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Welcome to this lecture. This is the final lecture of this week. Before we proceed, let us

quickly recall what we have done in this week. So, we have defined law or distribution of

random variables or random vectors and also defined the corresponding distribution

functions. The law was defined as a probability measure, that was the push forward of the

probability measure that was on the domain side. And the push forward was done by the

measurable structure of the given random variable or random vector.

Now, what we have shown is that given the random variable or random vector, we can

define these probability measure on the range side but this identification is not one to one.

That means, given probability measure on the range side, you can possibly construct

multiple random variables or random vectors with that as the law.

So, we have obtained both sided correspondence, but you have to be careful when you

want to go back from the probability measure to the random variable, this identification

need not be unique.

So then, we had also gone to these distribution functions and what we have seen is that

the properties of distribution functions follows from the law and these properties are

familiar properties that we have already seen in basic probability theory. But now we

have deduced them from the properties of the probability measure , the law of theℙ ◦ 𝑋−1

random variable .𝑋

But then, what we have also mentioned that given a collection of functions, let us say on

the real line, taking values between 0 and 1, non-decreasing right continuous, with limit

at being 1, limit at being 0, if you consider such functions, then you can consider,∞ − ∞

you can construct probability measures on the domain side, that meaning, on the (ℝ,  ℬ
ℝ

)

.



So, of course, they have their appropriate versions in the higher dimensions and then of

course, once you can construct these probability measures, you can of course go back

further and construct the corresponding random variables or random vectors.

So, this full correspondence between random variables, corresponding law which have

these probability measures and distribution functions will be complete once you have

computed or once you have constructed the probability measure corresponding to a given

distribution function. By distribution function, I mean a function satisfying those

appropriate properties.

So, as a first step towards that direction, we are going to discuss important application of

Monotone Class theorem in this lecture. And this relates to extensions of measures from

fields. So, let us move on to the slides.

(Refer Slide Time: 03:17)

So, in this lecture, we are going to talk about extensions of measures.



(Refer Slide Time: 03:22)

First, recall that we have defined finite measures on -fields. What were theseσ σ 

measures? These were measures such that you can approximate the whole set from below

by sets with finite mass. So, those were finite measures.σ 

And we have also defined measures on fields. What were these? These were

non-negative, countable additive set functions on fields. So, their countable additivity has

to be verified only for the sequence of sets where the sets are pairwise disjoint and their

union is already in the field.
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So, given these non-negative finitely additive all are countable additive set function, on a

field, what we would like to do is to construct non-negative countably additive set

functions on the generated -field, such that these new set function, while you areσ 

looking at sets in the field, it will match with the given set function mu.

So, originally the set function is defined on the field. You want to construct a setµ

function, countable additive, non-negative, such that this set function can associate values

on the -field that is generated by the field. So, that is the bigger collection. And on thatσ 

bigger collection you are defining this new set function, which should match when you

try to look at sets from the field. It should match with the given set function that is

defined on the field.

So, as a quick example of a field, and the corresponding generated -field, always keepσ 

in mind the example of the field on the real line given by finite disjoint unions of left

open right closed intervals. And also, recall that the generated -field is nothing but theσ 

Borel -field.σ 

So, what we are basically saying is that what we would like to do in this special case is to

construct a countable additive non-negative set function on the Borel -field on the realσ 

line, provided you are given a non-negative set function, finitely countable additive set

function on the field of finite disjoint union of left open right closed intervals.

So, that is the type of thing that we are trying to study. So, we are talking about

extensions because these set functions are, first of all defined on this collection of sets.

So, the original set function is defined on the collection of sets which is a field, , andℱ

then you are keeping those values intact but then also trying to associate values for the

other sets that appear in the generated -field.σ 

And you are trying to obtain this extension, this extension of the set function to the

generated -field. And you want that extended function also to be a measure. So, that isσ 

basically the idea.



(Refer Slide Time: 06:23)

So, in this regard, we want to make this definition. We are calling a measure to be a σ 

finite measure on a field if you can get approximating sequences of sets from below with

finite mass. So, these definitions remains the same as was considered in the case of σ 

finite measures on -fields.σ 

So, what we are taking is, you have a countable additive non-negative set function on a

field and you would like to have a approximating sequence of sets, , which{Ω
𝑛
}

approximates the whole set from below. And you would like to have that the sets have

finite mass or finite size under the measure mu.



