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Welcome to this lecture. Before we proceed with the discussions of this lecture, let us

first quickly recall what we have been doing in this week. So, in this week, we have

looked at the measurable structure of random variables or random vectors and put them

together with the domain side probability measure. And when you put them together, we

obtain the law or distribution of the corresponding random variable or random vector.

Now, using that law or the distribution, which is a probability measure on , in the(ℝ,  ℬ
ℝ

)

case of random variables and on with the Borel - field of in the case of valuedℝ𝑑 σ ℝ𝑑 ℝ𝑑

vectors, so using that probability measure, we have also defined the corresponding

distribution functions.

Now, what we have done in the previous lecture was that we looked at properties of such

distribution functions. The thing to note is that we have defined distribution functions,

corresponding to probability measures on these Euclidean spaces together with the Borel

- field.σ

And then, for random variables or random vectors, we looked at the corresponding law

and we said that the distribution function corresponding to the law is the distribution

function of the random variable or random vector.

And what we have seen is that the basic properties of probability measures immediately

gives you the well-known properties of distribution function as you know about them, as

you have studied in your basic probability course. So alright, let us quickly recall these

properties that we have already seen in the previous lecture. And we can continue with

the discussions of this lecture.



(Refer Slide Time: 02:10)

So, start with a random variable , so just for simplicity, let us work in dimension 1. So,𝑋

this random variable, it is a real-valued function on this probability space and it is a

measurable function. So, I look at its distribution function.

(Refer Slide Time: 02:26)

And what we have seen is that distribution function is the function defined on the real

line and it takes values between and . It is non-decreasing and right continuous0 1

function with some nice properties.



(Refer Slide Time: 02:38)

Like the limit at being 1, limit at is 0, the left limit is exactly this, the ,∞ − ∞ ℙ(𝑋 < 𝑥)

and the right limit matches with the actual function value so the function is right

continuous and that is exactly . So, here, is any arbitrary real number.ℙ(𝑋 = 𝑥) 𝑥
𝑖

So, once you have identified the left limits and right limits, the existence of those are

confirmed and then only possible discontinuity that can happen for the function, for the

distribution function is the jump discontinuity.

(Refer Slide Time: 03:18)



And then you can also compute the size of the jump, and that is exactly given by the

difference of these values, and that is computed as . So, these are the propertiesℙ(𝑋 = 𝑥)

we have seen.

And, what we have also remarked in Note 8 earlier is that given probability measures, we

can now transform it into a function. So, from the collection of all probability measures

on the real line with the Borel -field, we can obtained this function, which is nonσ

decreasing right continuous, limit at is 1, limit at is 0.∞ − ∞

So, you have obtained the association from the collection of probability measures of that

type of collection to the collections of functions of that type. So, you have obtained the

association. Now, what do you do later on is to obtain function going in the opposite

direction. So, we would like to associate or make an association going in the opposite

direction.

(Refer Slide Time: 04:18)

And what it is going to show is that given any function on the real line with values

between 0 and 1, which is right continuous, non-decreasing, limit at is 1 and limit at∞

is 0, so with these properties if you get a function, then it will correspond to a− ∞

probability measure on the real line together with the Borel -field.µ σ

(Refer Slide Time: 04:36)



And then, for that, what will happen is that that given function will not correspond to the

distribution function of that probability measure which you have just identified. So, these

we will do later on.

(Refer Slide Time: 04:49)

Now, recall that we have also mentioned this connection that if you start with the

probability space and you are given the random variable, then you can construct the law.

But we have also claimed that we shall construct an association going in the opposite

direction.



So, once you have completed that justification, that once you have constructed

probability spaces and the random variable such that is equal to for a givenℙ ◦ 𝑋−1 µ

probability measure, then we can actually extend this identification, with this general

collection of functions.

So, what we will do? So, we will first look at a general function with these nice

properties, you first identify it as a distribution function of that probability measure and

once you have identified that probability space and the random variable, becomesµ

and that is what you have identified as the distribution function of that randomℙ ◦ 𝑋−1

variable. So, we will do this connection once we have done the association going in the

opposite direction. So, this is what we are supposed to do.

(Refer Slide Time: 05:55)

But for the purpose of this discussion, what we are going to assume is that this thing can

be done that this identification can be proved. So, then, any function, satisfying these

required properties.

