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Welcome to this lecture. This is the second lecture of week 1. I am sure you have already gone 

through the introductory lecture video. I have already described the mode of conduct of lectures 

which will be through some pre-prepared slides. I will be describing and discussing the materials 

that are already written in the slides. Let us start.  
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In the first introduction, we recalled the notion of a random experiment, which can be repeated as 

many times as we need. We observed the outcomes of a specific random phenomenon. And if we 

list all outcomes if we list them in a set, we will get the sample space.  
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We also observed that special subsets appear as events, and these events satisfy certain algebraic 

properties. For example, if you take an event and look at its compliment, that is nothing but the 

compliment of the set in that sample space. So, the complimented set can be interpreted as the 

nonoccurrence of the original event. So, the complimentary event can be given some physical 

significance, and these are the types of interpretation that we want to do.  

So, this can be more formally done when we discuss the collection of all events related to a specific 

random experiment. This collection of all events satisfy certain specific algebraic properties like 

complementation and unions.  
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This lecture will study these algebraic properties and model this collection of all events related to 

a specific random experiment as a 𝜎-field. The strong 𝜎-fields shall be discussed and defined in a 

minute. In this regard, note that the sample space by construction is a non-empty set. So, whenever 

you perform a random experiment, you always get an outcome, so, therefore, the list of all 

outcomes is a non-empty set.  
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So, more generally, to discuss this mathematical foundation behind the study of probability, what 

we shall do, we shall work with the notion of 𝜎-fields in quitter general setup, and we shall work 



with a non-empty set which Ω shall always denote. So, if you find this Ω notation in this course, 

you always treat it as a non-empty set. About a specific random experiment, Ω is to be taken as the 

sample space. So, in general, we shall work with some non-empty sets.  
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So, let us start the discussion on the definition.  

Definition: We shall start with this non-empty set Ω and look at the collection of subsets of Ω. So, 

ℱ denotes some collection of subsets. What we want is that this collection of subsets should satisfy 

certain properties.  

(i) So, the first thing is that the empty set 𝜙 which is a subset as a very specific subset, 

should be in the list. And this is what we write in the mathematical notation that the 

empty set 𝜙 belongs to the list belongs to this 𝜎-field belongs to ℱ. So, this is the 

notation we write, so the set is a limit in the collection. So, that is why we use this 

notation. 

(ii) So, the second property that we want is closed under complementation. What do I 

mean? So, for all possible sets in the list, the list need not contain all the possible 

subsets, but whatever subsets they are there if 𝐴 is there, we should also have the 

compliment in the list. So, this is what we mean by closed under complementation.  

(iii) And the final property that we want is closed under countable union. What do we want? 

So, we will take sequences from the list so, 𝐴!, 𝐴" and so on are subsets. This could be 



repeated or distinct, but priory this arbitrary collection this arbitrary sequence of 

sets𝐴!, 𝐴" and so on, they are taken from the list from the collection, and then we want 

to look at its union. So, since we are looking at a sequence, I get a 𝑛 from 1 to infinity 

union. This union is a subset, and I want this union to be also on the list.  

So, suppose some specific collection of subsets ℱ satisfies these three properties. In that case, 

empty set 𝜙 belongs to the list, closed under complementation, and closed under countable unions. 

I shall say that this collection is a 𝜎-field ℱ.  
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Now, there is an equivalent term which is called a 𝜎-algebra. Throughout the course, we shall use 

the term 𝜎-field, but 𝜎-algebra is the equivalent terminology. Before going into examples, what 

do you do? Is that we study some very basic properties which shall help us in construction of 

examples. So, let us start with these basic sub-properties. So let ℱ be a 𝜎-field of the subset of 

non-empty set Ω, then the following statements hold.  
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(i) So, the first statement says that the Ω must be in the list. So how do you show this? I 

have given a hint, so use property a) and b) given in the definition. So, let us go up so 

if you look at the property a), it says that empty set 𝜙 in the list empty set 𝜙 belongs to 

the 𝜎-field. Then the second property says that it closed under complementation. So, if 

you now look at the compliment of the empty set 𝜙 which is in the 𝜎-field, then the 

compliment of empty set 𝜙 should be there. But the compliment of empty set 𝜙 is 

nothing but the whole set, so the whole set is there. So, this proves the first property. 

Please try to write this down.  