(Refer Slide Time: 07:04)

Now, with that at hand, we now state the main result regarding this extension of

measures. So, what you are starting off with is a - finite measure on a field which weσ 

have just defined. So, with that set function at hand, you have this important result called

the Carathedery Extension Theorem.
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Which says that given such a measure, finite measure on a field, you can get anσ 

extension to a finite measure, let us call it on the generated -field. That meansσ µ‾ σ 

given a set function mu, you can construct a extended set function, you can associate

values for the extra sets that appear on the generated -field, such that the original valuesσ 

remain intact.

You get new values for the new sets and whatever set function you obtain at the end, this

will be a finite measure. And it also has a uniqueness statement. It says that if thereµ‾ σ 

are two such extensions of the set function to the generated -field, then they must beµ σ 

the same.

So, they, then they must match for all the sets in the generated -field. See, here, and ,σ µ‾ µ
~

these extensions are defined on the generated -field and therefore what we are saying isσ 

that set by set for all the sets in the -field, these two extensions must match.σ 

But these two extensions also should match on the field as per the construction but the

uniqueness statement says that they should also match over all the extra sets that you get

on the generated -field. So, that is the uniqueness statement. So, let us see how do weσ 

go about proving this.



(Refer Slide Time: 08:56)

But it is important to note that in this course, we are only going to talk about the

uniqueness part of it. The existence parts require many technical constructions which we

would like to avoid. And this is not part of this course. So now, what we are going to do

is to look at the proof of the uniqueness and we are going to assume that the existence

statement holds. So, let us break down the proof into several steps so that it is easier to

follow.

(Refer Slide Time: 09:27)



Now, we are going to continue with the notations. That means is a finite measure onµ σ 

our field and we would like to show that given two extensions and , they will matchµ‾ µ
~

on the generated -field.σ 

So, as extensions, they already match with the given set function on the field. So, andµ‾ µ
~

agree on the field but we would like to show that the, for the extra sets that appear on the

generated -field, that two extensions and must match.σ µ‾ µ
~

(Refer Slide Time: 09:58)

So again, we are going to split this proof into several steps. So, the first case will be when

you are talking about a probability measure. That means the given associates total massµ

as 1. So, the whole set has total mass 1. Great. Then, we will extend the case to the case

of finite measures and finally to the -finite case. So, let us split this.σ 



(Refer Slide Time: 10:21)

And the first result in this direction therefore is Proposition 3, which is about probability

measures. So, continue with the same notations but assume that associates total mass 1.µ

So, has mass 1.Ω

(Refer Slide Time: 10:38)

Then we claim that the two extensions must match. So, how do you show this?
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So, to do this, what you do is that you look at this collection of sets, call it , so thisℰ

collection of sets is a sub collection of the -field generated by the field where the twoσ 

extensions match. So, when these two extensions match, you put that set in your

collection.

So, note that this collection is non empty because you already have the sets from the field

agreeing. So, for the sets in the field, you already have these two extensions match, so

therefore the, this collection that you are starting off with, it is non-empty. So, all the, the,

the field is already containing this .ℰ



(Refer Slide Time: 11:24)

But then, note that the extensions that you were looking for, they are actually also

probability measures on the generated -field. Why? Because the total mass that thatσ 

gets associated is exactly equal to 1 because is in field. Therefore, this equality mustΩ

hold and therefore and are probability measures on the generated -field.µ‾ µ
~

σ 

(Refer Slide Time: 11:41)



But now, go back to Week 2, and look at Proposition 11, where you are talking about

these sets of equal probability under different probability measures. So, that was againℰ

in that notation, in Proposition 11, so go back to this.

So, what you had shown was that such sets, this collection of sets will form a Monotone

class. So, if you look at that, in this case also, we have these two probability measures µ‾

and on the field generated by the field . So there, you have this structure that is, whereµ
~

ℱ

the two measures agree, that collection of sets is a Monotone class.

(Refer Slide Time: 12:26)



But then, since this Monotone class contains this field, use the Monotone class theorem

and claim that the -field generated by the field is contained in this collection. But byσ 

definition, your collection was already a sub collection of -field generated by the .σ ℱ

So, let us go back again. So, you had started off with this sub collection where these two

probability measures agree. So, therefore , whatever it is, it is already a sub collection ofℰ

the -field generated by the field.σ 

(Refer Slide Time: 12:51)

And therefore, you have the exact equality, and which will tell you that for all the sets,

these two measures must agree. So, that concretes the proof. Now, before we go forward



and extend this result for the case of finite and finite measures, it is an important pointσ 

to note that the Monotone Class Theorem is being applied here and you should note that

any Monotone Class containing this field , contains this -field generated by the fieldℱ σ 

F.

