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Measure Theoretic Probability — 1
Professor Suprio Bhar
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur
Lecture 29
Monotone Convergence Theorem

Welcome to this lecture. In this week, we have been discussing about integration of
measureable functions with respect to a given measure on the domain set. So, far we have
concentrated our attention on obtaining properties for this integration procedure. In this
lecture, we are going to look at a very important theorem involving this integration procedure
that finally allows us to make comments about the linearity of the integration procedure. So,

let us move ahead with the slides and discuss that result.
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So, this result is called the monotone convergence theorem. So, so far, we have restricted our
attention to basic algebraic properties, such as multiplication by scalars and certain
comparison type inequalities. In the previous lecture, we have restricted our attention to a
very specific type of integrals over sets. And we had seen that for non-negative measurable
functions, by fixing that function and varying the set over which the function is getting

integrated, we can get a measure.

So, that is some kind of a continuity behavior of this integration procedure. We are going to
discuss that in more detail in later lectures. But for now, we are going to look at certain
limiting behaviors for special type of sequences of measurable functions. And that is the

content of this modern convergence theorem.

So, in this lecture, we are going to state it and look at certain applications of this monotone
convergence theorem. But the proof will be discussed in the next week that is week 7. So, we
are going to assume this and apply this the proof does not require any linearity property, and
we are going to actually prove the linearity property as an application of the monotone
convergence theorem. So, this is a very, very important theorem in the context of integration

of measureable functions.
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So, what do we do we start off with non-decreasing the sequence of measurable functions.

So, by that I mean if you take this sequence {hn}, then hn < hn+1. And you also assume that

these hn’s are bounded below in particular, you can assume them to be non-negative.

So, for such a sequence of measurable functions defined on the same measurable space with
this given measure mu on the domain side, we are going to consider their integrals, but since
this sequence of functions are non-decreasing, so, point wise you can consider the limit
function. So, this limit function of course, will become measurable, so, we will comment

about that in a minute, but let us look at the integration of this limit function h.



Now, since hn < hn+1, we have already mentioned earlier that integrals will also follow the

same inequality that means, [ hndu <[ thr 1du. So, therefore, these quantities whatever

they are they are also non decreasing in n. So, therefore, this has a limit. Now, since hn’s are

going to this limit function h and hn are non-decreasing each hn is dominated from above by

h.

So, therefore, you have [ hn dp dominated for above by | h dp. What you are saying is that
this limit is exactly the | h du not the inequality that you get. So, this is the exact equality

that the limit of this hn is exactly [ hdp. So, a several comments before we go into

applications as already mentioned, we are going to prove this in the next week not now.
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So, this monotone convergence theorem is very, very important and it is used multiple times.
So, for our reference, we are going to call it as MCT. So, this is for ease of notations, we are
going to call it MCT to refer to monotone convergence theorem. So, in the MCT, you have
this measurable function h because it is a point-wise limit of measurable functions. So, as

long as you have the existence of the limit, so here you have the hn to be non-decreasing. So,

there therefore, you have the point-wise limits.

So, therefore h is measurable with respect to the given sigma fields. So, measurability is not
an issue for the limit function. But it can happen that the limit function h takes values in the
extended real line in particular, it might take values + oo, it might take that value the MCT

will continue to hold. So, even if the hn’s are real valued their limits could be + oo for some

point. So, therefore, the limit function may take + oo.

So, even then there is no issue because we have already mentioned that integration of

extended real world functions goes in the similar way. So, again by this approximation by
simple functions and all those procedure. Anyway we need to interpret [ h dp in the case

when h is taking values in the extended real line as an integration of extended real value
measurable function. So, it is not a problem. So, you can define this, but the MCT is

applicable even in this case.
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But important point to note is that given any non-negative and measurable function by this
earlier theorem, in week 3, what we had done there is that we had approximated this
non-negative and measurable function by simple functions. So, these simple functions
approximated are general measurable function which is non-negative from below. So, then
these simple functions, we had given explicit construction of that, such that these simple

functions increase and increase to that given non-negative measurable function.

So, this falls in exactly in the setup of the MCT that these hn’s are certain nice functions
simple of course, in particular, then they will be measurable and then hn’s will be dominated
from below by 0. So, therefore, hn’s are non-negative and they increase to h. So, this is all

falling in the exact setup of MCT.
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So, with this observation, you can now look at this point that given a non-negative and

measurable function h choose the sequence of non-negative and simple functions hn as

mentioned in the previous point IV, continue with that sequence of simple functions, then as

for MCT [ h dy can be computed as lim | hn du .

So, if you can compute the integration of simple functions, which is appearing on the right
hand side, consider the limit of that, then you have the value of [ h dy, but remember we had

earlier defined the integration of non-negative measurable functions h as a supremum over a



certain class of simple functions below h. Here, we have a alternative definition alternative

expression in terms of a limit, not a supremum of course, these hn increase so, therefore, this

limit is nothing but a supremum over this countable set of values.

