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Welcome to this lecture, this is the first lecture of week 6. In this week, we start the

discussions about integrations of functions and in particular about expectations of random

variables. So, before we move forward, it is a good time to have a recall of what we have

already done. So, in the previous weeks, we have covered extensively about measures on

measurable spaces, then measurable functions, then we moved on to random variables. So,

we spent a lot of time in discussions involving their laws and distribution functions.

So, we obtained the correspondence between them. So, with all that knowledge at hand, we

are now going to talk about expectations of random variables, which should be a special case

of integrations of measurable functions with respect to a given measure on the domain side.

So, without further delay, so let us move on to the slides and make the setting clear.

(Refer Slide Time: 01:20)

So, we have discussed about measures and measurable functions in the previous topics.



(Refer Slide Time: 01:28)

We are now going to discuss our notion of integration of such measurable functions with

respect to this given measure. Now, before we even start, this is an important comment since,

we are going to discuss integrations of measurable functions, before defining any kind of

differentiation, it is a good idea to clearly understand the operation that we are trying to

define. And a basic principle here in working with this integration procedure, which we want

to define is to start with simple functions.

(Refer Slide Time: 02:05)

So, you first work with simple functions or maybe even go down to much simpler functions,

which are indicator function. Then, after you understand the things for indicators and simple



functions, we approximate non-negative measurable functions by simple function. So, this

result was discussed earlier in relation with properties of measurable functions.

And finally, once you have understood all these operations in terms of non-negative

measurable functions, you finally deal with general functions, what do you do you take a

general function and split it into its positive part and negative part each of which is a

non-negative and measurable function. And therefore, you try to put all that information from

individual parts of the positive part and the negative part and put them together to get some

idea about the general case.

So, this is basically the principle that we are going to follow So, in case we do not understand

something, we will go back to these basics we will start with indicators and simple functions,

then do limiting approximations to non-negative measurable functions. And then we shall

split any general measurable function, signed measurable functions to be splitting into its

positive part and negative part.

(Refer Slide Time: 03:34)

So, we have already mentioned this principle earlier in note 23 of week 3, but then again, we

will come back to this issue again and again. So, let us move on and deal with the main

setting.



(Refer Slide Time: 03:53)

So, start with a measure space and take any measurable function which isΩ,  ℱ,  µ( ) ℎ

defined on this domain space together with this field and takes real values. So, this isσ −

the standard script F of R BR measurable functions. Remember that if your measure is aµ

property measure, then what you can say immediately is that this function h is a measurable

function which turns out to be a random variable. So, we are going to call it a random

variable if is a probability measure.µ

(Refer Slide Time: 04:33)

Now, what I would like to do is to define this value if possible. So, what is this, this is a

formal notation now, integration over domain space , we integration of the function h withΩ



respect to this measure which we write it as . So, ’s are points over theµ
Ω
∫ ℎ(ω)𝑑µ(ω) ω

domain space.

Now, since it is clear that we are using the measurability the term measurable in ourℱ/ℬ
ℝ

discussion will be equivalent to Borel measurable. So, we are not going to make any

distinction between them because we are first fixing all those fields beforehand and thenσ −

we are going to talk about all those nicer properties.

(Refer Slide Time: 05:23)

So, this next thing that we are going to mention is this, you can also rewrite this formal

notation. So, what is the difference with the previous notation, so here we wrote , here𝑑µ(ω)



we are writing . So, either notation is fine. And in fact, we are going to use a shorthandµ(𝑑ω)

notation for simplicity, which will be . So, we will suppress that variable and simply∫ ℎ 𝑑µ ω 

write it as .∫ ℎ 𝑑µ

Another thing we are suppressing is the domain space below this integration notation. So,Ω

again, as long as the setting is clear, as long as the domain space, measurable structures,

measurable spaces, everything is clear, we can simplify the notation and use this. So, there

should not be any chances of any miscommunication. As long as these things are fixed

beforehand, we are going to use them in our analysis.

(Refer Slide Time: 06:31)

Now, as mentioned earlier our idea is that you want to define , but you take first∫ ℎ 𝑑µ

indicator functions or simple functions, try to do something there and try to generalize from

there. So let us start with the case when h is the indicator function.