So, that was the statement of the Monotone Class Theorem. So, if from Monotone Class,

contains the field, then the Monotone Class also contains the -field generated by theℳ σ 

field. So, that was the Monotone Class Theorem.

But now, you also note that -field generated by the field is a -field and itself it is aσ σ 

Monotone Class. -field supports countable unions and countable intersections, inσ 

particular it will support countable increasing unions and countable decreasing

intersections, therefore -field generated by the field is a Monotone Class.σ 

Therefore, what you observe is that among all the Monotone Classes containing a field,

this -field generated by the field F, that is the Monotone Class also containing the fieldσ 

and these Monotone Class -field generated by the field is contending any arbitraryℱ σ ℱ

such a Monotone Class.

That means, -field generated by the field is the minimal Monotone Class with theσ ℱ

property that it contains the field . So, -field generated by the field, contains the field,ℱ σ 

it is a Monotone Class, fist point.

Second, any general Monotone Class containing the field must contain the -fieldσ 

generated by the field. So, therefore the minimum Monotone Class containing the field is

the -field generated by the field itself. So, this is a important observation.σ 



(Refer Slide Time: 14:45)

So now, we go to the, other cases, when you try to extend the result from probability

measures to the case of finite measures. So again, continue with the same notations that µ

is a - finite measure on a field and you have two extensions and to the generatedσ µ‾ µ
~

σ 

-field. And you assume that associate finite mass to .µ Ω

So, is finite. So, given that, you want to show that the two extensions agree. So howµ(Ω)

do you show this? So, consider these two set functions now. What are these set functions?

(Refer Slide Time: 15:19)



So, I denote them by subscript 1. So, I am given and and I am defining two new setµ‾ µ
~

functions, the first which is denoted as , the second one is denoted as . So, these areµ‾
1

µ
~

1

the two set functions that we define. So how do you define it?

(Refer Slide Time: 15:40)

Again, you look at and . Remember that these two quantities that you areµ‾ (Ω) µ
~

(Ω)

looking at, they will match, and , they will match and match with .µ‾ (Ω) µ
~

(Ω) µ(Ω)

And in all of this, we typically will assume that is not 0. So, it is not the 0 measureµ(Ω)

that you are looking at. So, again, your underlying hypothesis will always be that µ‾ (Ω)

and , they are agreeing by the hypothesis and agreeing with and which is not 0.µ
~

(Ω) µ(Ω)

So, that is some positive quantity and therefore you can divide by that positive quantity.

So, what you do, you scale all the measures of the sets, by the total mass. So, that isµ‾

what you do. And remember, by Proposition 4 of Week 2, that these will give you a

probability measure. So, you scale a finite measure, divide it by the total mass, you get

back a probability measure. So, that was proved in Proposition 4.

So, if you now construct these set functions, and , these are now probabilityµ‾
1

µ
~

1

measures on the generated -field. But then, these two probability measures matches onσ 

the field as per the given condition. And hence, by Proposition 3 above, you can apply



the uniqueness argument and therefore you can claim that is equal to . is equal toµ‾
1

µ
~

1
µ‾

1

.µ
~

1

And then, from that you can easily conclude that and must match. So, first you proveµ‾ µ
~

that after you scale the and , you get probability measures, then you observe that they,µ‾ µ
~

they match, apply the previous results, get the equality of and and from that youµ‾
1

µ
~

1

conclude the equality of and . So that is the proof. So, try to write it down. I haveµ‾ µ
~

already explained the major steps.

(Refer Slide Time: 17:44)

But then, how do you extend it to the case of -finite measures as in Theorem 1. So,σ 

here, is a -finite measure on the field and you are looking at and which are again,µ σ µ‾  µ
~

of course two - finite measures on the generated -field and you would like to claimσ σ 

that they will match throughout the -field.σ 



(Refer Slide Time: 18:11)

So how do you show this? You scale it down to finite measures case by using σ 

-finiteness of the given measure. So, what do you? Since is -finite, you will get thisµ σ 

sequence of sets increasing to and has finite mass according to the measure mu.Ω
𝑛