By that I mean, that it is a function defined on the real line, takes values between 0 and 1,

is non-decreasing right continuous, limit at is 1, limit at is 0, then for such a∞  − ∞

function, you can construct such probability measures and such random variables.



Therefore, such a function will become the distribution function of some random

variable. So, we, we are going to assume this fact in this lecture. So, these are the basic

facts about distribution function that we have already discussed.

(Refer Slide Time: 06:38)

But now, we are going talk about other nice properties about the distribution function.

But in the previous lecture, we have already mentioned that we are getting back the usual

properties of the distribution function from the identification through the probability

measures.

So, whatever properties you have already studied in your basic probability course about

distribution functions, you are getting back and you are actually proving them through the

properties of the probability measure in this course.

So similarly, you can try out this very well-known property of distribution function which

you have seen in your basic probability course that the number of jumps of a distribution

function is either finite in number or countable infinite in number. So, please try to work

this out.



(Refer Slide Time: 07:26)

But then once you assume this fact that there are certain number of jumps of a

distribution function, so since their number is finite or countable infinite, you can index

the points where the jumps occurred.

So, let us denotes the enumeration of the jump points. So, you just number them , ,𝑥
𝑗

𝑥
1

𝑥
2

, and so on. So, if it is finite, you will stop at a finite stage, if it is countable infinite,𝑥
3

you will get a infinite sequence. So, this is the list of jump points wherer the jumps are

occurring.

(Refer Slide Time: 07:55)



But then correspondingly, you will also get the jump sizes and let us called them as .𝑝
𝑗

So, jump at the point is exactly given by .𝑥
𝑗

𝑝
𝑗

(Refer Slide Time: 08:05)

But then, this point , need not be in a increasing or decreasing or decreasing order. So,𝑥
𝑗

just be careful with that. It is just a list, it is just an enumeration of the points where the

jumps are occurring.

But now these s, as identified earlier p is, these ’s are nothing but . That is𝑝
𝑗
' 𝑝

𝑗
ℙ(𝑋 = 𝑥

𝑗
)

the jump size. And that is quantity, that is strictly positive because that is where the jumps



are occurring. But then contribution from all the jumps, if you add them together, that

will be less or equal to 1. So, this is a standard fact that you can also identify, that you can

always prove.

(Refer Slide Time: 08:44)

But here, this sum that you are seeing, this sum is over the indices , and this refers to a𝑗

sum involving finite number of terms in the case of finite number of jumps of distribution

function, otherwise you will get countably infinite number of terms when you are, you

are dealing with infinite number of jumps for the distribution function.

So, this is simply a basic fact. Whether the function, distribution function has finite

number of jumps or a countably infinite number of jumps, accordingly you will get a

summation which is finite or countable infinite. This is a simple fact.

(Refer Slide Time 09:17)



But then, this, familiar property for the distribution functions that you have just

mentioned in this exercise, then it will also give you some ideas that the properties

coming from the jumps, they should also follow.

So, this is the idea, that once you identify the basic properties of a distribution function,

from the properties of probability measure, then you are expecting that all the other

well-known properties of distribution functions that you know about should also be

proved. So, one of the things is left as exercise there as the properties of the jumps.

(Refer slide Time: 09:58)



So now, let us look at more of these familiar properties. And we are just recalling them.

Look at this function . So, what do we do? We define this function on the real line,𝐹
𝑋

𝑑

taking values between 0 and 1 and we look at this quantity on, defined on the right-hand

side.

So, for any point on the real line I define this function as the summation value. So, what𝑥

is this? So you check, whether the point is in this interval or not.𝑥 [𝑥
𝑗
,  ∞)

So, if the point is in this interval, you will get the value 1. But this is, this happens if𝑥

and only if , the value . So, you are basically saying that you fix point and look𝑥
𝑗

𝑥
𝑗

≤ 𝑥 𝑥

at all the jumps that have occurred before the point .𝑥

So, you have looked at the real line up to and including the point small x and you are just

looking at all the possible jumps that have occurred within that location, within that

interval . So, you are just looking at those jump points, and corresponding to(− ∞,  𝑥]

those things you are just adding up the jump sizes.

