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Lecture 25
Distribution Functions and Probability Measures in higher dimensions

Welcome to this lecture, this is the final lecture of week 5. We start this lecture by moving on to

the slides and recalling whatever we have done in this week.

(Refer Slide Time: 00:25)



So, in the last few lectures specifically for the lectures in this week, we have discussed the

correspondence between distribution functions defined on and corresponding probabilityℝ

measures on this measurable space real line together with the Borel sigma field .

We also saw that this correspondence between the distribution functions and probability

measures is a special case of a more general correspondence between Lebesgue measure on this

measurable space and non-decreasing right continuous functions defined on real line . So, this is

appears as a special case of the correspondence between Lebesgue Stieltjes measures and the

class of functions which are non-decreasing and right continuous. And in fact, as a consequence

or as an example of this correspondence between Lebesgue Stieltjes measures and

non-decreasing right continuous functions.

(Refer Slide Time: 01:21)

We have found this example of Lebesgue measure on the real line and this corresponds to the

function if defined on the real line taking real numbers as their values defined by . So,𝐹(𝑥) = 𝑥

this is the identity function. So, if you look at this right continuous and non-decreasing function

by that construction given earlier, you would be able to construct a measure which you are now

going to call as a Lebesgue Stieltjes measure. So, in the previous lecture, we have discussed

extensively about properties of this Lebesgue measure and we have seen that Lebesgue measure

assigns the usual lengths to the intervals. So, you can think of a Lebesgue measure as the

extension of the usual length to all the other Borel subsets on it.



(Refer Slide Time: 02:05)

So, in this lecture, what we focus on is the extension or analogues of these results in higher

dimensions. So, specifically for simplicity, most of the results that are stated in this lecture are on

dimension two. So, you are setting the results on , but extension to higher dimensional spacesℝ2

for can be done in an analogue fashion. So, the techniques remain exactly the same,ℝ𝑑 𝑑 ≥ 3

you just have to introduce the appropriate notation to take care of the increase in dimensions.

(Refer Slide Time: 02:35)



Now, recall first that the Borel sigma field on rd, which you would write it as , so, this one isℬ
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defined as So, this is a typical setσ
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in and for this collection of sets try to generate the minimum sigma field and that is what weℝ𝑑

call as the Borel sigma field. So, this we had defined in week one. But now, we would like to

figure out the corresponding versions in higher dimensions for this Lebesgue Stieltjes measures

and the corresponding non-decreasing right continuous functions.

(Refer Slide Time: 03:15)

So, first of all, let us take up the case of Lebesgue Stieltjes measures. So, when we define the

Lebesgue Stieltjes measures on the real line, we took help from this bounded interval. So, we

said that these are the measures defined on the real line together with that Borel sigma field, such

that these measures should associate finite mass to bounded intervals.

But the analog for bounded intervals in higher dimensions we have to identify before going into

the definition of Lebesgue Stieltjes measures in higher dimensions. So, what are the

corresponding analogs? So, what do we use? We use this default product, as just talked about in

the Borel period is generators. So, you again take such left open right close intervals, D, manyσ

of them take the product of this.



So, that is a second . So, take such things as bounded intervals provided the limit points ai biℝ𝑑

are now real numbers. So, in general for the case of generating sets, you allow these or is to𝑎
𝑖

𝑏
𝑖

be of course, these are subsets within . So, and kind of points are not included, but∞ ℝ𝑑 ∞ − ∞

still you have to incorporate sets of the form ). So, that is what we had understood as the[𝑎,  ∞

notation.

So, now, what we are saying is that specifically when you are talking about bounded intervals in

higher dimensions, you look at this type of set. So, these are what are the analogs of bounded

intervals in higher dimensions. So, you use this bounded . So, here are real(𝑎
𝑖
,  𝑏

𝑖
] 𝑎

𝑖
,  𝑏

𝑖

numbers. So, take the default product of such intervals great. So, now we are ready to define

what are the Lebesgue Stieltjes measures on the dimensions.𝑑

(Refer Slide Time: 05:00)

So, take a measure defined on this measurable space together with Borel sigma field. So,µ ℝ𝑑

you say that this is a Lebesgue Stieltjes measures if it associates finite mass to all such type of

sets . So, you take this to be real numbers take the default product whatever that set is. So,𝑎
𝑖
,  𝑏

𝑖

look at the size of that provided by if for all subsets assigns finite mass then you say that thisµ µ

measure is a Lebesgue Stieltjes measure .µ



(Refer Slide Time: 05:32)

So, now again as done for the dimension one case you would ask for examples, and a quick

observation will tell you that any finite measure on these measurable space is Lebesgue Stieltjes

but as exactly done in one dimension, so, we are now going to look for infinite measures which

are also Lebesgue Stieltjes. So, we will come to that in a minute, but then we also have to

consider the corresponding version for the functions .

