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Welcome to this lecture. So, in this week, we have been discussing the construction of

probability measures from distribution functions. This will allow us to complete the

correspondence between probability measures on the real line or in some higher dimensional

Euclidean space, with the collection of or the class of distribution functions on our or a

appropriate higher dimensional Euclidean space. So, we had left out a part of the proof, in the

previous lecture. So, let us go to the slides and see what status we left the proof. So, we will have

to look at the proof and look at the status of the proof.

(Refer Slide Time: 00:59)

So, we have started this construction of probability measures, which we denoted by for aµ
𝐹

given distribution function . So, here we are working in dimension one. So, here distribution𝐹

function is a function taking values between 0 and 1, it is a non-decreasing right continuous

function with limits at and , being 1 and 0, respectively. So, for such functions, we+ ∞ − ∞

want to construct this set function. And we want to show, that this is non-negative countably

additive and assigns the total mass 1 to the set real line. So, so, let us recall the setup that we

have done so far.



(Refer Slide Time: 01:47)

So, what we do is that, we had described this set function by specifying its values on the field of

finite disjoint unions of left open right closed intervals in the real line. So, remember this fields 𝒞

we had discussed in week one. And that generates the poodle similar field on . So, this fact weℝ

are going to use and apply Caratheodory’s extension theorem to get the relevant extension from

the field to the generated -field which is the borel -field.σ σ

But then what did we do, we first observed that since the function is non-decreasing, and has

limits at and being 1 and 0, we can define or extend the function at the points+ ∞ − ∞ + ∞



and , by specifying their values as 1 and 0. So, thereby we are getting this function as a− ∞ 𝐹

function on . It is still a non decreasing right continuous function. And it still has theℝ‾

appropriate limits. So, that is the thing and then we also have the fact that still takes values𝐹

between 0 and 1. So, you are treating it as a function on the extended real line.

(Refer Slide Time: 03:18)

And for such a function, what we did, we looked at this set function. So, and we specified the

values for the sets coming in this field of finance disjoint union of left open right closed

intervals. So, what did we do? So, in preparation for this set function to be a probability measure,

we assigned the value 0 to the empty set, value 1 to the real line. And for left open right closed

intervals, we specified the structure of finite additivity by specifying these values.

So, for an interval of the type , we looked at the increment of the function. So, by that I(𝑎,  𝑏]

mean So, this value, so these values we assigned to the this set. So, this left open𝐹(𝑏) − 𝐹(𝑎).

right closed interval. So, this is the value that we specified. But then in preparation for it to be

finitely additive, we said that finance visual union of such intervals should be specified the value

as the sum of the individual values, which is nothing but the sum of all these increments. So, this

will allow us to finish the definition on the field of finite disjoint union of left open right closed

intervals.



(Refer Slide Time: 04:37)

But then we verified that, this turned out to be a non-negative finitely additive set function onµ
𝐹

this field. And we wanted to verify a continuity property of this set function. In order for us to

claim that is countably additive on the field’s (())(04:59). So, that is the trick that we areµ
𝐹

using. So, instead of directly trying to prove countable additivity we first show finite additivity.

And then verify appropriate continuity properties of this set function on the field, to allow us to

claim countable additivity. But, then we will see that this is also not an easy task, we have to go

through certain technical arguments and prove the relevant continuative properties. A direct

proof of countable additivity may be much more difficult. So, let us go and see how we can show

the relevant continuity property, which is continuity from above at the empty set.



(Refer Slide Time: 05:48)

So, before we go forward, let us make a few comments. So, the first thing is that we are going to

use the fact, that the extended real line is compact. So, what did we do on the real line? We

attached extra points, which are and . You can think of these as some kind of limit+ ∞ − ∞

points. And once you add these limit points, this set, the set of extended real numbers which is

denoted by , becomes compact. So, the proof of this result is beyond the scope of this courseℝ‾

and we just assume it for our discussion. So, we are not going to prove this fact.