So, that is exactly what you are doing in this summation. So, this sum on the right hand

side is exactly the sum of all the jumps that you find in this interval . So, that is(− ∞,  𝑥]

how this function is defined.



So, this function simply looks at the number of jumps, first in the interval𝐹
𝑋

𝑑 (− ∞,  𝑥]

and then you simply add up the corresponding jump sizes. So, there is just a contribution

from the jumps. So, that is what you are looking at in .𝐹
𝑋

𝑑

(Refer Slide Time: 11:40)

But then, there are some very nice properties about this function that you have just

obtained from the contributions from the jumps. So, this function is non-decreasing, it is

right continuous, limit at is 0 and limit at is exactly the contribution from all the− ∞ ∞

jumps.



So, remember we have mentioned that given a distribution function the contribution from

(summa) sum of all these jumps is less or equal to 1. So, this quantity that you get, this

quantity is less or equal to 1. So, the limit at is something less or equal to 1.∞

So, you now see that the which is purely considered from the jumps contribution, this𝐹
𝑋

𝑑

is a non-decreasing function, it is right continuous and you can also identify the limits at

and . So, these are very standard facts that you can prove easily and this you must∞ − ∞

have seen in your basic probability course. If not, please take this as an exercise. Please

work them out.

(Refer Slide Time: 12:43)

But now, let us focus on that limit at . So, I just look at that summation or the∞

contribution from all the jumps, all the jump sizes. So, now, this quantity, as I have

remarked, that this is less or equal to 1. So, call that limit at . So, it is just a short handα

notation that is going to be used now. So, I am just looking at the contribution from all

the jumps. So, that, I call it as .α

Now, if is continuous, that means does not have a jump, so there is no contribution𝐹
𝑋

𝐹
𝑋

from the jumps, then must be 0. And accordingly, you will also have no contributionα

from the jumps anywhere. So, , that function which you have just considered, will𝐹
𝑋

𝑑

also be identically 0.



So, if the distribution function is continuous throughout the real line, then both these

quantities and the function must be 0. So, is a function which becomesα 𝐹
𝑋

𝑑 𝐹
𝑋

𝑑

identically 0 if the original distribution function is continuous.

(Refer Slide Time: 13:48)

But then, what happens if has at least one jump. So, you just move away from𝐹
𝑋

continuity, allow at least one jump. Then, there will be some contribution coming from

the jumps and that will be contained in that quantity . So now, will be in . So,α α (0,  1]

there will be some non-trivial contribution from this at least 1 jump quantity.

And now, what you can choose to look at is this scaling factor. So, is now strictlyα

positive, so you can now look at , divide the actual contribution from the jump, so1
α

divide it by . So, . So, look at that, that function.α 1
α 𝐹

𝑋
𝑑



(Refer Slide Time: 14:31)

So, that function has these properties following from the properties of . So, what are𝐹
𝑋

𝑑

these properties? Since is strictly positive, the , that function will remain aα 1
α 𝐹

𝑋
𝑑

non-decreasing right continuous function with limit at being 0, limit at being 1.− ∞ ∞

So, just to repeat, you are looking at this scaled version of and it turns out to be𝐹
𝑋

𝑑

non-decreasing right continuous with some nice limits at and . The limit value− ∞ + ∞

being 0 and 1, respectively.

(Refer Slide Time: 15:10)



So, therefore, what you can immediately now claim is that , in this case, when there1
α 𝐹

𝑋
𝑑

is at least one jump is a genuine distribution function of some random variable. So, here,

we are just making that connection from Note 11, which we have mentioned at the start

of the discussion.

So, we are saying that if we have a function with all these nice properties, it must be the

distribution function of some random variable. Again, just to recall, we have mentioned

in Note 11, that we are going to prove this fact later on. But for now, we are going to

assume this as a fact.

So, this is the contribution from the jumps and we have identified these things as a

distribution function when is something non-trivial, when . Great.α α > 0

(Refer Slide Time: 15:56)



But then, you can now choose to look at the remaining portion that takes away the jump

parts. So, you take away all the contribution from the jumps. So, you are looking at the

distribution function, given distribution function and subtracting out the contribution

from the jumps.

And whatever you get, call it . So, that is a now, function, which is difference of two𝐹
𝑋

𝑐

function values. So, therefore, it is a real-valued function taking some real numbers as its

possible values.

