Measure Theoretic Probability 1
Professor Suprio Bhar
Department of Mathematics and Statistics
Indian Institute of Technology, Kanpur
Lecture 18
Decomposition of Distribution functions
Welcome to this lecture. Before we proceed with the discussions of this lecture, let us

first quickly recall what we have been doing in this week. So, in this week, we have
looked at the measurable structure of random variables or random vectors and put them
together with the domain side probability measure. And when you put them together, we

obtain the law or distribution of the corresponding random variable or random vector.

Now, using that law or the distribution, which is a probability measure on (R, .‘BR), in the

case of random variables and on R” with the Borel o- field of R in the case of R” valued
vectors, so using that probability measure, we have also defined the corresponding

distribution functions.

Now, what we have done in the previous lecture was that we looked at properties of such
distribution functions. The thing to note is that we have defined distribution functions,
corresponding to probability measures on these Euclidean spaces together with the Borel

o- field.

And then, for random variables or random vectors, we looked at the corresponding law
and we said that the distribution function corresponding to the law is the distribution

function of the random variable or random vector.

And what we have seen is that the basic properties of probability measures immediately
gives you the well-known properties of distribution function as you know about them, as
you have studied in your basic probability course. So alright, let us quickly recall these
properties that we have already seen in the previous lecture. And we can continue with

the discussions of this lecture.
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So, start with a random variable X, so just for simplicity, let us work in dimension 1. So,
this random variable, it is a real-valued function on this probability space and it is a

measurable function. So, I look at its distribution function.
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And what we have seen is that distribution function is the function defined on the real

line and it takes values between O and 1. It is non-decreasing and right continuous

function with some nice properties.
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Like the limit at co being 1, limit at — oo is 0, the left limit is exactly this, the P(X < x),

and the right limit matches with the actual function value so the function is right

continuous and that is exactly P(X = x). So, here, X is any arbitrary real number.

So, once you have identified the left limits and right limits, the existence of those are
confirmed and then only possible discontinuity that can happen for the function, for the

distribution function is the jump discontinuity.
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And then you can also compute the size of the jump, and that is exactly given by the
difference of these values, and that is computed as P(X = x). So, these are the properties

we have seen.

And, what we have also remarked in Note 8 earlier is that given probability measures, we
can now transform it into a function. So, from the collection of all probability measures
on the real line with the Borel o-field, we can obtained this function, which is non

decreasing right continuous, limit at oo is 1, limit at — oo is 0.

So, you have obtained the association from the collection of probability measures of that
type of collection to the collections of functions of that type. So, you have obtained the
association. Now, what do you do later on is to obtain function going in the opposite
direction. So, we would like to associate or make an association going in the opposite

direction.
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And what it is going to show is that given any function on the real line with values
between 0 and 1, which is right continuous, non-decreasing, limit at co is 1 and limit at
— oo is 0, so with these properties if you get a function, then it will correspond to a

probability measure p on the real line together with the Borel o-field.

(Refer Slide Time: 04:36)



ot . L —
N e

;{Ex—& F0A=0 Cormnasbordis T o \m\w\g\@
Treaune. W o QQ,%@ ,le B
Once We howe Conghucted k:ho\om\;\u\\\]—
Socat (5,3, ¥) owd on RV X L—R
wilh low PeX = o, o G extend. \i~3
e dexifeghon o F=F =T =F,
And then, for that, what will happen is that that given function will not correspond to the

distribution function of that probability measure which you have just identified. So, these
we will do later on.
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Now, recall that we have also mentioned this connection that if you start with the
probability space and you are given the random variable, then you can construct the law.

But we have also claimed that we shall construct an association going in the opposite
direction.



So, once you have completed that justification, that once you have constructed

probability spaces and the random variable such that P o X s equal to p for a given
probability measure, then we can actually extend this identification, with this general

collection of functions.

So, what we will do? So, we will first look at a general function with these nice
properties, you first identify it as a distribution function of that probability measure and

once you have identified that probability space and the random variable, p becomes

-1 : s e .
P o X = and that is what you have identified as the distribution function of that random
variable. So, we will do this connection once we have done the association going in the

opposite direction. So, this is what we are supposed to do.
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But for the purpose of this discussion, what we are going to assume is that this thing can
be done that this identification can be proved. So, then, any function, satisfying these

required properties.