(Refer Slide Time: 06:33)



Now, as we are going to see below, this compactness is going to help us prove the relevant

continuity probability. But then remember, the original set function that we are dealing with that

is so far defined on the field of finite disjoint union of left open right closed intervals in the real

line. So, you are still within the realm of the real line, and you have not gone to the extended real

line. So, therefore, to use this structure of the extended real line, what you need to do is to make

some connection with a appropriate set function on , on the extended real line.ℝ‾

So, what we do? We are going to connect this which is defined on the field of finite disjointµ
𝐹

unions of left open right closed intervals in with an appropriate set function defined on someℝ

collection of subsets of the extended real line. So, this is what we do, and once you make the

connection, only then you are able to use the compactness properties of the extended real line.

So, this is the procedure that we are going to use.



(Refer Slide Time: 07:49)

Now recall, that we already have a good candidate of this nice collection of subsets on the real

line. So, the candidate is, that the finite disjoint union of left open right closed intervals on the

extended real line. And remember, this again forms a field. So, if you look at this collection of

left open right closed intervals, take finite disjoint unions of those, then it will form a field on the

extended real line.

Of course, you have to remember the appropriate interpretations for , because here we are(𝑎,  𝑏]

allowing the points and to be in these intervals, the extended real line contains the+ ∞ − ∞



points and . So, just to distinguish this field, that we could talk about on the external+ ∞ − ∞

real line, we are going to denote it by . So, the field on extended real line, the is going to be𝒞‾ ℝ‾

denoted by . So, as you can expect, there is some kind of a connection between the fields ,𝒞‾ 𝒞

which is on the real line and the field on the extended real line .𝒞‾ ℝ‾

(Refer Slide Time: 09:08)

Now, remember, we are going to use these intervals , but this can appear as a subset(𝑎,  𝑏] (𝑎,  𝑏]

of the real line, in which case you have to use the appropriate interpretation for b being or a+ ∞

being . Similarly, when you are talking about this interval on the extended real line, be− ∞

careful about this notation. Then these points or may be inside your set. So, now, we+ ∞ − ∞

are going to complete the proof that we left out in the previous lecture.



(Refer Slide Time: 09:47)

So, we are going to verify the relevant continuity property for the as left out in step three. So,µ
𝐹

we split this part into several further sub steps. So, we start with this observation, that we can

consider a set function on the field of finite disjoint union of left open right closed intervals on

the extended real line. So, on , so, we are defining this set function and we are denoting it by𝒞‾ µ‾
𝐹

.

As you can expect, there should be some connection with that we have defined. But let us seeµ
𝐹

how we define this. So, again we are going to set it to be 0 for the empty set, we are going to set



the value 1 for the extended real line. And for intervals of this type, we are going to use this

increment structure that we have already set for the . So, similar structure we are just going toµ
𝐹

retain for this .µ
𝐹

‾

(Refer Slide Time: 10:47)

So, then what you can immediately observe that, as argued for you can use the same argumentµ
𝐹

and show, that that you have just mentioned is a non-negative set function. This will alsoµ‾
𝐹

become finitely additive. But then very important, this is still defined on the field , which is a𝒞‾

field on , the extended real line.ℝ‾

(Refer Slide Time: 11:13)



But now, observe that these two set functions, and the . So, and , agree on left openµ‾
𝐹

µ
𝐹

µ‾
𝐹

µ
𝐹

right closed intervals. So, before we state this proof of this result, let us first clarify what exactly

we mean, here by left open right closed intervals. So, on the left-hand side, you choose a and b

within this range. So, a and b could be or .+ ∞ − ∞

But on the left-hand side, you have to be careful that these sets should be interpreted in the sense

of sets inside the extended real line and therefore, may contain the points. On the right-hand∞

side, again you look at the same notation left open right close intervals for such a b, but here we

are going to treat these intervals as intervals within the real line. And therefore, they will not

contain the points or .+ ∞ − ∞

Even though the left end point a and the right end point b may be taken to be or . As+ ∞ − ∞

per our notational justification, that we have been following so far, as long as these sets are

within the real line, we are not including the points or inside. So, therefore, on your+ ∞ − ∞

left-hand side, when you are applying a , you will treat the set as a set inside the extended realµ‾
𝐹

line.