(Refer Slide Time: 06:48)

But then, remember, what you want is that to be measurable. And for that to happenℎ ℱ/ℬ
ℝ

if is an indicator function, you need the set on the domain side field. So, choose such asℎ σ −

set of the domain size field and recall from week 3's discussions that will beσ − 1
𝐴

measurable in this case. Now, what do we want to do is to define the integration of such

functions, which are of the form indicator of . So now indicator of takes the value 1 on𝐴 𝐴

the set .𝐴

(Refer Slide Time: 07:28)



And takes them to 0 on the set . Now, what I would like to think of integration as it is the𝐴𝑐

area of the rectangle under the graph of . So that is what integration means. So, it simply1
𝐴

means the area under the curve.

(Refer Slide Time: 07:48)

But then the idea is this, that if your set is roughly parts of the domain like this, so maybe

split into chunks here and there. But then by , I mean a function which takes values 1 only1
𝐴

on the set , and otherwise it takes the value 0. So basically, the area under the curve should𝐴

only be considered as the area of that all the rectangles that you see under the curve,

everywhere else is 0 shields should not contribute to any area.

But then how would you compute the area of the rectangle that you see here. So, we follow

the standard procedure, that we would like to look at the product of the length of the sides but

what are the sides here.

(Refer Slide Time: 08:37)



Just revisit this figure once more, the sides can be given as length of the rectangle as it goes

along the domain side omega and the height as it takes the corresponding function value. So

here, the function value remains constant, it is constant 1. So therefore, you can think of the

height as 1 but what is the length, length here is the interesting part here you are using this

measure, so you have this idea of length or size or measure of the set . So, you use that on𝐴

the domain side. So, on the value side, it is exactly equal to 1 on the rectangles.

So, it has a height 1, on the domain side you have the length or the size or the measure of that

set to be given by . So, with these two quantities, you now can define the area as theµ(𝐴)

product of this length and the height of these rectangles. So then, here one quick clarification

is that by rectangle, we can mean all these things taken together.

So set A taken on the domain side, and value 1 taken on the other coordinate. So, the length

will be the measure of . And we are going to think of all of that together and call it a general𝐴

rectangle. So, the term rectangle is not purely this rectangle being meant here, but it is putting

together all the sets that you see, which constitute the set . So, with that at hand.𝐴

(Refer Slide Time: 10:24)



So now what is the integration. So again, as we just discussed, we would like to consider the

product of height and length.

(Refer Slide Time: 10:31)

And that is what these values should be. So now, we define that integration of with respect1
𝐴

 

to this measure should be taken as this quantity. So, this should happen for all the sets thatµ

come from your domain sides field. So, this is a very simple idea that you are just usingσ −

area under the curve and here instead of the usual length that you might be putting on the

domain side, here you have the domain , so you have to use the given measure there, soΩ µ

that is all.

(Refer Slide Time: 11:06)



Once you have defined the integration of the indicator functions, you would like to extend

these definition of the integration procedure, two simple functions. But remember, simple

functions are nothing but certain linear combinations of indicators with certain conditions on

the coefficients and the corresponding sets that appear in that representation. So let us not go

into that technicality as of the moment, but let us just try to visualize how we can define the

integration for simple functions, once we know for the indicator functions.

So now, if you have an integration procedure, it should be linear in the function . What do Iℎ

mean by that, I mean, that if you have two functions, and , then , if youℎ
1

ℎ
2

∫ (ℎ
1

+ ℎ
2
) 𝑑µ

can define it, it should be the sum of and done separately. So, you add them∫ ℎ
1
 𝑑µ ∫ ℎ

2
 𝑑µ 

up, you should be able to get back the integration of .ℎ
1

+ ℎ
2

So, if you have that idea intuitively in hand, then you would like to say that corresponding to

the simple function, that linear combination of indicators, if you integrate that, you should be

getting back the same linear combination, but you have to just replace that indicator by the

integration of the indicators and whatever that linear combination is, should give you the

integration of the simple function.