(ii) So, let us look at the second property, which says closed under finite union. So, what 

do I mean? I take finitely limited sets 𝐴!, 𝐴", . . , 𝐴# from the 𝜎-field and what I want is 

that the union should be in the 𝜎-field. So, the union here is the finite union of sets. 

But, in the statement in the definition, what we have taken is a countable union. So, 

how do you put in that field of so what do we take this sequence 𝐴!, 𝐴", . . , 𝐴#	as given 

sets and then from (𝑛 + 1)$% place onwards, you repeat the empty set 𝜙. Remember, 

empty set 𝜙 is always in there in the 𝜎-field. So, therefore this sequence that you have 

constructed just looked at is a sequence of sets coming from the list. These are not an 

arbitrary subset or an arbitrary subset of Ω, but these are arbitrary subsets from the list. 

So, this is very important. So, I have taken a sequence from the list from the collection. 

Then, if you look at this union, this union is nothing but the finite union ∪&'!# 𝐴&. So, 



therefore since this countable union collapses, this finite union must be in the collection 

ℱ. So, this shows closed under finite union.  

(Refer Slide Time: 8:07) 

 
 

(iii) Similarly, using properties involving countable intersections and finite intersections 
can be shown. We want to show for countable intersections that if you take the 
sequence of sets in the 𝜎-field, their countable intersection is also in the 𝜎-field. And 
you can also reduce it into finitely many intersections. If you take finitely many sets, 
 take their intersection, which should also be in the 𝜎-field. So, to prove property in 
(iii) and (iv), all you have to do is use some algebraic properties involving 
complementation and union. Please write this down, and I have left this as an 
exercise. These are very easy exercises, and they will help you to understand the 
material better.  
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So, now we have some basic properties, and we are ready to construct examples.  

(i) As per the discussion above, any 𝜎-field must contain the empty set 𝜙 and the whole 
set Ω. So, this we have already seen. It so happens that if you look at this collection of 
two sets, only the empty set, and the whole set, so this is now a collection this is 
becoming our first example of a 𝜎-field. So, please check that the empty set 𝜙 is there. 
Then if you look at compliments of each set in this collection, empty sets compliment 
𝜙( is whole set Ω.  	Ω( is the empty set 𝜙. So, therefore it is also closed under 
complementation. Now, if you take sequences out of this so either empty set 𝜙 or the 
whole set Ω will be there in the sequence. If could also be repeated so they could also 
be mixed in whatever situation if it so happens that only the empty set 𝜙 appears in the 
sequence, then the union is empty set 𝜙 otherwise if Ω appears at least once then the 
union becomes Ω itself. So, therefore it is also closed under countable unions. So, both 
these properties are true. So this simple example gives us the first example of a 𝜎-field. 
This is sometimes referred to as a trivial 𝜎-field. 
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(ii) To the other extent of the things, we can look at all possible subsets called the power 

set. So, this is the set of all subsets of the Ω. So, this is sometimes denoted as 2) to 

denote that each element in the Ω can have two choices either you take it or not take it. 

In this sense, you get all possible subsets. So, this is the idea. So, now, if you look at 

the power set, this has the list of all possible subsets of Ω. Now, this will become a 𝜎-

field because no matter what kind of sets operation is performed, you always end up 

with the subset of Ω, and therefore, it is always closed under all those complementation 

and countable unions. And also, the intersect is the subset, so it should also be there. 

So, therefore the power set becomes an example of a 𝜎-field.  

Now, we have two examples of 𝜎-field one is a trivial 𝜎-field other is a power set.  

What we are interested in are arbitrary 𝜎-fields, which fall between these two things. So, arbitrary 

𝜎-fields will always contain the empty set 𝜙 and the whole set, so this intuition is fine. On the 

other hand, our arbitrary 𝜎-field is nothing but a collection of subsets, so all subsets are there in 

the power sets. Therefore, a 𝜎-field is a sub-collection, so we have used this says contains notation.  