Whereas, on the right-hand side, when you are looking at this interval, you should treat it as a set

inside the real line. So, that is the proper notational justification. But now, what is the proof for

this fact? Look at the left-hand side, that is defined as per our definition given above as the



increment of the function values. That is simply . But that is the exact same value𝐹(𝑏) − 𝐹(𝑎)

when you look at the right-hand side.

So, again the size of this set under is exactly . Since both are defined throughµ
𝐹

𝐹(𝑏) − 𝐹(𝑎)

the increment of the function values, we are easily able to compare and see that these two

functions attach the same size to such left open right closed intervals, but with the appropriate

notational justification that the has to be treated as a set inside the extended real line, on(𝑎,  𝑏]

the left hand side and on the right hand side it has to be treated as a set inside the real line.

(Refer Slide Time: 13:55)

But now let us start off with the argument. So, we want to show what? We want to show that

given any decreasing sequence of sets inside the field, that is on the real line. So, this is the finite

disjoint union of left open right closed intervals inside the real line. So, for that field, we want to

show, that the set function that we have defined on this field, this we want to show to be

countably additive, and we want to show it is continuous from above. To do that, we start off

with a general sequence, inside this field, which decrease and decrease to the empty set.{𝐴
𝑛
}

So, this whole intersection, this countable intersection is the empty set. So, here we split the case

into two possible sub-cases. So, the in the first sub case what we are doing is that since this

sequence of sets that we are considering are decreasing, then there might exist a suitable integer,

large enough integer such that after a certain stage all the sets are just empty sets. So, this can

happen and, in this case, of course, the intersection of all these sets is empty.



But, there may be an opposite case that in the case of all such natural numbers , your sets𝑛 𝐴
𝑛

which is a finite disjoint union of left open right closed intervals is not empty. So, these are

certain non-trivial sets, but they decrease and decrease to the empty sets. So, there are these two

cases.



(Refer Slide Time: 15:36)

So, the first case Roman one, is easy to handle. So, observe that if you look at the size of these

sets according to say, set function that we have defined. So, since ’s are empty sets after this𝐴
𝑛

stage in , then it will get them value 0, as per the definition that we have already considered.𝑛
0

So, therefore, if you consider the limit of these sizes, it will also be 0 and agree with the value

associated to the empty set. But then, the rest of the argument, we are going to focus on the case

Roman two, where the sets , this sequence of sets is non-trivial. So, they are non-trivial𝐴
𝑛

𝐴
𝑛

meaning, they are not empty sets, but they decrease and decrease to the empty set, very good.

(Refer Slide Time: 16:20)



So, let us now make another observation. So, here we are starting off with some interval left

open right closed interval inside the real line. What we observe first is that this set is inside the

field, that we have considered. But then this set is also inside the extended real line. So, just to be

clear, when you fix this and , if and are real numbers, then there is no problem. So, that is𝑎 𝑏 𝑎 𝑏

the type of sets we are considering here.

But if , then you have to make the appropriate justification. But then what we are going to𝑏 = ∞

consider is this left endpoint a. And we use right continuity of the given distribution function .𝐹



What do we do? We choose a decreasing sequence of real numbers. So, here we are not using

extended real numbers, we are going to use a decreasing sequence of real numbers, call it .{𝑎
𝑛
}

We can construct such a sequence, such that the limit is that number , the left endpoint of the𝑎

interval, we can choose such a sequence of real numbers. And by the right continuity of the

distribution function, we can also claim that , the function values at , we will go down to𝐹(𝑎
𝑛
) 𝑎

𝑛

the function value at . So, this is simply using the right continuity of the distribution function.𝑎

So, now observe that the value associated to these sets . So, this is also a left open right(𝑎
𝑛
,  𝑏]

closed interval. And you can think of it as inside the real line as well as the extended real line.