So, if your integration procedure that you are going to define is linear in that function, linear

in that integrand, then you should be able to describe it concretely. So let us put this idea in

concrete mathematical terms. So let us start with , which is , where the coefficientsℎ
𝑖=1

𝑛

∑ 𝑥
𝑖
 1

𝐴
𝑖



or the scalars s are coming from real numbers, and the sets to are coming from the𝑥
𝑖
' 𝐴

1
𝐴

𝑛

domain side field.σ −

But remember, we would like to have that all these s to be pairwise disjoint. And as𝐴
𝑖

discussed earlier in week 3, that even if you consider any arbitrary linear combination of

indicators, you can always rewrite it in terms of indicators, where the sets are pairwise

disjoint. So, this restriction is not too much. So, you can just start off with some appropriate

finite linear combinations of some indicators, where the sets need not be pairwise disjoint.

But you can further decompose the sets and rewrite in another possible linear combination,

where the sets are pairwise disjoint. So, this is not too restrictive. Moreover, you could also

associate one more condition that is quite useful is that the union of the sets covers the whole

domain. So again, we have discussed this in week 3, that if the union of the sets is not the

whole domain, you can always add the remaining part and multiply the scalar 0 to it.

So, therefore, what you can expect here is that this combination here is in some sense, a

complete description with this Ais are pairwise disjoint and their unions covers the whole

domain.

(Refer Slide Time: 14:33)



So, with this description in hand and keeping that idea in mind that you would like to convert

integrations of the indicators to the corresponding measures of the sets, you would now like

to look at such a linear combination. So here, what we are doing we are looking at the linear

combination that was given to us, linear combination of the indicators, then replace the

indicator Ais by the corresponding integral values.

So the integral values will be measures of the sets and you would like to look at when this

summation makes sense. So, again this is simply following the idea is that if you can define

an integration this should be linear in that integrand . So, let us now concentrate ourℎ

attention to this linear combination, but one thing we have to be careful about here note that

the measures of the sets can be .𝐴
𝑖

∞

And the s that we are choosing could be positive or negative. In that case, the products that𝑥
𝑖

you look at could be , could be or in nice cases when measures of s are𝑥
𝑖 
µ(𝐴

𝑖
) + ∞ − ∞ 𝐴

𝑖
'

finite then the product will be some real number. But then again, for some sets ,𝐴
𝑖

µ(𝐴
𝑖
)

might turn out to be .+ ∞

And in that case, if you are multiplying by some positive scalar it will be , if you are𝑥
𝑖

+ ∞

multiplying by a negative scalar it will be . So, you will have to be careful when you− ∞

want to talk about these kind of a summation. So, as long as this summation makes sense,

you can go forward.

So, therefore, what you want is that this summation should make sense. So, if this summation

makes sense only then you define the integration of such a simple function. So, you are not



defining it for all simple functions taking values in the extended real life, you are only

defining this notation to take this value only if this summation makes sense. So, this is

important.

(Refer Slide Time: 16:43)

But you are allowing this sum to be or that is allowed. So, as long as this+ ∞ − ∞

summation makes sense, this could take values in the extended real line. But as long as + ∞

, appears, you have to be careful, you cannot define it, but if the summation turns out to− ∞

be , that is perfectly justified. So, then the sum is defined as long as and+ ∞ + ∞  − ∞

does not appear together, so that is all it is. So, therefore, you have defined the integration for

simple functions with some appropriate justifications.

(Refer Slide Time: 17:24)



But then there is an important step here is this. So that if you have a simple function, it might

have two representations in terms of sets and scalars. So, indicators used here may be

different, the scalars used here may be different. But what you need is that the sets should𝐴
𝑖

be coming from the domain side field they should be pairwise disjoint and their unionσ −

should cover the whole domain. So, the same thing should be true for these s.𝐵
𝑗
'

So, as long as those things are satisfied, if your function has these two presentations, andℎ

you can define at least one of these summations corresponding to the integration then what

you can say is that this equality should hold. So, as long as one side exists, the other side will

also exist and will be equal to that. And this will imply that no matter what kind of

representation of you take in terms of the all these different indicators, is wellℎ ∫ ℎ 𝑑µ

defined. So, it does not depend on the representation that you will take and this is going to

help us in future. So, this is a very important point. So, please try to work this out. So, this is

being left as an exercise.

(Refer Slide Time: 18:42)



So, with that at hand, let us now move forward and try to see what is the case when we can

take more general measurable functions, but one clarification here is that the integration of a

non-negative simple function will always exist. Why, because you are taking this values s𝑥
𝑖
'

to be non-negative then indicators are always taking values 0s and 1. So, signs can only come

from the scalar . So, whenever you are considering this linear combination of indicators𝑥
𝑖

scalars must be non-negative if the function is taking non-negative values.