(Refer Slide Time: 05:58)



So, you have to figure out the corresponding analogues for these terms non-decreasing and right

continuous. So, what do they mean in higher dimensions? So, let us start with the case of right

continuity. So, you say that a function defined on taking real numbers as their values is rightℝ𝑑

continuous if it is jointly right continuous in all the variables. So, what do I mean?

So, I am saying that look at a point in dimensions. So, this is a vector So,𝑥
1
,  .  .  .,  𝑥

𝑑
𝑑

corresponding to each of the coordinates approximate it from the right so, you have

approximated it from the above each coordinate has a sequence which is approximating for

above and then for each coordinate since you have the sequence you can construct this vector

once more, which is basically approximating this vector from above in some sense.

So, coordinate wise it is approximating from above so, for all such things for all such sequences,

you would like to have that this limit is exactly the function value at the point so, if it is happens

you say that it jointly right continuous if all the variables. So, except in one of the coordinates, if

you fix all the other coordinates, then you are basically getting back the right continuity in that

variable.

So, all of that is covered under this joint like continuity, and this is of course, the same condition

that we have seen in note 9, of week 4. So, where we are discussing the distribution function of

valued random vector or valued probability measure . So, the idea remains the same thereℝ2 ℝ2



exactly was this condition in two dimensions that we had discussed. So, just go back and

compare this condition. So, this was exactly the same condition that we had written down there .

So, this is the exact analog of right continuity in one dimensions as you extend to higher

dimensions. So, you have to talk about jointly right continuous . So, therefore, for simplicity we

are going to refer to this concept of joint right continuity as right continuity itself, but we

understand that we mean joint right continuity.

(Refer Slide Time: 08:03)

But now, let us come to the point about non-decreasing. Again, as understood from our first point

about right continuity, these conditions should have some comparisons or similarities with

whatever we have already seen for distribution functions corresponding to probability measures

in dimension 2 or for random vectors in dimension 2. So, consider this case that you are looking

at a function on to . So, you say that this is non-decreasing, if this linear combination ofℝ2 ℝ

values is non-negative.

So, for all and . So, again you just go back and check the same condition holds𝑎
1

< 𝑎
2
, 𝑏

1
< 𝑏

2

for dimension two for distribution functions corresponding to probability measures. So, please

check this. So, we had discussed this in week 4 already. So, taking motivation from that we now

define the non-decreasing property to be exactly this. So, we are now going to mention what do



we mean by non-decreasing in other higher dimensions. So, the here this is stated for

two-dimensional case only. So, let us take up the case for dimensions in the exercise.𝑑

(Refer Slide Time: 09:14)

So, let us start with finite measures. So, let me we are finite measure on and consider thisℝ2

function defined as; so, what do you do so? You again continue with the two dimensions, but𝐹
µ

here this is an important identification which is going to allow us to move to higher dimensions.

So, here what we are doing we are choosing this point with coordinates and assigning the(𝑥,  𝑦)

value measure of this set. So, . So, look at that set look at the value(− ∞,  𝑥] × (− ∞,  𝑦]



associated to it or to the size associated to it by the measure . So, this is what we areµ

considering here. So, since measure is finite this quantity is also finite, assign that value to the

function at that point.

So, now, what you can check is that this function is non-decreasing and right continuous as for

the definition given above. So, this is the exact connection between distribution functions and

probability measures and we are extending it to finite measures and corresponding

non-decreasing and right continuous function. So, we have got the exact analog, but you would

ask what happens for general infinite measures which are Lebesgue Stieltjes. So, we are coming

to that in a minute.

So, we are now coming to the D dimensional case, but now taking motivation from the two

dimensional case that we just discussed in the first part of this exercise again define the function

value at any point to be the size of such sets given by . So, size of subsets under the measure .µ µ

So, again continue to assume that is a finite measure. So, these values are finite assign theµ

value to this point. So, if you define the function if this way, then check that this becomes rightµ

continuous that is right continuous in all the variables together, jointly right continuous. Now,

you would ask what is the corresponding version for non-decreasing?