So, if you think of it as a set inside the extended real line, then what is the value associated to it

by the . So, that is nothing but this increment of the functions. Now, take limits as goes to .µ
𝐹

‾  𝑛 ∞

So, you have to consider this limit now. but then here, only limit that you need to be concerned

about is . But then by the right continuity converges to . So, therefore, this is𝐹(𝑎
𝑛
) 𝐹(𝑎

𝑛
) 𝐹(𝑎)

nothing but the size of the set under the set function . So, we are focusing on here. So, weµ‾
𝐹

µ‾
𝐹

will see the reason why.

(Refer Slide Time: 18:53)



So, what we are saying is this, that given this , we can choose some which is slightlyϵ > 0 𝑎'

larger than . So, this could be chosen as one of the s that approximate the values from𝑎 𝑎
𝑛
' 𝑎

above. So, we can choose such a value by approximating from above. Such that, this set gets𝑎',

associated smaller mass, so that is very clear. So, . So, the set is contained in𝑎' > 𝑎 (𝑎',  𝑏]

. So, even for finitely additive set functions like this, you can easily check that this(𝑎,  𝑏]

inequality will hold.

And what we are going to observe is that by this right continuity argument, we can actually

approximate it from above side, in this sense that you can choose this value , so that you get a𝑎'



slightly smaller set inside the interval . So, you are now choosing this interval, ,(𝑎,  𝑏) (𝑎',  𝑏]

which is a slightly smaller interval contained inside. But its size is very close, in the sense that

given this , the size of this plus will be an upper bound for the size of .ϵ > 0 ϵ (𝑎,  𝑏]

So, why is this again? So, this is purely for the reason that this limit is this limit value. So, this𝑎

limit is exactly this size. For exactly this reason, this value plus for an appropriate choice of ,ϵ 𝑎'

you can get this inequality. So, moreover absorb another fact that the closure of this left open

right closed interval with this approximating interval that I have just constructed is closure of

.(𝑎',  𝑏]

But that is contained inside . That is by construction, is always a real number, that is(𝑎,  𝑏] 𝑎'

why, construction. So, these observations that we did says that, given any interval to being(𝑎,  𝑏]

considered any such interval, then you can look at the size of this interval according to . Andµ‾
𝐹

you can obtain a slightly smaller interval, such that it is still a left open right closed interval, but

it approximates the size of the given interval with a pre-assigned error bound. So, given any

, you can figure out such a interval, which is contained inside .ϵ > 0 (𝑎,  𝑏]

(Refer Slide Time: 21:32)



So, now we go back to the step two. So, what was this, so, we wanted to show the continuity

from above for this sequence . So, that was the step. And what we are assuming now, that all𝐴
𝑛

these ’s are not the empty sets, but they decreased to the empty set. So, the complete𝐴
𝑛

intersection, the countable intersection is the empty set. So, let us start that argument once more.

So, here are these left open right closed intervals or their finite disjoint unions can be considered

as a sequence in , which is a field on the extended real line. But since each is either left open𝒞‾ 𝐴
𝑛

right closed interval or a finite disjoint union of such intervals, we can now construct a sequence

, again in inside the field. Such that, , so, that is fine. But should be contained in𝐵
𝑛

𝐵
𝑛
 ⊂ 𝐵‾

𝑛
 𝐵‾

𝑛
 

.𝐴
𝑛

Such that, the sets that sizes approximates this in this format. So, remember here s and s𝐵
𝑛

𝐴
𝑛
' 𝐵

𝑛

are sets inside the real line. So, you can treat them as sets inside or otherwise. So, here or𝒞‾ µ‾
𝐹

µ
𝐹

, both will assign the same values. But then, interestingly enough, by the construction that we

mentioned in the previous step, even if ’s are one single left open right closed interval or a𝐴
𝑛

finite disjoint union of them, for each such interval, you can approximate it from inside by a pre

assigned error bound.