By that I mean, that it is a function defined on the real line, takes values between 0 and 1,
is non-decreasing right continuous, limit at oo is 1, limit at — oo is 0, then for such a

function, you can construct such probability measures and such random variables.



Therefore, such a function will become the distribution function of some random
variable. So, we, we are going to assume this fact in this lecture. So, these are the basic

facts about distribution function that we have already discussed.
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But now, we are going talk about other nice properties about the distribution function.
But in the previous lecture, we have already mentioned that we are getting back the usual
properties of the distribution function from the identification through the probability

measures.

So, whatever properties you have already studied in your basic probability course about
distribution functions, you are getting back and you are actually proving them through the

properties of the probability measure in this course.

So similarly, you can try out this very well-known property of distribution function which
you have seen in your basic probability course that the number of jumps of a distribution
function is either finite in number or countable infinite in number. So, please try to work

this out.
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But then once you assume this fact that there are certain number of jumps of a

distribution function, so since their number is finite or countable infinite, you can index

the points where the jumps occurred.
So, let us xj denotes the enumeration of the jump points. So, you just number them XX,
X, and so on. So, if it is finite, you will stop at a finite stage, if it is countable infinite,

you will get a infinite sequence. So, this is the list of jump points wherer the jumps are

occurring.
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But then correspondingly, you will also get the jump sizes and let us called them as D

So, jump at the point x; is exactly given by P
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But then, this point X need not be in a increasing or decreasing or decreasing order. So,

just be careful with that. It is just a list, it is just an enumeration of the points where the

jumps are occurring.

But now these pj's, as identified earlier p is, these pj’s are nothing but P(X = xj). That is

the jump size. And that is quantity, that is strictly positive because that is where the jumps



are occurring. But then contribution from all the jumps, if you add them together, that

will be less or equal to 1. So, this is a standard fact that you can also identify, that you can

always prove.
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But here, this sum that you are seeing, this sum is over the indices j, and this refers to a
sum involving finite number of terms in the case of finite number of jumps of distribution

function, otherwise you will get countably infinite number of terms when you are, you

are dealing with infinite number of jumps for the distribution function.

So, this is simply a basic fact. Whether the function, distribution function has finite
number of jumps or a countably infinite number of jumps, accordingly you will get a

summation which is finite or countable infinite. This is a simple fact.
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But then, this, familiar property for the distribution functions that you have just
mentioned in this exercise, then it will also give you some ideas that the properties

coming from the jumps, they should also follow.

So, this is the idea, that once you identify the basic properties of a distribution function,
from the properties of probability measure, then you are expecting that all the other
well-known properties of distribution functions that you know about should also be

proved. So, one of the things is left as exercise there as the properties of the jumps.
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So now, let us look at more of these familiar properties. And we are just recalling them.
. . d . . .
Look at this function F - So, what do we do? We define this function on the real line,

taking values between 0 and 1 and we look at this quantity on, defined on the right-hand

side.

So, for any point x on the real line I define this function as the summation value. So, what

is this? So you check, whether the point x is in this interval [x]_, o) or not.

So, if the point x is in this interval, you will get the value 1. But this is, this happens if

and only if X the value X; < x. So, you are basically saying that you fix point x and look
at all the jumps that have occurred before the point x.

So, you have looked at the real line up to and including the point small x and you are just
looking at all the possible jumps that have occurred within that location, within that
interval (— oo, x]. So, you are just looking at those jump points, and corresponding to

those things you are just adding up the jump sizes.

So, that is exactly what you are doing in this summation. So, this sum on the right hand
side is exactly the sum of all the jumps that you find in this interval (— oo, x]. So, that is

how this function is defined.



So, this function FXd simply looks at the number of jumps, first in the interval (— oo, x]
and then you simply add up the corresponding jump sizes. So, there is just a contribution

from the jumps. So, that is what you are looking at in F Xd.
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But then, there are some very nice properties about this function that you have just
obtained from the contributions from the jumps. So, this function is non-decreasing, it is
right continuous, limit at — oo is 0 and limit at oo is exactly the contribution from all the

jumps.