(Refer Slide Time: 11:07)



To do this again we follow the same motivation that we did in the case of two dimensions.

Again, we take the motivation from the case of probability measures; first write down this

quantity which is the size of such product typesets. So, these are these left open right close

intervals consider the default products here ’s and ’s are real numbers. So, these intervals𝐴
𝑖

𝐵
𝑖

give you certain finite bounded intervals in each coordinate and therefore, the default product of

that is also a bounded set.

Now, what you should try to do is to write down this size under the measure in terms of theµ

values of the function. So, basically what you did in two dimensions was that you look at the

function values at the corners of these that set that you end up with right. So, in two dimensions

you had this rectangle and you obtain the function values are on those points and wrote the size

in terms of certain linear combinations of that.

So, here also in dimensions, look at all these corners, try to evaluate the function values on𝑑

there and try to write down this quantity the size of the set in terms of those values or those

corners. And then once you have written down that formula in terms of the function value that

these corners, so, you get some linear combination, use the fact that since assigns finite mass toµ

all of these, but these finite mass must be non-negative by definition is given to be a measure.µ

So, therefore, this quantity has to be non-negative and hence, what you end up having is that, that

linear combination for values of will be non-negative and that will give you the𝐹
µ

𝐹
µ



appropriate non decreasing property of the function . So, please try to work this out. But then you

can continue with this function if and we are trying to make some connection with the usualµ

non-decreasing property that we see in one dimension .

So, continue with this and fix a coordinate I. So, here the value of is some values between 1𝐹
µ

𝑖

to . Now, what do you do you forget about that coordinate look at all the other coordinates. So,𝑑

here are the coordinate values are listed as up to . So, except . So, forget about that and𝑥
1

𝑥
𝑑

𝑥
𝑖

fix all these other coordinate values . So, once you fix that, for this function , what you get is𝐹
µ

that once you keep varying the -th coordinate which is now some you get a function in one𝑖 𝑥

dimension. So, this is a function defined on the real line.

So, therefore, you can now consider this function and try to prove that as the given function is

given to be non-decreasing what you have just formulated from the properties of the measure

from the prior finite measure you can now try to show that this will also become non-decreasing

in one dimension. So, therefore, non-decreasing in higher dimension implies non-decreasing in

one dimension.

(Refer Slide Time: 14:18)

Now, if you consider to be an infinite Lebesgue Stieltjes measure then what will happen is thatµ

you have to consider the function to be taking values in the extended real numbers, because you



are looking at size of sets which could be infinite. To avoid notational complexity, we have not

stated the exercise for infinite Lebesgue Stieltjes measure. So, that was the reason for not stating

this exercise for the infinite measure skills. But you can of course, do this thing, but you will

have to consider the corresponding functions to be taking values in the set of extended real

numbers. You can always spend time and try to formulate the appropriate version for these cases.

(Refer Slide Time: 14:57)

But now let us come to the main issue that we wanted to discuss. So, you would like to construct

Lebesgue Stieltjes measures on from non-decreasing right continuous functions on . So, inℝ2 ℝ2



the exercise what we have already seen is that given the Lebesgue Stieltjes measures you can

construct non-decreasing and right continuous functions on , we want to go the other way, weℝ2

want to start with non-decreasing right continuous functions and construct the corresponding

measures, this should be the exact same steps that we have followed in dimension one.

So, again the proof remains the same as considered in dimension one except certain appropriate

notational complexity to take care of the dimensional matters. So, what do we do is that we do

not repeat the same arguments and we focus mainly on the ideas behind this . So, this result what

it does is that it completes the correspondence between Lebesgue Stieltjes measures in higher

dimensions and the corresponding non-decreasing right continuous functions in this dimension .

So, that is this idea.

So, we are considering the two-dimensional case and we are saying that once you have

completed the construction of a Lebesgue Stieltjes measure corresponding to a non-decreasing

right continuous function on then you have finished the correspondence between theℝ2

Lebesgue Stieltjes measures and non-decreasing right continuous functions in . So, let usℝ2

move ahead and look at that statement.