And by that, you can construct this sets . So, if ’s are finite disjoint unions of left open right𝐵
𝑛

𝐴
𝑛

closed intervals, for each interval, you take that smaller interval content inside, take their finite

disjoint unions, then they will give you this sets for you with this as pre assigned error bound.𝐵
𝑛

So, you can choose this accordingly beforehand. And you can set this error bound by yourself.ϵ

So, that is not a problem. So, for each n, , which is again, a final disjoint union of left open𝐵
𝑛

right closed intervals, but purely contained inside the real line. So, that is why there is no

distinction here between and .µ
𝐹

µ‾
𝐹

(Refer Slide Time: 24:02)



But then, observe that the complete intersection, the countable intersections of s are given to𝐴
𝑛
'

be the empty sets. And . So, their countable intersection is also the empty sets. Now,𝐵‾
𝑛
 ⊂ 𝐴

𝑛

think of these as sets inside the extended real line. You can now say that the union of the𝐵‾
𝑛

complements, which we write is in this notation, . So, this is the complement ofℝ‾ − ℬ‾
𝑛

𝐵‾
𝑛

inside the extended real line.

So, here what is happening is that these complements if you look at the union of that, that will be

the extended real line. So, this is simply just flipping this relation by doing complementation. So,

this intersection becomes a union of the complements. But then, are closed sets. So,𝐵‾
𝑛
 ℝ‾ − ℬ‾

𝑛

, the complements will be open sets. And what we are saying is that the union, the countable

union of these open sets is covering the whole of the extended real line.

But since, extended real line is compact, so, here we appeal to the compactness of the extended

real line, you must find finitely many such open sets whose union will be exactly the extended

real line. So, simply stated there exists a natural number such that the union of first of these𝑛
0

𝑛
0

sets will cover the extended real line. So, you do not have to look at from 1 to , you do not𝑛 ∞

have to look at all the sets, you can stop at a finite stage.



You can figure out such , such that this finite union will already cover the whole of extended𝑛
0

real line. But then, now, again go back to the complemented version of this statement. So, this

union becomes a intersection. So, then you immediately are able to claim that intersection of

these finitely (())(26:01) is the empty set. So, this is simply complementing this relation on𝐵‾
𝑛

both sides, very good.

So, now, we have this fact, that the finite intersection of these first few is already giving you𝐵‾
𝑛
 

an empty set. Now, if you use the upper bound, that is mentioned in step III(d). So, let us go

back, says in step III(d), remember that will be less or equal to this quantity. So, if youµ
𝐹
(𝐴

𝑛
)

use a appropriate set theoretic argument, what we will be able to show is that will beµ
𝐹
(𝐴

𝑛
)

small.

(Refer Slide Time: 26:44)



So, that is all we are basically doing. So, if you go about doing that argument, you will be able to

show, that for the set you will get this upper bound. So, you have to do it appropriate set𝐴
𝑛

0

theoretic way by looking at all these inclusions between the sets. You have to do a bit of

argument, try to work this out, but from the statement that the final intersection of all these is𝐵‾
𝑛
 

the empty set, you can then try to show that associates the value smaller than to the set .µ‾
𝐹

ϵ 𝐴
𝑛

0



But then for the later sets, the sets come afterwards. This sets are contained inside ,𝐴
𝑛

𝐴
𝑛

0

because this is a decreasing sequence and therefore their sizes will be smaller. So, therefore, for

this onwards, all the sizes are smaller than epsilon. But what do we do? We had fixed that𝐴
𝑛

0

ϵ

beforehand, and then we have somehow figured out this value of . So, therefore, what we are𝑛
0

saying is that given any , we can figure out this .ϵ > 0 𝑛
0

Such that the size of the sets after the stage onwards is smaller than epsilon, and that is exactly

the definition of the limit saying that the limit of will be 0. So, the value assigned to theµ‾
𝐹
(𝐴

𝑛
)

sets by the set function were that limit will be 0. But then, as long as you consider these sets𝐴
𝑛

µ

within the real line, and agree. So, this is something we had already observed. Andµ‾
𝐹

µ

therefore, you can immediately claim that is exactly equal to 0.µ
𝐹
(𝐴

𝑛
)

So, what did we do? We started with a decreasing sequence of sets An, inside the field of finite

disjoint union of left open right close intervals in the real line. So, for such sequence of sets, we

have shown that the, the limit value for this sizes is 0. So, therefore, this will show you the

continuity from above at the empty set. And hence, it will now complete the proof of that claim

in step three.