So, remember we have mentioned that given a distribution function the contribution from
(summa) sum of all these jumps is less or equal to 1. So, this quantity that you get, this

quantity is less or equal to 1. So, the limit at oo is something less or equal to 1.

d .. . . o .
So, you now see that the F X which is purely considered from the jumps contribution, this

is a non-decreasing function, it is right continuous and you can also identify the limits at
o and — oo. So, these are very standard facts that you can prove easily and this you must
have seen in your basic probability course. If not, please take this as an exercise. Please

work them out.
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But now, let us focus on that limit at oco. So, I just look at that summation or the
contribution from all the jumps, all the jump sizes. So, now, this quantity, as I have
remarked, that this is less or equal to 1. So, call that limit at a. So, it is just a short hand
notation that is going to be used now. So, I am just looking at the contribution from all

the jumps. So, that, I call it as a.

Now, if F X is continuous, that means F X does not have a jump, so there is no contribution
from the jumps, then a must be 0. And accordingly, you will also have no contribution
from the jumps anywhere. So, FXd, that function which you have just considered, will

also be identically 0.



So, if the distribution function is continuous throughout the real line, then both these
.. . d d . . .

quantities a and the function F , must be 0. So, F , isa function which becomes

identically 0 if the original distribution function is continuous.
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But then, what happens if FX has at least one jump. So, you just move away from

continuity, allow at least one jump. Then, there will be some contribution coming from
the jumps and that will be contained in that quantity o . So now, a will be in (0, 1]. So,

there will be some non-trivial contribution from this at least 1 jump quantity.
And now, what you can choose to look at is this scaling factor. So, a is now strictly

positive, so you can now look at %, divide the actual contribution from the jump, so

divide it by a . So, %F Xd. So, look at that, that function.
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So, that function has these properties following from the properties of FXd. So, what are

. . . ) .. d . . .
these properties? Since a is strictly positive, the %FX , that function will remain a

non-decreasing right continuous function with limit at — oo being 0, limit at o being 1.

. . . . d .
So, just to repeat, you are looking at this scaled version of F X and it turns out to be

non-decreasing right continuous with some nice limits at — oo and + oo. The limit value

being 0 and 1, respectively.
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So, therefore, what you can immediately now claim is that %F - N this case, when there

is at least one jump is a genuine distribution function of some random variable. So, here,
we are just making that connection from Note 11, which we have mentioned at the start

of the discussion.

So, we are saying that if we have a function with all these nice properties, it must be the
distribution function of some random variable. Again, just to recall, we have mentioned
in Note 11, that we are going to prove this fact later on. But for now, we are going to

assume this as a fact.

So, this is the contribution from the jumps and we have identified these things as a

distribution function when « is something non-trivial, when a > 0. Great.
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But then, you can now choose to look at the remaining portion that takes away the jump
parts. So, you take away all the contribution from the jumps. So, you are looking at the
distribution function, given distribution function and subtracting out the contribution

from the jumps.
And whatever you get, call it F XC. So, that 1s a now, function, which is difference of two
function values. So, therefore, it is a real-valued function taking some real numbers as its
possible values.
So, FXC is defined as the original function, original distribution function, but you are

taking out all the contribution from the jumps. But then again, these will also be some
familiar properties to you, so I am just recalling them for the sake of the record. Please

work out these exercises, if you have not seen this before.
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So, F XC has some nice properties. So, first of all we have mentioned that F XC is a function,
defined on the real line and takes real values. But then the first property itself says that it
actually takes values between 0 and 1, and moreover, the F XC is dominated from above by

the actual distribution function.
So, in particular, F XC, it is a non-negative function and it takes value at most 1. So, that is

the first property. So, F XC now becomes a function from the real line to [0, 1]. Great.



But then, it has also some other nice properties like, it is non-decreasing and it is

continuous. So, F , 18 non-decreasing and it is continuous. And you can also identify its

limit at — oo, so, which is 0. So, please try to work out these properties of the function

c

F .
X
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But then, you will be wondering about what happens at c. So, FXC is a non-decreasing

function, so the limit at co will exist. So, call that limit at . So, remember, for the



o . d o
contribution from the jumps, we have looked at FX . There we looked at the limit at oo,
we called it a.

Here, we are looking at the remaining portion, we are taking away all the contribution

from the jumps, we have constructed this function F XC. It turned out to be non-decreasing.