So, is defined as the original function, original distribution function, but you are𝐹
𝑋

𝑐

taking out all the contribution from the jumps. But then again, these will also be some

familiar properties to you, so I am just recalling them for the sake of the record. Please

work out these exercises, if you have not seen this before.

(Refer Slide Time: 16:45)



So, has some nice properties. So, first of all we have mentioned that is a function,𝐹
𝑋

𝑐 𝐹
𝑋

𝑐

defined on the real line and takes real values. But then the first property itself says that it

actually takes values between 0 and 1, and moreover, the is dominated from above by𝐹
𝑋

𝑐

the actual distribution function.

So, in particular, , it is a non-negative function and it takes value at most 1. So, that is𝐹
𝑋

𝑐

the first property. So, now becomes a function from the real line to . Great.𝐹
𝑋

𝑐 [0,  1]



But then, it has also some other nice properties like, it is non-decreasing and it is

continuous. So, is non-decreasing and it is continuous. And you can also identify its𝐹
𝑋

𝑐

limit at , so, which is 0. So, please try to work out these properties of the function− ∞

.𝐹
𝑋

𝑐

(Refer Slide Time: 18:03)

But then, you will be wondering about what happens at . So, is a non-decreasing∞ 𝐹
𝑋

𝑐

function, so the limit at will exist. So, call that limit at . So, remember, for the∞ β



contribution from the jumps, we have looked at . There we looked at the limit at ,𝐹
𝑋

𝑑 ∞

we called it .α

Here, we are looking at the remaining portion, we are taking away all the contribution

from the jumps, we have constructed this function . It turned out to be non-decreasing.𝐹
𝑋

𝑐

I am now looking at the limit at and calling it . But now, since is bounded∞ β 𝐹
𝑋

𝑐

between 0 and 1, this quantity, this limit, this should be between 0 and 1. So, that is notβ

a problem. So, it is a, follows easy.

But then, recalling the fact that the contribution from the jumps that has a limit at𝐹
𝑋

𝑑 ∞

to be , so that is basically sum of all the jump sizes, then you can make some niceα

comments about and . When you put and together, you can make some very niceα β α β

comments.

So, if is 0, then what you are saying is that this limit at for the is 0. But then, thisβ ∞ 𝐹
𝑋

𝑐

is the, one of the bounds, upper bounds for , so therefore, what you will not identify𝐹
𝑋

𝑐

that there should be no contribution from this part.

So, is 0, if and only if is identically 0. And this can only happen if , the originalβ 𝐹
𝑋

𝑐 𝐹
𝑋

distribution function is identically equal to the contribution from the jumps, so .𝐹
𝑋

𝑑

So, this can only happen if an only if . So, that is exactly what the first statementβ = 0

says. So, what basically is said now is that all the contributions are coming from the jump

parts. So, that is the first statement.



(Refer Slide Time: 20:00)

So, the second statement says, assume 0. So, take 0. So, that means there is noα = α =

contribution from the jump. So, it is exact opposite situation compared to the (())(20:09)

one. But this can only happen if and only if, there is no contribution from the jump, so

therefore this function is identically 0.𝐹
𝑋

𝑑

But then as per definition, must be the difference , therefore under this𝐹
𝑋

𝑐 𝐹
𝑋

− 𝐹
𝑋

𝑑 𝐹
𝑋

𝑐

condition must be exactly be , the original distribution function. So, if and only𝐹
𝑋

α = 0

if there is no contribution from the jumps and equals the original distribution function𝐹
𝑋

𝑐

. So, these are two extreme cases, or .𝐹
𝑋

α = 0 β = 0



(Refer Slide Time: 20:48)

But then, if has some non-trivial contribution. If , then you can now scale thisβ β > 0

by . So, recall we had done a similar argument involving . So, we looked at the𝐹
𝑋

𝑐 1
β 𝐹

𝑋
𝑑

limit value . If , if there was some non-trivial contribution from the jumps, thenα α > 0

we scaled it, scaled the function by the and we observed some nice properties.𝐹
𝑋

𝑑 α

We do the same here. If is positive, look at , the scaled version of . I say that thisβ 1
β 𝐹