Note:  

(a) So, 𝜎-field ℱ is a subcollection of totally got Ω the power set. We are going to see the 

examples of ℱ, which is strictly between these two things. Specifically, if you will work 



with finite sets or countable infinity sets, then instead of using arbitrary 𝜎-fields, we 

typically work with the power set. 
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(b) So, if you are working with a coin toss example, you get the outcomes 𝐻 and 𝑇 heads or 

tails, then the sample space is made up of these two elements so, Ω =	 {𝐻, 𝑇}. Then, you 

look for all possible subsets of Ω, the empty set 𝜙, two singleton sets {𝐻} and {𝑇} and then 

the whole set Ω. This gives you a list of all subsets of Ω, which is a power set, and as per 

our discussion above, this gives you an explicit example of a 𝜎-field on Ω.  
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(c) If Ω is an uncountable set and has more elements, then what will happen that we do not use 

the power set for technical reasons. It will happen that the power set has too many sets to 



handle, and in principle, we are not going to work with all possible subsets in case of such 

sets. For example (0,∞), or ℝ will have too many elements and too many sets to work 

with our specific 𝜎-fields in this situation. We shall discuss this issue later on.  
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(d) One specific terminology is useful we shall say ℱ is a 𝜎-field on Ω instead of saying ℱ is 

a 𝜎-field of subsets of Ω. Instead of saying this whole thing, we shall only say ℱ is a 𝜎-

field on Ω.  

Now let us look at further examples of 𝜎-fields. We are interested in an example that falls 

between the trivial one and the whole power set. To construct these examples, we first take a 

bottom-up approach.  
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So, what is this bottom-up approach? We look at the trivial 𝜎-field and add sets to this so, we take 

some non-trivial subset 𝐴 which is not the empty set 𝜙 and not the whole set. So, I have taken non-

empty set Ω and take a non-trivial set 𝐴. Then look at this collection of sets {𝜙, 𝐴, 𝐴(, Ω}. You can 

now try to check this set of 4 elements construct an example of a 𝜎-field.  

So, all you have to verify is that empty set	𝜙 is there, which is also already seen. Then you have 

to check that complement of each set is there, and then you have to check that if you create 

sequences out of these four elements, you always get closed under that. Please check this. So, this 

will become an example of a 𝜎-field which is slightly more general than the trivial 𝜎-field or the 

power set.  
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So, now you can ask, I have taken one subset. What will happen if I take two proper subsets.  

So,  to this, let us see what happens. So, take two proper subsets 𝐴 and 𝐵. So, therefore, 𝐴, 𝐵 are 

two subsets usually distinct such that they are not the empty set 𝜙 and not the whole set. Then it 

will end up with 16 possible sets. So, I have listed them so it will, of course, have 𝐴, 𝐵, 𝜙, then𝐴( 

, 	B( and then you shall see all these unions and intersections of this is appearing here. And you 

also see combinations of complementation and so on.  

In particular, I will draw your attention to this set called the symmetric difference of two sets. 

What is this? This is this notation so that I will write 𝐴	Δ	𝐵. This thing denotes the symmetric 

difference. So, 𝐴	Δ	𝐵 is exactly the set consisting of elements that fall in one of them. So, they are 

not at an intersection between 𝐴 and 𝐵. So, it is in 𝐴 not in 𝐵, or the element should be from 𝐵 but 

not in 𝐴.  

So, list all such elements of Ω will construct you the symmetric difference between the sets 𝐴 and 

𝐵. So, this symmetric difference will appear in the 𝜎-field, and its complement will also appear. 

Here I wish also to draw your attention to this notation that 𝐴 ∩ 𝐵( can sometimes be written using 

this set minus notation. I shall only write 𝐴	\	𝐵 to denote all elements in 𝐴 which are not in 𝐵.  

So, as if I am subtracting out all elements of 𝐵 that appear in 𝐴. I am subtracting them all, so that 

is this notation. So, in this list, you will have at max at the most 16 possible sets.  



Note: (iii) But, it may so happen that 𝐴	 ∩ 𝐵 is empty. 
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So, let us go up again. So, in this list, 𝐴	 ∩ 𝐵 appears if it so happens that 𝐴 and 𝐵 the two proper 

subsets you have taken are disjoint, then 𝐴	 ∩ 𝐵 becomes empty set 𝜙 so, which is already listed. 

So, in principle, while working with specific examples, this list of 16 elements or 16 sets may 

collapse and give you fewer sets.  So, these are the maximum possible sets that you might have. 

So, we shall get fewer sets in the collection that we have explicitly listed in such cases.  
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(iv) More generally, you can say this if you have 𝑛 mini sets 𝐴!, 𝐴", … , 𝐴# then you shall 

have 𝑛 distinct subsets of Ω, and it can be proved that there are at the most 2"! sets in 

the 𝜎-field constructed using the above method.  So, what do I mean so? If you just go 

back to the example here, we had constructed the first 𝜎-field using only one set; we 

had four sets, so that is 2"" = 	4 sets. Then, you took two sets; as per its statement, you 

are expected to have 2"# = 16 elements, 16 sets. So, this is at the most, and as we have 

already explained, if you some relations between the sets the list of 2"! sets may 

collapse and give you less number of sets at the end, so this will happen in specific 

examples. But, you shall only have at the most 2"! sets if you start up with 𝑛 subsets. 