I am now looking at the limit at co and calling it 3. But now, since FXC is bounded
between 0 and 1, this quantity, this limit, this 8 should be between 0 and 1. So, that is not
a problem. So, it is a, follows easy.

But then, recalling the fact that the contribution from the jumps that F Xd has a limit at oo

to be a, so that is basically sum of all the jump sizes, then you can make some nice
comments about a and (3. When you put a and 8 together, you can make some very nice

comments.
So, if B is 0, then what you are saying is that this limit at co for the F XC is 0. But then, this

is the, one of the bounds, upper bounds for F XC, so therefore, what you will not identify

that there should be no contribution from this part.
So, B is 0, if and only if FXC is identically 0. And this can only happen if F., the original

e o . o . d
distribution function is identically equal to the contribution from the jumps, so F e

So, this can only happen if an only if = 0. So, that is exactly what the first statement
says. So, what basically is said now is that all the contributions are coming from the jump

parts. So, that is the first statement.
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So, the second statement says, assume o = 0. So, take a = 0. So, that means there is no
contribution from the jump. So, it is exact opposite situation compared to the (())(20:09)
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therefore this function F Xd is identically 0.

.. . d .
But then as per definition, FXC must be the difference FX — FX , therefore F XC under this

condition must be exactly be F o the original distribution function. So, a = 0 if and only

if there is no contribution from the jumps and F Xc equals the original distribution function

F_ . So, these are two extreme cases, a = O or § = 0.

X
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But then, if 8 has some non-trivial contribution. If § > 0, then you can now scale this

L
B

limit value a. If a > 0, if there was some non-trivial contribution from the jumps, then

F XC by —. So, recall we had done a similar argument involving F Xd. So, we looked at the

. : d . .
we scaled it, scaled the function F X by the o and we observed some nice properties.

We do the same here. If 8 is positive, look at L, the scaled version of F XC. I say that this
is now a distribution function of some random variable. Why? Again, let us try to check

whether F XC satisfies all those nice properties.

So, remember F XC is taking values between 0 and . B is the upper bound for F XC. So,

therefore % F XC takes values between 0 and 1. That is the first point.

Next is, F Xc is non-decreasing and [3 is positive so therefore % F Xc is still non-decreasing.

You can also show by the similar argument that it is also continuous. And you can also
identify the limits at + oo and — oo as 1 and 0, respectively. So, it satisfies all the
required properties and therefore by the discussion in note 11 earlier, this must be the

distribution function of some random variable. So, that is the third statement.

(Refer Slide Time 22:24)
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And then, put o and [ together. What you can now try to show is that a + [3 actually
equals to 1. So, therefore, a basically looks at contribution from all the jumps, 3 looks at

the remaining part. What you are saying is that put them together, you are get the total
quantity is exactly equal to 1. Please try to check this.

So, with that identification in mind, what you are now going to do is to look at certain
types of distribution functions. So, what we have observed so far is that the original

distribution function F X has a part coming from the jumps, and there is a remaining part

which is continuous. And we have proved some nice properties about these separate

parts.
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And with, this gives us some motivation for looking at the Definition 4, and this tells us
that we look at certain special type of distribution functions. So, the first thing that we are
looking at here is a distribution function which can be written in this form. So, remember
this was the form that we have looked at, when we looked at the contribution from the

jumps only.

So, you are just looking at all the jumps that occur within points small x and then you just
add up the corresponding jump sizes. So, all the jumps that can, have occurred up to that

point. So, that is how that jump contribution was considered.

But if a distribution function is purely of this type for some finite or countable infinite set

of x]_’s, with these p js being non-negative and sum ups to 1, then you are going to say
that F is a discrete distribution function. So, it is purely made up of jumps.

So, without loss of generality you can always assume P; is strictly positive, it is greater
than 0, you can ignore the equality case because if P, = 0, then there will be no

contribution coming from this summation. So therefore, without loss of generality you

can also take P, to be greater than 0. You can ignore the equality case. But just for

simplicity, let us continue with these assumptions.