(Refer Slide Time: 16:16)



So, this is we were stating in this theorem, that let f be a non-decreasing right continuous

function defined on , so, this is real-valued. And consider our set function , given us this. So,ℝ2 µ

you look at such product type sets with ai and bi is finite. So, then for such things you consider

the set function that associates these values. So, you are not saying anything about other types of

sets, let us start with a set function that is just defined on such product type sets.

Now, what you can do, you can consider find a disjoint union of such things and extend the set

function by finite additivity or so-called finite relativity that you want under the measure and so

on, try to verify the appropriate continuity property is get countable additivities and so on. So,

what will happen is that, starting from such a set function, you should be able to construct this

unique extension to a Lebesgue Stieltjes measure on . So, that is what this statement says thatℝ2

given such a non-decreasing and right continuous function on , you can construct this setℝ2

function. So, this is a very, very important observation, .



(Refer Slide Time: 17:22)

And then let us assume certain more conditions on that function. So, start with this

non-decreasing and right continuous function, but additionally, assume certain limiting values.

So, limits at as and both simultaneously go to , if that limit value is one, and if by fixing∞ 𝑥 𝑦 ∞

one of the coordinates and letting the other one go down to , if you get the limit value 0, for− ∞

such functions, if you now continue this construction of Lebesgue Stieltjes measure, you will get

back a proper dimension.



Okay. And that is exactly what you need, because for probability measures you exactly had that

the corresponding distribution functions has these properties. So, please go back and check again

the discussions in week 4, we have described exactly these properties. So, therefore, this also

completes the identification between probability measures in and appropriated definedℝ2

distribution functions in .ℝ2

So, by appropriately defined distribution functions, we basically mean that this function should

be defined on , these functions should be non-decreasing right continuous with those specifiedℝ2

limit values. Once you have such functions, you will be able to construct probability measures.

And of course, starting with probability measures you exactly get back these type of distribution

functions. This completes the complete identification between probability measures and

appropriately defined distribution functions, great.

(Refer Slide Time: 18:50)

So, now we are going to spend some time on explaining certain more details in higher

dimensional cases. So, now, in theorem 1, we have stated the result in dimension 2 and in Node

32, we have mentioned this special case that works for probability measures. So, again in

dimension 2, what you should expect is that there are appropriate extensions to higher

dimensional Euclidean spaces, when the dimension is greater or equal to 3.



So, what you will expect is that you will start with the appropriately defined right continuities,

meaning they should be jointly right continuous, then for the functions, you have to define the

corresponding non-decreasing property. So, how do you define that? So, again go back to those

product type sets, lets me go back to the dimension to case once more.

(Refer Slide Time: 19:42)

So, what you defined was this product type sets right and looked at the size of this. So, if is aµ

genuine measure, genuine Lebesgue Stieltjes measure then this corresponding linear combination

would be non-negative. And that is what we had actually mentioned in exercise 5. So, let us go



back once more. So, in exercise 5 we looked at such linear combinations of the function values at

these corners right and we said that these appropriate linear combinations must be non-negative

for the non-decreasing property of a . And this appeared because these kinds of product type𝐹
µ

sets for this left products of left open right close intervals which is now a box that should get

assigned non-negative mass .

So, that is simply following from the properties of the measure and these appeared due to the

motivation from the case of probability measures. So, for the case of probability measures, we

looked at the corresponding distribution functions and he would exactly get back that same fact.

So, the motivated by that we looked at such non-negative values for such sizes and the

corresponding linear combinations of the corresponding functions, function values at those

corners of the appropriate box .

And the idea here was that we are using the inclusion exclusion principle to get that appropriate

linear combination. So, let us go back to that comment once more. So, the idea is this after you

do things in dimension 2, then you expect that these things should go through in dimensions 3

onwards, but with appropriately defined notations. So, what do we expect is that with the

appropriately defined right continuity and non-decreasing properties, you should be able to

construct the corresponding Lebesgue Stieltjes measures so, that is the idea.

And again, you would ask what happens for property measures and distribution functions again,

as a special case of this correspondence between leverages measures and the corresponding

non-decreasing right continuous functions, you expect that the same results will go through for

any dimensional case when you are considering probability measures and their corresponding𝑑

distribution functions.