Ω Ω
𝑛

Now, observe that also will be giving you an increasing sequence of sets in theΩ
𝑛

generated -field with the fact that and are finite. Because ’s are in theσ µ‾ (Ω) µ
~

(Ω
𝑛
) Ω

𝑛

field and therefore, and must match on the, agree with the values with on these sets.µ‾ µ
~

µ

So therefore, you get this increasing sequence again in the generated -field and thereΩ
𝑛

σ 

you have that and associates finite mass to this and therefore and are also -µ‾ µ
~

Ω
𝑛

µ‾ µ
~

σ 

finite measures on the generated -field. So, these are of course mentioned in theσ 

statement but we just clarified this issue as part of the flow.
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But then you would like to say that these two matches. These and matches. So, howµ‾ µ
~

do you show this? You now consider a restricted version of the set functions and . Callµ‾ µ
~

them , . So, what is, what is this?µ‾
𝑛

µ
~

𝑛

So, given this n, which is sum natural number 1, 2, 3 and so on, what you define is this µ‾
𝑛

for any arbitrary set in the generated -field, you look at . So, sinceσ (𝐴 ∩ Ω
𝑛
) (𝐴 ∩ Ω

𝑛
)

is a subset of and has finite mass, also has finite mass under .Ω
𝑛

Ω
𝑛

(𝐴 ∩ Ω
𝑛
) µ‾



Similarly, has finite mass under . So therefore, when you define and ,(𝐴 ∩ Ω
𝑛
) µ

~
µ‾

𝑛
µ
~

𝑛

they will be finite measures on the generated -field.σ 

(Refer Slide Time: 20:24)

So now, go through these steps. So, the first step, that you are going to show that andµ‾ µ
~

𝑛

defined as some kind of a restrictions of the original given set functions and , theseµ‾ µ
~

restriction find of functions, these are give you finite measures on the generated -fieldσ 

with the total mass agreeing. Once you have that, you apply the finite measures case to

claim that these two finite measures must match on the generated -field.σ 
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Once you have that, go the third step. You can now use the continuity from below

property for and , to claim that from the quality of and , you can show theµ‾ µ
~

 µ‾
𝑛

µ
~

𝑛

equality for and .µ‾ µ
~

How? As long as and agree for all the sets in the generated -field, you are sayingµ‾
𝑛

µ
~

𝑛
σ 

that matches with . So, I am making use of that equality.µ‾ (𝐴 ∩ Ω
𝑛
) µ

~
(𝐴 ∩ Ω

𝑛
)

Bu then use the continuity from below of and , and use the fact that increases to theµ‾ µ
~

Ω 

whole set, so therefore increases to the set , increases to the set .(𝐴 ∩ Ω
𝑛
) 𝐴 (𝐴 ∩ Ω

𝑛
) 𝐴

So therefore, use the fact that and agree and let n go to infinity,µ‾ (𝐴 ∩ Ω
𝑛
) µ

~
(𝐴 ∩ Ω

𝑛
)

then the limits will be the same and that will give you on one hand and onµ‾ (𝐴) µ
~

(𝐴)

another hand. So, you are using continuity from below to go from these finite measures

case to the -finite measures case. So, I have already explained the steps. Please try toσ 

write it down and conclude the proof.
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So now, a few comments before we stop. So, using this Caratheodery Extension

Theorem, we are going to discuss the construction of probability measures corresponding

to distribution functions.

So here, “distribution functions” is under quotes and what do we mean by these type of

functions? We mean that these are functions defined on the real line taking values

between 0 and 1, are non-decreasing and right continuous, have limits at and , the∞ − ∞

values being 1 and 0.

For such functions, you are going to construct probability measures and one of the

important steps, steps will be the Caratheodery Extension Theorem as we have discussed

here.

Then that will finish that correspondence between distribution functions and the

corresponding probability measures. And that will complete the correspondence between

random variables of vectors, the corresponding laws, the corresponding probability

measures and the distribution functions.

So again, all of these results that we stating, initially will be stated in dimension 1 for

simplicity, but appropriate versions can be proved for the d dimensional case as we will

discuss in the next week.
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And important thing to note is that corresponding to distribution functions, you are

constructing probability measures. And this construction is actually a part of a more

general construction where you can construct more general types of measures which will

help us talk about absolutely continuous random variables. These, we are going to see

later on.

So first, when we start the discussions in the first week, we are going to concentrate on

the connection between distribution functions and probability measures. So, this

discussion will be done in the next week. We stop here.