So, in this case we are looking at a discrete distribution function which is defined as the,
made up of purely of jumps. So, the total contribution from the jumps must be 1. And the
distribution function has exactly this form, made up of a, some (comment) kind of a

combination of indicators, for some appropriate finite or countable infinite set of X 8. So

that is where exactly the jumps are occurring for that distribution function. So, this is

what a discrete distribution function means.
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And the exact counterpart for the continuous case is this. So, if you get that the
distribution function F is continuous on R, then you say that F is a continuous distribution
function. So, there is no contribution from the jumps. There are, there are no jumps. So,
you just get a purely continuous function, and this is the case you are going to say that F,
the distribution function is a continuous distribution function. So, this is a very simple

definition.
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But then, depending on these two types of distribution functions, we are now going to

obtain certain nice classes of random variables. So, this is what we are going to discuss

later on.
(Refer Slide Time: 25:45)

U({ A buisn fg\m\Q\icsmq/ We ohe

ao'ma T odin,  Ceatoim Classer c&a Rig,

Exowige@): Cowtinue ok \Re motochong

.

Bron Nt (0.
W I% A0, Hthen Show ot ;%FK@
B o daoes Alstrdboudion —gm\d\‘o\'\. *
() 'T_g B >0, Fren Show ok Ff)
W O ComRmudng  NsTsubudion —Gmnc\'\orf
But now, continue with these notations that you have discussed in Note 14. So, just to

. oy . d
recall, we have considered the contribution from the jumps, we have defined the FX

function. That function has a limit at oo which we denoted as a.



Then we got rid of all the contribution from the jumps. We looked at the remaining part
and that we called as F XC and that was also non-decreasing function. So, we looked at the
limit at oo, called it 3. So, remember all those a and 3.

So, remember, if a = 0, then there is some non-trivial contribution from jumps. So, then,

d . . e .
you can try to show that %F x 1sa discrete distribution function. So, you have already

mentioned this fact that %FX in this case, when o > 0, in this case it is a distribution

function. Now, you can try to check that it is exactly of the relevant form and it is a

discrete distribution function.
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Similarly, you get a statement for the continuous part. So, you look at § > 0. So, there is

non-trivial contribution outside the jumps. So, there is some contribution coming from

1

continuous parts. So, in this case, you can try to show that 5

FXC, which we already

identified as some distribution function, this has a continuous distribution function. So,
please try to write down these proofs. It is a very simple argument. You just have to

verify the corresponding structures. Great.
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But then, with these identifications at hand, what do you get? You get that given any
distribution function F . of a random variable X, we have this convex linear combination.
So, remember, in the case when « is positive and [ is also positive, consider that case,
then %F Xd, this part within the brackets, this is a genuine distribution function and it is a

discrete distribution function.



Look at this part %F XC, this is also a genuine distribution function and it is a continuous

distribution function. So, the terms, the function within brackets are distribution

functions. But they have been scaled according to a and f3.

So, these scalars that I have put outside this a and 3, they are non negative and they add
up to 1. So, remember the, all those properties. So here, on the right hand side, you have a
convex linear combination of distribution functions, a and  being the scalars for the
convex linear combination.
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But then, what you have basically, you are saying is that given a distribution function,
you can split it as a convex linear combination of a discrete distribution function and the

continuous distribution function.

But you will ask, what happens to this convex linear combination if « = 0 or § = 0.
Then of course, you cannot divide them by these 0 quantities. So, if a = 0, % does not
make sense.

But then, ignore this first term there. Remember, if a« = 0, then  must be 1. And then,

F X = F XC. So, this equality still makes sense when you ignore the contribution from the

jumps as « = 0. So, ignore this first term. So, it is just rewriting FX = FXC = B(%FXC).



Exact counterpart of this is the case when {3 is 0. So, then again, ignore this contribution
coming from the continuous part. So, there is no contribution in fact, so ignore this term

here. So, purely contributions are coming from the jumps.
. d o . .
So F 18 exactly equal to F e but in this case a = 1, and then what you are just rewriting

: d d .. .
this as FX = FX = a(%FX ) So, these equalities still make sense as long as you
interpret it right.
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So, you can still continue to say that FX itself becomes a convex linear combinations of

distribution functions in all of these situations, that « = 0, or § = 0 or a and 3, both are

positive and adds up to 1.
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But then, you can now ask, you can now ask is the decomposition that we have obtained,

is this unique? And the answer to that is yes. So, why? Because F . when you are writing

it, if you can write it in terms of such a convex linear combination with gamma delta

non-negative, adding up to 1, for F o which is a discrete distribution function, F - which
is a continuous distribution function, then you can show that this must be unique.