𝑋
𝑐

is now a distribution function of some random variable. Why? Again, let us try to check

whether satisfies all those nice properties.𝐹
𝑋

𝑐

So, remember is taking values between 0 and . is the upper bound for . So,𝐹
𝑋

𝑐 β β 𝐹
𝑋

𝑐

therefore takes values between 0 and 1. That is the first point.1
β  𝐹

𝑋
𝑐

Next is, is non-decreasing and is positive so therefore is still non-decreasing.𝐹
𝑋

𝑐 β 1
β  𝐹

𝑋
𝑐

You can also show by the similar argument that it is also continuous. And you can also

identify the limits at and as 1 and 0, respectively. So, it satisfies all the+ ∞ − ∞

required properties and therefore by the discussion in note 11 earlier, this must be the

distribution function of some random variable. So, that is the third statement.

(Refer Slide Time 22:24)



And then, put and together. What you can now try to show is that actuallyα β α + β

equals to 1. So, therefore, basically looks at contribution from all the jumps, looks atα β

the remaining part. What you are saying is that put them together, you are get the total

quantity is exactly equal to 1. Please try to check this.

So, with that identification in mind, what you are now going to do is to look at certain

types of distribution functions. So, what we have observed so far is that the original

distribution function has a part coming from the jumps, and there is a remaining part𝐹
𝑋

which is continuous. And we have proved some nice properties about these separate

parts.



(Refer Slide Time: 23:16)

And with, this gives us some motivation for looking at the Definition 4, and this tells us

that we look at certain special type of distribution functions. So, the first thing that we are

looking at here is a distribution function which can be written in this form. So, remember

this was the form that we have looked at, when we looked at the contribution from the

jumps only.

So, you are just looking at all the jumps that occur within points small x and then you just

add up the corresponding jump sizes. So, all the jumps that can, have occurred up to that

point. So, that is how that jump contribution was considered.

But if a distribution function is purely of this type for some finite or countable infinite set

of ’s, with these js being non-negative and sum ups to 1, then you are going to say𝑥
𝑗

𝑝

that F is a discrete distribution function. So, it is purely made up of jumps.

So, without loss of generality you can always assume is strictly positive, it is greater𝑝
𝑗

than 0, you can ignore the equality case because if , then there will be no𝑝
𝑗

= 0

contribution coming from this summation. So therefore, without loss of generality you

can also take to be greater than 0. You can ignore the equality case. But just for𝑝
𝑗

simplicity, let us continue with these assumptions.



So, in this case we are looking at a discrete distribution function which is defined as the,

made up of purely of jumps. So, the total contribution from the jumps must be 1. And the

distribution function has exactly this form, made up of a, some (comment) kind of a

combination of indicators, for some appropriate finite or countable infinite set of s. So𝑥
𝑗

that is where exactly the jumps are occurring for that distribution function. So, this is

what a discrete distribution function means.

(Refer Slide Time: 25:02)

And the exact counterpart for the continuous case is this. So, if you get that the

distribution function F is continuous on R, then you say that F is a continuous distribution

function. So, there is no contribution from the jumps. There are, there are no jumps. So,

you just get a purely continuous function, and this is the case you are going to say that F,

the distribution function is a continuous distribution function. So, this is a very simple

definition.



(Refer Slide Time: 25:33)

But then, depending on these two types of distribution functions, we are now going to

obtain certain nice classes of random variables. So, this is what we are going to discuss

later on.

(Refer Slide Time: 25:45)

But now, continue with these notations that you have discussed in Note 14. So, just to

recall, we have considered the contribution from the jumps, we have defined the 𝐹
𝑋

𝑑

function. That function has a limit at which we denoted as .∞ α



Then we got rid of all the contribution from the jumps. We looked at the remaining part

and that we called as and that was also non-decreasing function. So, we looked at the𝐹
𝑋

𝑐

limit at , called it . So, remember all those and .∞ β α β

So, remember, if , then there is some non-trivial contribution from jumps. So, then,α = 0

you can try to show that is a discrete distribution function. So, you have already1
α 𝐹

𝑋
𝑑

mentioned this fact that in this case, when , in this case it is a distribution1
α 𝐹

𝑋
𝑑 α > 0

function. Now, you can try to check that it is exactly of the relevant form and it is a

discrete distribution function.