Now, in this case, the value of the integration will be non-negative, including the value ,+ ∞

so this will always exist now. So, this is a very important observation. So, you do not have to

worry about and appearing together. If the function is non-negative simple+ ∞ − ∞

function, then you will immediately get that its integration exists, it could be some 0 value or

positive real number or .∞

(Refer Slide Time: 20:04)



So, we are going to use this fact in the next step when we now discuss the non-negative

measurable functions case. So, what we do is that we take a non-negative measurable

function now.

(Refer Slide Time: 20:10)

And look for all the simple functions that are dominated by . So, take all points in theℎ

domain and find out simple functions s, such that is dominated from above by . So, if𝑠(ω) ℎ

the values of the smallest falls between 0 and . So, take such simple functions. Then, whatℎ

you can look at is the corresponding integration for simple functions. This is already defined

because you are taking the simple function to be non-negative. So, these values whatever they

are they are non-negative including the value , this could happen.+ ∞



Now, for all such simple functions you look at this values and collect these values ∫ 𝑠 𝑑µ

consider the supremum. Whatever that supremum is you assign that value to , again∫ ℎ 𝑑µ

you have to be careful that these values whatever they are could be .+ ∞

(Refer Slide Time: 21:09)

Now, as we shall see is that we are going to extensively use such inequalities between

functions and to ease the notation what we are going to write is this thing. So, here s and h are

functions. So, by this notation , we simply mean that this inequality holds for all0 ≤ 𝑠 ≤ ℎ

points in the domain . So, for any points function value soΩ ω ∈ Ω 0 ≤ 𝑠(ω) ≤ ℎ(ω)   ∀ω.

that is it. So, you follow this notation.

(Refer Slide Time: 21:45)





Now, with that at hand. So, we have now talked about the integration of non-negative

measurable functions, but you have to be careful here. So, there are a couple of points that

needs clarification. So, the first thing, in step 2 you have defined integration of non-negative

simple functions. So that was defined as some kind of a linear combinations. So that is one

definition that you have, but then you could also consider the definition that is given in step

3.

So, assume that there are some ways of defining integrations for simple functions that are

below a given simple function . So, if is given to be simple, and you consider all simpleℎ ℎ

functions below small h and suppose you can define this integration, then does this match? So

that is the interesting question. So, take to be a non-negative simple function, thenℎ ∫ ℎ 𝑑µ

can be defined as, as defined in step 2.

But then there is another way you look for all the simple functions that are below this given

simple function , look for all those integrations and consider the supremum, that is anotherℎ

definition of that is being considered in step 3.ℎ

So, try to see that these two definitions match, these two definitions must match for all the

things to make sense. So, for step 2 and step 3 to fit together, you need this kind of a

consistency condition. So, please check this.

(Refer Slide Time: 23:19)



But in addition, another important thing happens is that the collection of simple functions that

you see in this definition, so let us go up. So, we are considering all simple functions that are

below the given function . So, here is a non-negative measurable function and you areℎ ℎ

considering all simple functions that fall below .ℎ

What we are saying is that there is at least one simple function that is there. And therefore,

you can consider its integrals values. And therefore, that supremum that you are considering

that supremum is not over any empty set. So, there are certain values of integrations of

non-negative simple functions. So, those values will appear there and you are considering

supremum of those quantities.

So, in particular, this supremum is well defined, because it is not a supremum over our empty

set. And this will give you some interesting values. So, in particular, you can also show that

is non-negative, as long as is non-negative and measurable.∫ ℎ 𝑑µ ℎ

(Refer Slide Time: 24:28)



So, with that at hand, so we have now discussed integrations up to the case when isℎ

measurable function, but taking only non-negative values. But what do you do for the case

when is measurable, when takes signed values. So, again, you go back to the notations forℎ ℎ

week 3, there we have discussed this and which are the positive part and negative partℎ+ ℎ−

of the given function . is now taking values with signs then you split it and then andℎ ℎ ℎ+

the positive parts and negative parts will now be individually non-negative andℎ−

measurable.



(Refer Slide Time: 25:13)

And for h plus and h minus you can separately talk about their integrations.