So, if you can write a general distribution function as a convex linear combination over
discrete and continuous distribution functions, then this identification is unique. So, that

is the exercise. Please try to prove this.



In particular, the identification that we have done in the previous page, splitting it in
. o . . d
terms of the appropriate contributions coming from the jumps, the F X and the F XC, that

was one example of a convex linear combination but this exercise is saying that such a

combination must be unique.
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So, if you combine these two things together, so one hand, in Note 16, we have the
existence of such a combination and Exercise 5 says, such a combination, if it is there,
then it must be unique. So, put them together, we have a complete description of the
decomposition into discrete and continuous parts. So, given a distribution function, you

can split it.

So, either it is purely discrete or purely continuous, or it is the mix of this with a explicit
convex linear combination coming from the jump parts and the remaining part, the

continuous part.
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But, if you look at the continuous parts separately, a further decomposition is known. We
are going to discuss that part in Week 8, later on. So, we do not go into this, we will
require much more measure theoretic setup before we can discuss about this further

decomposition of the continuous part. We will come back to this.

So there, remember, we have looked at the F Xd function which is purely made up of the

jump parts. And with appropriate scaling, we can get it to be a discrete distribution

function.
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Now, with that at hand, we are now going to consider certain class of random variables
which exactly correspond to these kind of distribution functions. So, what are these? A

random variable X is said to be discrete if there exists a finite or a countably infinite set S,

which is a subset of the real line, such that P o X _1, the law of X associates full marks to

this. So, the probability that the random variables takes values in this set is 1.

So, remember, any singleton set is a Borel subset of the real line, so therefore, if you
consider finite unions or countable unions of those, you will get any finite or countably

infinite set like S as a Borel subset of the real line.

-1 C ) ) .
And P - X = which is defined on BR, can therefore associate certain values, certain

weight, certain size to this set S, and we are saying that, that size must be the full quantity

and that is 1. So, if this happens, then you say your random variable X is discrete.

Now, we are just recalling your basic definition of a discrete random variable that you
have seen in basic probability courses. But then, we are using this measure theoretic
knowledge and putting the definition in terms of the corresponding law. And you will see

the advantage of this later on.
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But then since S is finite, or countably infinite, you can enumerate the elements in the set
S. So, if it is finite, you will get x 1, x 2, x n, after, up to a finite number n. And if it is
countably infinite, you will get a sequence of points. So, just enumerate them.
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Then, using this countable additivity of the probability measure P X _1, look at this

quantity. So, this is as per the definition for discrete random variable, P o X _1(5) = 1.

But then the set S is a countable disjoint union of this singletons. So, split it according to

e o -1 o
the countable additivity of the probability measure P © X . Then, what you get is this
summation over all the points on the set S. Just rewrite this summation using the
notations that we already learned about. And it is nothing but the addition of all the

probabilities that x = X,

So, we add up all the things where X; falls in the set S. So, this is a relation that sum of all

these probabilities adds up to 1. So, this is the relation star which we shall recall in a few

minutes once more.

. . 1 -1, .
But remember, since P is a probability measure, [P ¢ X ~ is a probability measure, these
quantities, these contributions coming from the jumps here, these must be non-negative.
So, you are just looking at addition of certain non-negative quantities and they must be 1.

So, that is what this star relation suggests.
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But without loss of generality, you can only consider the points X when these quantities

are positive, when these quantities are not 0. So, without loss of generality, ignore those

terms for which the X, gives you 0 probability. So, P(x = xj) = 0, such terms we will

ignore. It is not a big deal, they will not contribute to the summation here in the star

relation.
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So, without loss of generality, this set S can be considered to be the set of points X where

the probability associated is positive, where there is a genuine jump. So, the set S
basically is collecting these jump points. So, whenever there is a jump, you just collect it

in the set S.

And for the case of this discrete random variables, you get this set S, and we are going to
call it as a support of this random variable X. And, just as you expect, whenever you look
outside this set S, if your point x is outside, then the probability associated to this must be

0 because there is no jump there. You have listed all possible jumps in the set S.