So, again what you have to consider for the distribution functions that in addition to

non-decreasing and right continuity the joint right continuity, you have to assume the appropriate

limit values. So, limit values would be like this that the limit at infinity as the all the coordinates

go to simultaneously, you should get the limit to be 1 and if you fix all coordinates except 1∞

the that specified coordinate goes down to you will get the limit value 0.− ∞



So, for such functions you can construct probability measures these are the analogs of

distribution functions in dimensions higher than 1. So, in dimension 2 we have stated exactly

these conditions in the Note 32. So, again you can appropriately formulate the definition of

distribution functions in higher dimensions without any reference to probability measures or

random vectors, you can simply define it through this non-decreasing ness, joint right continuity

and the appropriate limit follows.

And once you go through this construction, you will be able to construct the corresponding

probability measure and that will give you the complete identification between the class of

probability measures in dimension and the corresponding distribution functions in dimension𝑑 𝑑

. So, this is again extending all those ideas that we have already discussed multiple times in

dimension 1.

(Refer Slide Time: 23:25)



Now, again, what we have done in dimension 1 is that we have considered the special case of

Lebesgue measures that comes from Lebesgue Stieltjes measures. So, you would expect that

there is a corresponding version of Lebesgue measures in dimension . So, recall that in𝑑

dimension 1, the Lebesgue measure came out to be the appropriate length function. So, it

associated length usual length two intervals. And this is basically extending that length function

to all the other possible Borel sets in the real length.

So, that is what Lebesgue measure did in dimension 1. And since there are the standard areas and

volumes in higher dimensions, what you should expect that there should be a appropriate



analogue of Lebesgue measure in higher dimensions. And that is exactly what we are going to

discuss that yes, there is this thing that there is a specified Lebesgue Stieltjes measure which we

now denote by , to take care of the dimensional matter, .λ(𝑑)

So, we consider this Lebesgue Stieltjes measure , defined on . So, basically, it is definedλ(𝑑) ℝ𝑑

on , but just for simplicity, you say that it is defined on . So, what will happen is that youℬ
ℝ𝑑 ℝ𝑑

have to choose the appropriate function, same dimension one, you considered the function

, but in dimension , you have to consider this function now.𝑓(𝑥) = 𝑥 𝑑

So, take any point and specify the value of the function at that point to be the𝑥
1
,  .  .  .,  𝑥

𝑑
∈ℝ𝑑

product of the coordinates, , so if is the point then you look at the product𝑥
1
,  𝑥

2
,  .  .  .,  𝑥

𝑑

, so that is a real number, assign that value to the function at that point. This is it you𝑥
1
 𝑥

2
 .  .  .  𝑥

𝑑

get the function. So, now, what will happen is that this function is of course, non-decreasing and

jointly right continuous in all the variables.

So, this is a very nice function, and therefore, corresponding to the specified function, you can

now construct Lebesgue Stieltjes measure. But then these Lebesgue Stieltjes measure, we now

call as the Lebesgue measure on for the specified choice of the function, whatever Lebesgueℝ𝑑

Stieltjes measure that you get, you call it as the Lebesgue measure on , so, what happens toℝ𝑑

the product typesets?

So, the size associated to such product type sets is exactly this. So, you can easily go back and

check that now these is exactly the function value increments and products of that. So, that is the

values that will appear for the size of these type of product sets, products have left open right

close intervals. And you again identify that this exactly matches with the usual area or volume in

Rd.

So, in dimension 2, what you get is this product of two intervals, this is a rectangle in . Andℝ𝑑

that is exactly the area of that rectangle in . So, if you are considering dimension 2, then aℝ2

rectangle has exactly this area. So, you are looking at the length of each side and multiplying



them . So, this is exactly the same analog that is given by the Lebesgue measure on dimension 2,

in dimension 3 onwards you get the volume. So, that is again the usual volume that we expect.

So, for such sets, you already get the usual volume or area, but what Lebesgue measure is saying

is that it can associate similar sizes to all possible Borel sets in these higher dimensions. And

then what you should expect is that this Lebesgue measure that you just defined on dimension 𝑑

this should have properties similar to the dimension one case. Lebesgue measures on dimension

one has some nice properties and similar properties you can show for the Lebesgue measure on

dimension , such as signal turn as size or mass.𝑑

You can show all these nice properties that you have discussed for Lebesgue measures and

similar things extend to dimension . So, whatever results you have seen in dimension 1 analogs𝑑

of this will go through for dimension . So, please try to check what are these usual properties𝑑

now for dimension case. So, we stop here and we will continue the discussion in the next𝑑

lecture.


