋|

is infinite. So, therefore, is . So, in that case when is quasi integrable is .𝐄 |𝑋| ∞ 𝑋 𝐄 |𝑋| ∞



But in this case the is or . This thing we are considering now, when is quasi𝐄 𝑋 + ∞ − ∞ 𝑋

integrable.
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In the basic probability course, we had not considered the quasi-integrability case, but we had

considered the existence of these expectations through this condition that is finite. But𝐄 |𝑋|

even if is , if is quasi integrable, we can still talk about that is the power of𝐄 |𝑋| ∞ 𝑋 𝐄 𝑋

measure theory that we are using here. And since, we have defined the through these𝐄 𝑋

measure theoretic integrations, we are going to consider this in the cases when is quasi𝑋

integrable.
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Now, an important fact here is that the additive (())(15:51) of the integral that we have just

discussed will allow us to prove this kind of statement that under appropriate hypothesis, if

you have two random variables and , then . Now, remember in𝑋 𝑌 𝐄 (𝑋 + 𝑌) = 𝐄 𝑋 + 𝐄 𝑌

your basic probability theory, you had proved similar results using the fact when and𝑋 𝑌

both are discrete or both are absolutely continuous here we are not stating them.

Here we are saying if and are two random variables, be it continuous, be it discrete does𝑋 𝑌

not matter; could be discrete, could be continuous, even then you can talk about their𝑋 𝑌

addition and their expectation and then you can split the expectation by the linearity of the

integration and write this. So, here the appropriate hypothesis is simply that exists and𝐄 𝑋

exists and their sum is defined.𝐄 𝑌

That means situation does not arise on the right hand side, if that is the case, then∞ − ∞

you can talk about being equal to the right hand side. Now, combining all of these𝐄 (𝑋 + 𝑌)

results together, you can now say that this linearity of the integration holds. So, what we had

proved earlier is that scalar multiplication was allowed.

Now, we are saying additivity is also allowed that if you take two functions, then under

appropriate hypothesis, addition of the individual integrations will give you integration of the

addition of the functions. So, you have the linearity of the integration procedure that we have

discussed.
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Now, with this observation at hand, you can now make this important comment that if both 𝑓

and are integrable, then is also integrable. Why, because observe that if and𝑔 𝑓 + 𝑔 𝑓 𝑔

both are integrable, then is finite and is finite, this is by the equivalent∫ |𝑓| 𝑑µ ∫ |𝑔|𝑑µ

condition that we just discussed in a few minutes back, but then will be∫ |𝑓 + 𝑔| 𝑑µ

dominated by the addition of the because .∫ |𝑓| 𝑑µ + ∫ |𝑔| 𝑑µ |𝑓 + 𝑔| ≤ |𝑓| + |𝑔|

So, use that and use the additivity of the integrals, you get this inequality. But if is∫ |𝑓| 𝑑µ

finite, and is finite, the addition is also finite. So, therefore, is also∫ |𝑔| 𝑑µ ∫ |𝑓 + 𝑔| 𝑑µ

finite and hence, becomes integrable provided and both are integrable.𝑓 + 𝑔 𝑓 𝑔
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Nice, and we finish our discussion with this nice corollary that we can turn out talk about

certain series of functions. So, take non-negative Borel measurable functions a sequence of

that, a sequence of non-negative Borel measurable functions, then consider this infinite

combination infinite summation. So, this linear combination infinite linear combination will

give you a limit function, this are addition of non-negative quantities, so, you will get a limit

function.

So, you are considering the integration of that on the left hand side; on the right hand side,

you are saying look at the individual integrations and add them up. If you are looking at these

integrations have non-negative measurable function, these quantities are non-negative. So,

therefore, the summation is defined this summation could be infinity that is fine, we are



saying this equality holds. So, you can exchange this infinite series and the integration here

that is an important observation.

So, how do you prove this, observe that the finite sum increase and increase to the
𝑛=1

𝑚

∑  ℎ
𝑛 

limit function which is the complete summation, for this finite sum , then these finite
𝑛=1

𝑚

∑  ℎ
𝑛 

sum increase, increase with a complete countable sum. But then what is happening is that for

the finite sum you can exchange the integration and the sum that is by the additivity and

apply limit in m as all these functions are increasing, increasing to this complete summation

now.

And by the MCT you get the required result that you can exchange the series and the

integration. So, with these properties, we are now ready to discuss computations involving

expectations of random variables. That discussion we are going to have in the next lecture,

we stop here.