(Refer Slide Time: 25:16)

So, then these things are defined. So, these are certain values which are non-negative. So,

integration of is non-negative integration of is non-negative by the exercise which weℎ+ ℎ−

just mentioned.



(Refer Slide Time: 25:30)

But then with these values in hand, we are now going to define the integration of . So, youℎ

have following 3 cases. So, you have to be careful here.

(Refer Slide Time: 25:40)

So, the first case is when we shall refer to the case as is integrable. So, what is this case, soℎ

in this case and both are finite quantities. So, again they are known to be∫  ℎ+ 𝑑µ ∫  ℎ− 𝑑µ

non-negative, but I am saying that in this case when both of them takes finite values you say

that the given function h is integrable and define the integration of h as the difference of these

two integrations. So, that is exactly the idea again, you are keeping that linearity structure at

hand.



So, linearity is being built into the definition. So, first linearity was built in when you went

from integrated functions to simple functions, but then for non-negative measurable

functions, we use some supremum. So, you have to be careful, we have to discuss about the

linear structure there, but then when you come to the general case of measurable functions

and split it into positive part and negative parts, then you are building in again certain linear

structures here. So, in this case, you say that is integrable and assign them value ofℎ ∫ ℎ 𝑑µ

as the difference of these two integrals.

(Refer Slide Time: 26:57)

But then there is another interesting case when integration of h can still be defined. So, if it so

happens that and , 1 of them is finite, and are non-negative,∫ ℎ+ 𝑑µ ∫ ℎ− 𝑑µ ∫ ℎ+ 𝑑µ ∫ ℎ− 𝑑µ

but may take their value . So, I am saying that let one of them be finite and the other be+ ∞

infinite.

So, in this case, we can still define the difference between these two values because ∞ − ∞

the situation is not appearing, one of them is finite, and the other is infinite. So, in this case

the difference is still defined and therefore, you take that value and assign it to . In this∫ ℎ 𝑑µ

case you say that is quasi-integrable, you do not say is integrable, you say is quasiℎ ℎ ℎ



integrable. In this case is still defined it will take values or depending on∫ ℎ 𝑑µ + ∞ − ∞

the situation.

(Refer Slide Time: 27:55)

When gives you an infinite integral and gives you a finite integral. So, then willℎ− ℎ+ ∫ ℎ 𝑑µ

be defined and it will take the value . So, there is this quasi integrability case that you− ∞

should be aware of.

(Refer Slide Time: 28:13)



But then there is another case when we say we cannot define the integral, does not∫ ℎ 𝑑µ

exist. What is this case? So this is the case when both and are . So, in this∫ ℎ+ 𝑑µ ∫ ℎ− 𝑑µ ∞

case both and has infinite area under their curve. So, in this case we say thatℎ+ ℎ− ∫ ℎ 𝑑µ

does not exist and we are not going to define it. So, this is the case we are not going to

consider in practice.

(Refer Slide Time: 28:52)

Now, with this in hand, we have now completed our description of n integration procedure,

but now we are going to talk about properties of this, but here there are certain interesting

points that you should be aware of.

(Refer Slide Time: 29:07)



So, if h is measurable, and you take a set coming from the domain side, remember will be1
𝐴

measurable then. So, you can consider the product . So, this is a nice measurable functionℎ 1
𝐴

now, so you can now talk about integration of . So, look at this integration. So, if theℎ 1
𝐴

right hand side exists, you are now going to say that whatever that value is, that is the value

of . 
𝐴
∫ ℎ 𝑑µ

So, you are now not integrating over the whole set, you are just saying you are going to

concentrate your attention on the values of on the set . So, here what is happening is thatℎ 𝐴

outside the set is 0, so on points which are coming from is 0, so the product of𝐴 1
𝐴

𝐴𝑐 1
𝐴

function value of and for those points will be 0.ℎ 1
𝐴

So therefore, that will not contribute to your integrations. So, that is basically the idea that we

are following. So, with this in hand what we are saying is that whatever is this value of this

integration, if you can define this right hand side, if you can compute this value, whatever

this is you assign it to . So, this is the important notation that we are going to use later
𝐴
∫ ℎ 𝑑µ

on.