And the later steps we have already discussed in the previous lecture, that afterwards you

claimed countable additivity of the set function . And then appeal to the Caratheodory’sµ
𝐹

extension theorem to get the appropriate extension to the whole of real line with borel -field,σ

that measurable space. So, this completes the proof of that claim.

(Refer Slide Time: 29:19)



But then, note that with this construction, we have now constructed these probability measures

corresponding to distribution functions. And just to formally write down the correspondence, that

we have mentioned multiple times, now, everything is proved. So, what we have now proved is

the following correspondence, that on one hand, you if you consider the probability measures on

the real line with the borel -field.σ

And on another hand, you consider this class of distribution functions. So, by that I mean it is a

function defined on the real line taking values between 0 and 1. It is a non-decreasing right

continuous function limits at and being 1 and 0 respectively. So, there is this nice+ ∞ − ∞

correspondence between these two collections of sets or these two collections. And this is



completing the connection, between random variables, their corresponding laws and their

corresponding distribution functions. So, we have completed that identification now. We are

going to discuss the higher-dimensional analogs in a later lecture in this week.

(Refer Slide Time: 30:28)

Another comment, before we stop is that if we use right from the beginning, so, here what didµ‾
𝐹

we do? In the previous lecture, we started with , which is defined on this field of finite disjointµ
𝐹

union of left open right closed intervals inside the real line. But if you start with the extended

real line, consider the finite disjoint union of left open right closed intervals inside the extended

real line.



There you can start talking about word itself right from the beginning, right from step one. Ifµ

you use that, then follow the argument, what you will be able to show is that this as alreadyµ‾
𝐹

mentioned is non negative, is finitely additive. Then you verify the relevant continuity properties,

claim the countable additivity of on the field of finite disjoint union of left open right closedµ‾
𝐹

intervals inside the extended real lines.

Then, we can appeal to the Caratheodory’s extension theorem and get an extension to these

measurable space, together with the borel -field of . So, the same construction that we haveℝ‾ σ ℝ‾

discussed, but we have avoided most of the construction or most of the terms involving the

extended real line, we had bypassed that. But if you had started doing that right from the step

one, you could have constructed a probability measure on the extended real line together with the

borel -field.σ

So, this is an important observation, that says that given a distribution function, first of all, you

can consider it as a function defined on the extended real line by specifying the value 1 at and∞ 

0 at . So, you get that function, corresponding to that function, you can construct this− ∞

probability measure, let us call it on the extended real line. And that is also in correspondenceµ‾
𝐹

with that function, that we have just talked about on the extended real line.

And what you can then observe is that, something that we have used in this proof that for certain

types of sets, this and agree. So, this you could extend using the principle of good sets,µ‾
𝐹

µ
𝐹

there are certain restrictions that we have mentioned earlier, that if you restrict, borel set inside

the extended rear line. So, by that I mean take a borel set in the extended real line take it

intersection with the real line.

So, that will now become a borel set inside the (())(32:59). So, that is the identification that we

are, while writing these sets on both sides. So, and will agree under that identification. So,µ‾
𝐹

µ
𝐹

what will happen is that if you had actually done this construction of starting from step one,µ‾
𝐹

then you would have obtained a probability measure on the extended real line.



But, the thing is that this borel -field on the real line. If you take sets from that, and do theσ

appropriate identification, you could restrict the probability measure from to the real line. So,ℝ‾

that is another way of proving this. But we want to avoid talking about too much on the extended

real line, that is why we stayed with the real line and we (())(33:42) almost throughout the proof,

only to prove the relevant continuity properties we had brought in this and prove the relevantℝ‾

properties.

So, here we have appealed to the extended real line compactness. And therefore, we have

managed to prove the relevant continuity properties. So, in later lectures, we are going to see

extended versions of these result for higher dimensional Euclidean spaces. So, we will continue

this discussion in the next lecture.