Just note this that if S is finite, you can now rearrange these xj's, so that you can get a
increasing order for all these points. So, if you have finitely any points x, up to x , you

can easily sort them and put them in a increasing order. So, this is a basic observation.
This, you can use it sometimes. But you be careful whenever S is countably infinite.
Sometimes it may not be possible to rearrange all these jump points. So, let us ignore that
for now.
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So now, let us go back to the question about the law of this discrete random variables. So,
now, what we are going to look at is this quantity P = X ! associated to general sets.

So, for any set A on the Borel o- field, if A is a Borel subset, it is there, so you look at
this quantity. But then if P+ X associates full mass to the set S, then P o X '(A) is

nothing but P o X_l(A N S). So, this is a easily verifiable property. So, please check
this.

But then, you split this according to the usual countable additivity that we have used a
few minutes back. So, S, the set S, the support is made up of all these points, singleton

sets where the jumps are occurring. So, you write it as a summation over xj’s. So, that is
nothing but probability of X belonging to this set. Great.
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But then, you rewrite it using this notation. So, you just check whether the point x; is in
the set or not. So, if the x; is not in the set, then this intersection is empty, there will be no
contribution. If the point X; is in the set, then this intersection is exactly this singleton set
X..

J
So, in either case, what you can do? You can write it as, this quantity, this contribution
coming from the jump, multiplied by the Dirac measure. So, this is what we are just

rewriting. We have just observed that in either of the cases when X; is in the set A or not,

you can write it using this notation.

So therefore, you just rewrote this expression in terms of the Dirac measures. But

remember, we use these notations ps for the jump sizes, and just rewrite it using this pS,

so therefore what we have started off with, P o X _1(A) is nothing but this summation

Y p. Sx (4). So, Dirac measure, then you are considering certain combinations.
xj €S J J

But remember, you are considering a discrete random variable. So, these P, > 0, when

there, whenever there is a non-trivial jump, you are looking at that. So, that is the jump

size, it 1s non-trivial, positive quantity and they sum up to 1. So, therefore, this quantity,



whatever this is, this is a convex linear combinations of the weights coming from the

Dirac mass.
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And hence, what you will immediately obtain is that P ° X ~ is exactly this convex linear
combination of the Dirac masses. Remember, these are the similar things, we have
discussed in Week 2. So, when we looked at measures, we said that certain convex

combinations of probability measures also gives you probability measures. Great.
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So, just to recall, just to repeat, P ° X = of a arbitrary set A can be written as this convex

combination where pj's are exactly the jump sizes and 8x (A) are exactly the weightages
j

. . . -1 .
coming from the Dirac masses. So, that is why P X = exactly turns out to be of this

form. So, whenever you get a discrete random variable, you get this quantity. Great.
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Now, you can also connect it with discrete distribution functions. So, if X is a discrete
random variable, then its distribution function must be discrete. And this is an if and only
if condition that if its distribution function is discrete then the original distribution

function X must be discrete. This is an if and only if condition.

And in this case, what you can see is that between any two jump points, so if there are no

jumps in between two such jump points, then FX will remain a constant. So, if you plot

the graph of the function, graph of the distribution function, it will remain flat between

the consecutive jump points.
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So, some final comments, that for the case of discrete random variables, we have now
connected the measure, measure theoretic structures with the setup from the basic
probability. So, we have proved these properties of distribution functions, identified
jumps, we looked at discrete distribution functions, looked at discrete random variables,

but we commented that we will come back to the continuous cases later on.
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But we can now, therefore use the standard analysis that you do in basic probability. In

particular, since you have already identified everything from the discrete random



variable, you can now go back to the probability mass functions and talk about all the

relevant properties.
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And then, just to make this comment about continuous distribution functions, so
remember, so you have associated the discrete random variables with discrete distribution
functions. But then you will ask what happens to the continuous distribution functions?
Does it correspond to some types of random variables? And what happens if the
distribution function is a convex linear combinations of discrete and continuous

distribution functions?

So, in all of these cases, you can identify appropriate class of random variables. So, we
will do that identifications and we will identify these other types of random variables and
that discussions will be done later on, when we identify more structures about continuous
distribution functions in Week 8. So, there all, there we are going to talk about continuous

random variables.

So, in the next lecture, we will come back to this issue about random variables, whether
you can construct them according to specified law. That discussion we will do in the next

lecture. We stop here.