(Refer Slide Time: 26:45)

Similarly, you get a statement for the continuous part. So, you look at . So, there isβ > 0

non-trivial contribution outside the jumps. So, there is some contribution coming from

continuous parts. So, in this case, you can try to show that , which we already1
β 𝐹

𝑋
𝑐

identified as some distribution function, this has a continuous distribution function. So,

please try to write down these proofs. It is a very simple argument. You just have to

verify the corresponding structures. Great.



(Refer Slide Time: 27:20)

But then, with these identifications at hand, what do you get? You get that given any

distribution function , of a random variable , we have this convex linear combination.𝐹
𝑋

𝑋

So, remember, in the case when is positive and is also positive, consider that case,α β

then , this part within the brackets, this is a genuine distribution function and it is a1
α 𝐹

𝑋
𝑑

discrete distribution function.



Look at this part , this is also a genuine distribution function and it is a continuous1
β 𝐹

𝑋
𝑐

distribution function. So, the terms, the function within brackets are distribution

functions. But they have been scaled according to and .α β

So, these scalars that I have put outside this and , they are non negative and they addα β

up to 1. So, remember the, all those properties. So here, on the right hand side, you have a

convex linear combination of distribution functions, and being the scalars for theα β

convex linear combination.

(Refer Slide Time: 28:24)

But then, what you have basically, you are saying is that given a distribution function,

you can split it as a convex linear combination of a discrete distribution function and the

continuous distribution function.

But you will ask, what happens to this convex linear combination if or .α = 0 β = 0

Then of course, you cannot divide them by these 0 quantities. So, if , does notα = 0 1
α

make sense.

But then, ignore this first term there. Remember, if , then must be 1. And then,α = 0 β

. So, this equality still makes sense when you ignore the contribution from the𝐹
𝑋

= 𝐹
𝑋

𝑐

jumps as . So, ignore this first term. So, it is just rewriting .α = 0 𝐹
𝑋

= 𝐹
𝑋

𝑐 = β 1
β 𝐹

𝑋
𝑐( )



Exact counterpart of this is the case when is 0. So, then again, ignore this contributionβ

coming from the continuous part. So, there is no contribution in fact, so ignore this term

here. So, purely contributions are coming from the jumps.

So is exactly equal to , but in this case , and then what you are just rewriting𝐹
𝑋

𝐹
𝑋

𝑑 α = 1

this as . So, these equalities still make sense as long as you𝐹
𝑋

= 𝐹
𝑋

𝑑 = α 1
α 𝐹

𝑋
𝑑( ) 

interpret it right.

(Refer Slide Time: 29:51)

So, you can still continue to say that itself becomes a convex linear combinations of𝐹
𝑋

distribution functions in all of these situations, that , or or and , both areα = 0 β = 0 α β

positive and adds up to 1.
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But then, you can now ask, you can now ask is the decomposition that we have obtained,

is this unique? And the answer to that is yes. So, why? Because , when you are writing𝐹
𝑋

it, if you can write it in terms of such a convex linear combination with gamma delta

non-negative, adding up to 1, for , which is a discrete distribution function, , which𝐹
1

𝐹
2

is a continuous distribution function, then you can show that this must be unique.

So, if you can write a general distribution function as a convex linear combination over

discrete and continuous distribution functions, then this identification is unique. So, that

is the exercise. Please try to prove this.



In particular, the identification that we have done in the previous page, splitting it in

terms of the appropriate contributions coming from the jumps, the and the , that𝐹
𝑋

𝑑 𝐹
𝑋

𝑐

was one example of a convex linear combination but this exercise is saying that such a

combination must be unique.
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So, if you combine these two things together, so one hand, in Note 16, we have the

existence of such a combination and Exercise 5 says, such a combination, if it is there,

then it must be unique. So, put them together, we have a complete description of the

decomposition into discrete and continuous parts. So, given a distribution function, you

can split it.

So, either it is purely discrete or purely continuous, or it is the mix of this with a explicit

convex linear combination coming from the jump parts and the remaining part, the

continuous part.
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But, if you look at the continuous parts separately, a further decomposition is known. We

are going to discuss that part in Week 8, later on. So, we do not go into this, we will

require much more measure theoretic setup before we can discuss about this further

decomposition of the continuous part. We will come back to this.