But, what is happening is that instead of using supremum says in the general case general
definition limits are much easier to handle. So, this is a very important observation that by
using MCT and using that approximation from below by simple functions, you can compute
the integration of non-negative measurable functions by this limit of integration of the

corresponding simple functions. Now, this will allow us to do computations in an easier

fashion when we want to compute the [ h dy.
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But in the setup of this monotone convergence theorem, we had earlier written that hn’s if

they are simple functions and increase to h we had used this symbol. So, this was mentioned
earlier in the construction of the simple functions that the simple function increased to h and

that will denote by this upper arrow symbol.

But then in the setup of MCT, we can use any general sequence of non-negative measurable
functions instead of a simple function, you can use a non-negative measurable function even
then the limit holds. So, that is the statement of the MCT. And in particular of course, this

applies to the case of simple functions approximation by simple functions.

Therefore, since this is a slightly more general statement in the MCT, where hn’s are now

non-negative and measurable, then we will use the same upper arrow notation to denote that
limiting behavior that these measurable functions are now approximating the function h from
below. Now, given this structure that h is a point wise limit of this functions. So, MCT gives

a sufficient condition for exchanging the order of limit and integration.

So, given a limit function h of the limit of these functions hn, if you consider these sufficient
conditions that hn’s are non-negative, and hn’s are non-decreasing. Under these sufficient

conditions, you are allowed to exchange the order of limit and integration, so, that is what
this is saying because lim [ hn du is nothing but the [ h d so that is as per the monotone

convergence theorem, but observe that h inside is the point wise limit.



So, therefore, we were just exchanging the order of limit and integration. So, in later lectures,
we are going to study more results of this type, which will allow us to exchange the order of
limit and integration. So, this is a very important result, which allows us to exchange the

order of limit and integration.

(Refer Slide Time: 10:35)

We Mow ok oL \owious '\m@nﬁw\*

Q\?\:\\Qﬁm A e MCT.

Theoen®? et 4,80 (9, %, 1) — Ry

__—______,'-’

be weaswsolle fnchons. T (5dy ama

&%é\‘\k QAT  oond\ ig g»gérn "\'S%A'I\A Can \e

é\m%w\{a\_ Q\. Q- -0 $\‘W\O\\"\m Aoes noT

3&%‘«\{6\. Q\. 0o~ $\Ro\‘r‘\m Anes noY

OQC_\m,B/ JQV\EY\’E%—\-%\% x\eks oond—

JGE8)dp = S + Sad.

We Srolll Ascnce “he %nmgs "g
Theonems © A @ i Week 7,

Toe ‘(\Q_K\', Qe 9;\1\\‘( ‘\0 O~ CW\SQ-?m&X\U_

With that understanding of the monotone convergence theorem, we are now ready to discuss
certain important applications of the monotone of convergence theorem. The first one being

that linearity property that we have been after for a long time. So, take two measurable

functions f and g if you know that [ f dp exists, [ g du also exists then you consider the



integration of f + g, but you would like to connect it with [(f + g) du. So, you have to

make sense of [ fdp + [ gdp.

So, if it so, happens that co — oo does not occur that means, that [ fdp = oo and
[ g dp =— oo if such a equation does not occur or vice versa meaning | f du =— oo and
[ gdu = o. So, if this does not occur, then [ fdu + [ gdu is well defined. Because

o — oo is not occurring, in such a situation, you can now show that [(f + g) du and is

equal to the sum of the individual integrations.

So, this is the result that we have been after for a long time and this follows from the
application of MCT. We are going to discuss this proof of this theorems, this theorem two,
which is this linearity property and the MCT, which is theorem one in week 7. But we are

going to use these facts in the discussions now.
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So, with this additive property at hand, we can now say that, if f is integrable, then |f]|

integrable. So, why is this so, if f is integrable we are given by definition, that [ fJr du is

finite, | f dp is also finite, but then |f| is nothing but f+ + f and therefore, by the

additive property, we immediately get that [ |f| du which is [ (f+ + f )du is equal to

the separate integrations, but if both of these are given to be finite, then [ |f| du is also

finite.



But, hence, what is happening is that |f| is a non-negative measureable function whose
integration is finite therefore, |f| is a finite integrable function but this corollary which we
have just proved states that f is integrable implies that |f| is integrable.

(Refer Slide Time: 13:25)

= T T T

Thie w%\em e ’\ng
©nolony O Shoker e omnte of
Notw @, CombBiimy Lol fedulls, we have
£ Negole & (§\ @ wiggackde

< S\%\C&}L <X
Trn Thig Gar S'%o\[‘k e R,

N AN\ © oo vile s ®a N
This is the converse of note 9 where we stated that |f| is integrable implies f is integrable.
Therefore, if you combine these results, you have the equivalence of these two statements

that f is integrable if and only if |f| is integrable.