It can be showed you take it as a fact.  
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(v) In a later lecture, we shall discuss a top-down approach to construct non-trivial 

examples. In the above discussion, we have done that we have constructed examples 

using the bottom-up approach. We have started up with trivial 𝜎-field and then started 

adding sets. So, from the bottom, we are getting up and getting bigger and bigger 

examples of 𝜎-fields.  
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(vi) We now discuss the preimage of a set under a function here take a function 𝑓: Ω → Ω'. 

Then if you take specific subsets from the range, let's call 𝐴 to be a subset, this is an 



arbitrary subset. You can consider this following subset denoted as 𝑓 (𝐴)*! , which have 

all elements in the domain such that 𝑓(𝛺) falls in the different set 𝐴. So, 𝐴 is a specific 

subset on the range side, and 𝑓(𝛺) should be in that specific subset's range. So, I list 

all such points on the domain side.  
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 So, this is called the preimage of the set 𝐴 under 𝑓. Here you need not have an inverse. The 

function 𝑓 need not have an inverse. Thus 𝑓 (𝐴)*!   should be treated as one symbol and not created 

by separate symbols 𝑓*! and 𝐴. So, here this function 𝑓 need not be an injective function and need 

not have an inverse.  
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So, using this notation, you can now try to work out with this exercise which says that you can 

take a 𝜎-field on the range side. So, take this function, take the 𝜎-field on the range side, and then 

look at preimages for all sets in the range side. So, I take a 𝜎-field on the range side. Take all sets 

that are in that specific list on the range side. Look at all its pre images, so this is a kind of a list of 

all preimages. This is the collection of all preimages, then what you can now try to look at is this 

list of all preimages. 

Now, try to show that this is constructing an example of a 𝜎-field on the domain side. So, the 

preimages are the specific subsets on the domain side and what you are trying to do is show that 

this construction example of a 𝜎-field.  
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We now discuss a concept very much related to a 𝜎-field.  

Definition: So, take a pair consisting of a non-empty set Ω and a 𝜎-field of subsets of this given 

set. Then if you look at this pair, this constructs a specific structure. This is what we define. We 

call it a measurable space. A pair (Ω, ℱ) is called a measurable space. If the Ω the first thing in the 

notation is a non-empty set Ω and ℱ is a 𝜎-field on Ω. This is called a measurable space. So, if Ω 

is a set of all outcomes in a random experiment and ℱ is any 𝜎-field, then the pair becomes a 

measurable space.  
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So, this is a more explicit example that you might get from a random experiment.  

More specifically, we shall discuss some examples here. We have already discussed that if you 

take a non-empty set Ω, then the trivial 𝜎-field is always there as an example so, if you write it 

down in this pair format, this gives you an example of a measurable space. So, Ω together with the 

trivial 𝜎-field constructs you an example of a measurable space.  

Then, looking at Ω together with the power set gives you another example of a measurable space. 

More explicitly, if you are working with the random experiment of tossing coins, your sample 



space Ω is composed of two elements heads and tails, and then you can also look at the power set 

of all subsets. This is an explicit example of a measurable space.  

Later on, we shall discuss this notation of 𝜎-fields 𝐵ℝ which is a 𝜎-field on a real line. We shall 

discuss it in a later lecture. This is kept there just for your understanding that on the real line, we 

will discuss some specific examples and recall that we have already mentioned that in this 

uncountable sets situation, we are going to look at specific subsets. This shall be discussed in the 

later lecture.  
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One final comment before we stop is that given a measurable space. We refer to the subsets that 

you have in the 𝜎-field as measurable sets so 𝜎-field ℱ is on the non-empty set Ω and 𝜎-field ℱ 

need not be containing all possible subsets. So, it need not be the power set; it lists some specific 

subset some special subsets these subsets given the 𝜎-fields these special subsets we shall refer to 

as measurable sets.  

About a random experiment, these measurable sets are exactly the events. So, if you go up the 

single head or single tail occurrence, they are specific events about a random experiment of tossing 

coins. So, we stop here.  

 

 