So there, remember, we have looked at the function which is purely made up of the𝐹
𝑋

𝑑

jump parts. And with appropriate scaling, we can get it to be a discrete distribution

function.

(Refer Slide Time: 32:35)



Now, with that at hand, we are now going to consider certain class of random variables

which exactly correspond to these kind of distribution functions. So, what are these? A

random variable is said to be discrete if there exists a finite or a countably infinite set ,𝑋 𝑆

which is a subset of the real line, such that , the law of associates full marks toℙ ◦ 𝑋−1 𝑋

this. So, the probability that the random variables takes values in this set is 1.

So, remember, any singleton set is a Borel subset of the real line, so therefore, if you

consider finite unions or countable unions of those, you will get any finite or countably

infinite set like as a Borel subset of the real line.𝑆

And which is defined on , can therefore associate certain values, certainℙ ◦ 𝑋−1 ℬ
𝑅

weight, certain size to this set , and we are saying that, that size must be the full quantity𝑆

and that is 1. So, if this happens, then you say your random variable is discrete.𝑋

Now, we are just recalling your basic definition of a discrete random variable that you

have seen in basic probability courses. But then, we are using this measure theoretic

knowledge and putting the definition in terms of the corresponding law. And you will see

the advantage of this later on.
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But then since S is finite, or countably infinite, you can enumerate the elements in the set

S. So, if it is finite, you will get x 1, x 2, x n, after, up to a finite number n. And if it is

countably infinite, you will get a sequence of points. So, just enumerate them.

(Refer Slide Time: 34:21)

Then, using this countable additivity of the probability measure , look at thisℙ ◦ 𝑋−1

quantity. So, this is as per the definition for discrete random variable, .ℙ ◦ 𝑋−1(𝑆) = 1

But then the set S is a countable disjoint union of this singletons. So, split it according to

the countable additivity of the probability measure . Then, what you get is thisℙ ◦ 𝑋−1

summation over all the points on the set S. Just rewrite this summation using the

notations that we already learned about. And it is nothing but the addition of all the

probabilities that .𝑥 = 𝑥
𝑗

So, we add up all the things where falls in the set . So, this is a relation that sum of all𝑥
𝑗

𝑆

these probabilities adds up to 1. So, this is the relation star which we shall recall in a few

minutes once more.

But remember, since is a probability measure, is a probability measure, theseℙ ℙ ◦ 𝑋−1

quantities, these contributions coming from the jumps here, these must be non-negative.

So, you are just looking at addition of certain non-negative quantities and they must be 1.

So, that is what this star relation suggests.
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But without loss of generality, you can only consider the points , when these quantities𝑥
𝑗

are positive, when these quantities are not 0. So, without loss of generality, ignore those

terms for which the gives you 0 probability. So, , such terms we will𝑥
𝑗

ℙ(𝑥 = 𝑥
𝑗
) = 0

ignore. It is not a big deal, they will not contribute to the summation here in the star

relation.
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So, without loss of generality, this set can be considered to be the set of points , where𝑆 𝑥
𝑗

the probability associated is positive, where there is a genuine jump. So, the set 𝑆

basically is collecting these jump points. So, whenever there is a jump, you just collect it

in the set .𝑆

And for the case of this discrete random variables, you get this set , and we are going to𝑆

call it as a support of this random variable . And, just as you expect, whenever you look𝑋

outside this set , if your point is outside, then the probability associated to this must be𝑆 𝑥

0 because there is no jump there. You have listed all possible jumps in the set .𝑆

Just note this that if is finite, you can now rearrange these s, so that you can get a𝑆 𝑥
𝑗
'

increasing order for all these points. So, if you have finitely any points up to , you𝑥
1

𝑥
𝑛

can easily sort them and put them in a increasing order. So, this is a basic observation.

This, you can use it sometimes. But you be careful whenever is countably infinite.𝑆

Sometimes it may not be possible to rearrange all these jump points. So, let us ignore that

for now.
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So now, let us go back to the question about the law of this discrete random variables. So,

now, what we are going to look at is this quantity associated to general sets.ℙ ◦ 𝑋−1

So, for any set on the Borel - field, if A is a Borel subset, it is there, so you look at𝐴 σ

this quantity. But then if associates full mass to the set S, then isℙ ◦ 𝑋−1 ℙ ◦ 𝑋−1(𝐴)

nothing but . So, this is a easily verifiable property. So, please checkℙ ◦ 𝑋−1(𝐴 ∩ 𝑆)

this.