And integrability is a |f| is nothing but that [ |f| du that is finite. And just a quick

observation once more that here we are looking at | f dy, the | f du is now computed as the

difference of the integration of fJr and f if both are given to be finite in this case, the
difference is a real number. So, that is an observation when f is integrable you have these

things. But these results for measurable functions, you can now state it for random variables.
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And you are now just restating these observations for random variables by this that X is
integrable if and only if |X| is integrable if and only if E |X]| is finite. Remember, E |X]| is

nothing but the integration of |X| with respect to the given probability measure. So, therefore,

X is integrable if and only if [ |X]| is finite that is E | X| is finite.

And in this case of course, E X is a real number, but then if X is quasi integrable, you have to

. . + - o s
be careful in this case exactly one of X and X has a finite integrable other has infinite
integral. In this case, E |X| is the addition of these two quantities, one of them is finite, other

is infinite. So, therefore, E |X| is oo. So, in that case when X is quasi integrable E | X]| is oo.



But in this case the E X is + oo or — oo. This thing we are considering now, when X is quasi

integrable.
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In the basic probability course, we had not considered the quasi-integrability case, but we had
considered the existence of these expectations through this condition that E | X| is finite. But
even if E |X| is oo, if X is quasi integrable, we can still talk about E X that is the power of
measure theory that we are using here. And since, we have defined the E X through these

measure theoretic integrations, we are going to consider this in the cases when X is quasi

integrable.
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Now, an important fact here is that the additive (())(15:51) of the integral that we have just
discussed will allow us to prove this kind of statement that under appropriate hypothesis, if
you have two random variables X and Y, then E (X + Y) = EX + EY. Now, remember in
your basic probability theory, you had proved similar results using the fact when X and Y

both are discrete or both are absolutely continuous here we are not stating them.

Here we are saying if X and Y are two random variables, be it continuous, be it discrete does
not matter; X could be discrete, Y could be continuous, even then you can talk about their
addition and their expectation and then you can split the expectation by the linearity of the
integration and write this. So, here the appropriate hypothesis is simply that E X exists and

E Y exists and their sum is defined.

That means co — oo situation does not arise on the right hand side, if that is the case, then
you can talk about E (X + Y) being equal to the right hand side. Now, combining all of these
results together, you can now say that this linearity of the integration holds. So, what we had

proved earlier is that scalar multiplication was allowed.

Now, we are saying additivity is also allowed that if you take two functions, then under
appropriate hypothesis, addition of the individual integrations will give you integration of the
addition of the functions. So, you have the linearity of the integration procedure that we have

discussed.
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Now, with this observation at hand, you can now make this important comment that if both f

and g are integrable, then f + g is also integrable. Why, because observe that if f and g

both are integrable, then [ |f|dp is finite and [ |g|dp is finite, this is by the equivalent
condition that we just discussed in a few minutes back, but then [ |f + g|dp will be

dominated by the addition of the [ |f| dp + [ |g| dubecause |[f + g| < |f| + |gl.

So, use that and use the additivity of the integrals, you get this inequality. But if [ |f| dp is

finite, and [ |g| dp is finite, the addition is also finite. So, therefore, [ |f + g| du is also

finite and hence, f + g becomes integrable provided f and g both are integrable.
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Nice, and we finish our discussion with this nice corollary that we can turn out talk about
certain series of functions. So, take non-negative Borel measurable functions a sequence of
that, a sequence of non-negative Borel measurable functions, then consider this infinite
combination infinite summation. So, this linear combination infinite linear combination will
give you a limit function, this are addition of non-negative quantities, so, you will get a limit

function.

So, you are considering the integration of that on the left hand side; on the right hand side,
you are saying look at the individual integrations and add them up. If you are looking at these
integrations have non-negative measurable function, these quantities are non-negative. So,

therefore, the summation is defined this summation could be infinity that is fine, we are



saying this equality holds. So, you can exchange this infinite series and the integration here

that is an important observation.

m
So, how do you prove this, observe that the finite sum }; hn increase and increase to the
n=1
m
limit function which is the complete summation, for this finite sum ), hn, then these finite
n=1

sum increase, increase with a complete countable sum. But then what is happening is that for
the finite sum you can exchange the integration and the sum that is by the additivity and
apply limit in m as all these functions are increasing, increasing to this complete summation

now.

And by the MCT you get the required result that you can exchange the series and the
integration. So, with these properties, we are now ready to discuss computations involving
expectations of random variables. That discussion we are going to have in the next lecture,

we stop here.