(Refer Slide Time: 30:34)



So now, in the next lecture, we are going to focus on the properties of this integration

procedure. So, it will take some time we will have to develop several properties of this

integration procedure over different lectures. One of the important things that we need to

verify, which has not been proved as of yet is that the linearity structure. So, we have built in

the linearity structure when we moved from indicators to simple functions and then from

non-negative measurable functions to general measurable functions.

So, this is being built in, but for non-negative measurable functions, we use certain

supremum structures, and it is not clear if the linearity holds there. So, you have to be careful

with this point and we are going to discuss such properties in the following lectures.



(Refer Slide Time: 31:29)

But we are going to use this integration procedure to define expectation or mean of random

variables. So, what is this.

(Refer Slide Time: 31:35)

So now, consider this definition. So, take a random variable, so therefore, it is defined on

some probability space taking values in the real line together with the Borel points, soσ −

that is corresponds to the measurable structure of the function . Define the expectation or𝑋

the mean of the random variable , which you are going to denote by expected value of or𝑋 𝑋

.𝐄 𝑋



𝐄 𝑋 : =  
Ω
∫ 𝑋(ω) ℙ(𝑑ω) =

Ω
∫ 𝑋(ω) 𝑑ℙ(ω) = ∫ 𝑋 𝑑ℙ

(Refer Slide Time: 32:05)

So, this is a shorthand notation, and if you can define this integration as part of the integration

that we discussed in the previous part, if you can define this assign that value to this quantity,

so that is the notation that you are going to use, if you can define this integration, then you

are going to say that that is the expectation or mean of this random variable .𝑋

So, be careful there are two situations when we can define these expected values of . First𝑋

situation when is integrable in that case integration of and should be finite. So,𝑋 𝑋+ 𝑋−

integration of will therefore be finite, but there is another case when is quasi integrable in𝑋 𝑋

that case, we are now saying that we will still consider the expectation or the mean which are

now taking values either or .+ ∞ − ∞

So, be careful this is an extension from the ideas that you have already seen in your basic

probability theory, but here we are allowing the expectation value to take or . So,+ ∞ − ∞

this is the case that will happen when is quasi integrable. Of course, if the integrations of𝑋

and with respect to the probability measure becomes infinite, if both the integrations𝑋+ 𝑋−

become infinite for and , then you of course cannot define the integration of .𝑋+ 𝑋− 𝑋

So, that is the case that we are going to throw out, but from usual steps that you have

discussed in your basic probability, we are now making an addition that when is quasi𝑋

integrable, you can still consider expected value of as per the definition given here.𝑋



(Refer Slide Time: 34:09)

So again, if the integration does not exist, we say the expectation of does not exist. So, just𝑋

as simple as that, otherwise expectation will exist if is integrable then will be finite.𝑋 𝐄 𝑋

Otherwise, if is quasi integrable then will be taking the values or .𝑋 𝐄 𝑋 + ∞  − ∞

(Refer Slide Time: 34:32)

Important fact is this, that if you take a random variable and apply a measurable function on

top of it. So, compose with given measurable function . So, if the composition is well𝑓

defined, it will give you a random variable, again defined on the same probability space.

(Refer Slide Time: 34:48)



You can now consider expected value of that random variable now. So, these kind of

structures will follow from the discussions that we did for measurable functions in week 3.

So, you can now try to consider these .𝐄 𝑓(𝑋)

(Refer Slide Time: 35:03)



What we are saying is that as a special case of this observation, you can now choose your

functions, which are nice continuous functions defined on the real line. is taken from the𝑓

real line to real line itself, so it is a nice function.

(Refer Slide Time: 35:16)

So, you could take functions of the form . And once you compose with , so you(𝑥 − 𝑐)𝑛 𝑋

will get expressions of this form. So here what we are saying is that we are going to consider

integrations of these kind of measurable functions, these kind of random variables and these

we are able to consider as the -th moment of the random variable about any point taken in𝑛 𝑐

the real line.



As long as these exist you can talk about these moments. So, in the later lectures, we first

discuss properties of the integration procedure, and then prove the usual properties of the

moments that we know about.

And you will see that these properties will now be proved for general random variables, we

are not going to restrict our attention to especially the discrete cases or other continuous

random variables, we are going to prove the inequalities or bounds that you know about for

moments of random variables for general random variables, we do not have to stick to

discrete cases or other special cases. This is a very nice advantage provided by the integration

theory that we have started discussing. We will continue this discussion in the next lecture.