But then, you split this according to the usual countable additivity that we have used a

few minutes back. So, , the set , the support is made up of all these points, singleton𝑆 𝑆

sets where the jumps are occurring. So, you write it as a summation over ’s. So, that is𝑥
𝑗

nothing but probability of belonging to this set. Great.𝑋
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But then, you rewrite it using this notation. So, you just check whether the point is in𝑥
𝑗

the set or not. So, if the is not in the set, then this intersection is empty, there will be no𝑥
𝑗

contribution. If the point is in the set, then this intersection is exactly this singleton set𝑥
𝑗

.𝑥
𝑗

So, in either case, what you can do? You can write it as, this quantity, this contribution

coming from the jump, multiplied by the Dirac measure. So, this is what we are just

rewriting. We have just observed that in either of the cases when is in the set or not,𝑥
𝑗

𝐴

you can write it using this notation.

So therefore, you just rewrote this expression in terms of the Dirac measures. But

remember, we use these notations s for the jump sizes, and just rewrite it using this s,𝑝
𝑗

𝑝
𝑗

so therefore what we have started off with, is nothing but this summationℙ ◦ 𝑋−1(𝐴)

. So, Dirac measure, then you are considering certain combinations.
𝑥

𝑗
 ∈𝑆
∑  𝑝

𝑗
 δ

𝑥
𝑗

(𝐴)

But remember, you are considering a discrete random variable. So, these , when𝑝
𝑗
 > 0

there, whenever there is a non-trivial jump, you are looking at that. So, that is the jump

size, it is non-trivial, positive quantity and they sum up to 1. So, therefore, this quantity,



whatever this is, this is a convex linear combinations of the weights coming from the

Dirac mass.
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And hence, what you will immediately obtain is that is exactly this convex linearℙ ◦ 𝑋−1

combination of the Dirac masses. Remember, these are the similar things, we have

discussed in Week 2. So, when we looked at measures, we said that certain convex

combinations of probability measures also gives you probability measures. Great.

So, just to recall, just to repeat, of a arbitrary set A can be written as this convexℙ ◦ 𝑋−1

combination where s are exactly the jump sizes and are exactly the weightages𝑝
𝑗
' δ

𝑥
𝑗

(𝐴)

coming from the Dirac masses. So, that is why exactly turns out to be of thisℙ ◦ 𝑋−1

form. So, whenever you get a discrete random variable, you get this quantity. Great.
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Now, you can also connect it with discrete distribution functions. So, if is a discrete𝑋

random variable, then its distribution function must be discrete. And this is an if and only

if condition that if its distribution function is discrete then the original distribution

function X must be discrete. This is an if and only if condition.

And in this case, what you can see is that between any two jump points, so if there are no

jumps in between two such jump points, then will remain a constant. So, if you plot𝐹
𝑋

the graph of the function, graph of the distribution function, it will remain flat between

the consecutive jump points.
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So, some final comments, that for the case of discrete random variables, we have now

connected the measure, measure theoretic structures with the setup from the basic

probability. So, we have proved these properties of distribution functions, identified

jumps, we looked at discrete distribution functions, looked at discrete random variables,

but we commented that we will come back to the continuous cases later on.
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But we can now, therefore use the standard analysis that you do in basic probability. In

particular, since you have already identified everything from the discrete random



variable, you can now go back to the probability mass functions and talk about all the

relevant properties.
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And then, just to make this comment about continuous distribution functions, so

remember, so you have associated the discrete random variables with discrete distribution

functions. But then you will ask what happens to the continuous distribution functions?

Does it correspond to some types of random variables? And what happens if the

distribution function is a convex linear combinations of discrete and continuous

distribution functions?

So, in all of these cases, you can identify appropriate class of random variables. So, we

will do that identifications and we will identify these other types of random variables and

that discussions will be done later on, when we identify more structures about continuous

distribution functions in Week 8. So, there all, there we are going to talk about continuous

random variables.

So, in the next lecture, we will come back to this issue about random variables, whether

you can construct them according to specified law. That discussion we will do in the next

lecture. We stop here.


