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Welcome to this lecture. Before we continue the discussion about the topics in this

lecture, let us quickly recall what we have done in the previous lecture. So, in the

previous lecture I looked at the random variables or random vectors defined on a

probability space and then what we considered was the measurable structure of such

functions and we combined it with the probability measure on the domain side to

construct a probability measure on the range side.

So, for random variables the range will be the measurable space real line together with

the Borel -field, for random vectors if they are taking values in , then the range sideσ ℝ𝑑

will be together with the Borel -field of .ℝ𝑑 σ ℝ𝑑

So, on such range spaces, range side measurable spaces we constructed these probability

measures that was combined together with the measurable structure of , the random𝑋

variables or random vectors together with the probability measure , and we called itℙ

, the notation was , and we called it the law or distribution of the randomℙ ◦ 𝑋−1 ℙ ◦ 𝑋−1

vector or random variable .𝑋

So, we constructed this and we saw one simple example given by the Dirac mass, and

then we left as exercise, some of the other related examples. So, please compute the laws

and check how they come out as combinations of Dirac masses. So, those exercises will

give you examples of convex linear combinations of Dirac masses. So, in this lecture we

are now going to continue discussions about the probability measure that we obtained and

we are going to construct a very important function out of this.

Again, as seen in the previous lecture many of the probability of the events that we

considered in your basic probability courses can now be reinterpreted as probability

measure of the corresponding set that is appearing on the Borel -field, or the real line orσ

the .ℝ𝑑



A similar thing is going to happen here we are going to consider a very important

function that you have seen in your basic probability course and we are going to obtain it

from this specific probability measure the law or distribution of the random variable or

random vector , the probability measure which is . So, let us continue and move𝑋 ℙ ◦ 𝑋−1

on to the slides.

(Refer Slide Time: 02:43)

So, in the previous lecture we have defined the law or distribution of the randomℙ ◦ 𝑋−1

variables or random vectors .𝑋

(Refer Slide Time: 02:53)



And they are supposed to be defined on some given probability space . And as(Ω,  ℱ,  ℙ)

for the definition became a probability measure on this space. So, if you areℙ ◦ 𝑋−1

considering this valued random vector then you just get that is measurableℝ𝑑 (ℝ𝑑,  ℬ
ℝ𝑑)

space. So, on top of that you get this probability measure.

(Refer Slide Time: 03:15)

And now we are going to define something called the distribution function of a

probability measure. So, this is a general definition of a function corresponding to a

probability measure on or . So, either of these spaces. So, let us first lookℝ𝑑 ℝ



dimension one just to understand the concept. So, start with the measurable space Borel σ

-field on top of the real line, so that is the measurable space and consider to be aµ

probability measure on there.

(Refer Slide Time: 03:42)

So, now consider this function defined on the real line and taking values between 0𝐹
µ

and 1. So, what is this function? This function for any real number takes the size of the𝑥

set . So, that, that interval you look at, . That interval you look at,(− ∞,  𝑥] (− ∞,  𝑥]

look at the size of that under the probability measure mu, and consider that as the value of

the function at the point . And this is called the distribution function of the probability𝑥

measure mu.

(Refer Slide Time: 04:18)



And for the -dimensional case you have the exact analog of the same definition. So,𝑑

now you are defining the function on and it will again take values between 0 and 1.ℝ𝑑

What you have to do? Look at a point , so it is a vector with components x 1 up𝑥 ∈ ℝ𝑑

to x d, and for such a point , such a vector in , what you look at is this rectangle.𝑥 ℝ𝑑

So, the ith coordinate is simply this interval . So, it is a product of such(− ∞,  𝑥
𝑖
]

intervals. So, it is the default product of intervals of this type where the ith component is

simply coming from the ith coordinate of point . So, you get this rectangle and this is a𝑥

set in , this is a Borel set in and therefore you can talk about the measure of thatℝ𝑑 ℝ𝑑

under the probability measure mu.

And then you get a value and that value you assign it to this function at the point and𝑥

this is called the distribution function of in the -dimensional setup. So, exact analog ofµ 𝑑

whatever you have seen in the dimension one.

(Refer Slide Time: 05:29)



But then, with that as the motivation you can now define distribution function of random

variables or random vectors. So, what do you do? Take a random variable or random

vector defined on a probability space . Correspondingly you get this law which(Ω,  ℱ,  ℙ)

is , and that is defined on for the case of random variables for valuedℙ ◦ 𝑋−1 ℬ
ℝ

ℝ𝑑

random vectors you get it on with the Borel -field of .ℝ𝑑 σ ℝ𝑑

Now, corresponding to that probability measure you get a distribution function as defined

above. Consider that. So, that is nothing but, as per our notation . This function is𝐹
ℙ◦𝑋−1

called the distribution function of .𝑋

So again, for a random variable or a random vector you get the law which is the

probability measure on the range side and on the range side you have defined, for any

probability measure you have defined this distribution function, take that. So, call that as

the distribution function of .𝑋

(Refer Slide Time: 06:26)



And now, to simplify the notation what we are going to do, is to forget about this

probability measure now. So, it will be given to us but we will simplify the notation and

instead of writing we will simply write . So, this is a distribution function of .𝐹
ℙ◦𝑋−1 𝐹

𝑋
𝑋



(Refer Slide Time: 06:49)

But then follow the notations mentioned in the previous lecture and let us rewrite this, the

distribution function of , let us try to connect it with probability of events. What is this?𝑋

So, if is a random variable, so you are working in dimension 1, you get back some nice𝑋

familiar expressions.

So, for any point x in the real line, so as defined above is nothing but the𝐹
𝑋

(𝑥) 𝐹
ℙ◦𝑋−1(𝑥)

. This is just notation.

But then as for the definition this is . So, you are looking at the size ofℙ ◦ 𝑋−1(− ∞, 𝑥]

the set, size of the interval under the probability measure . And as for(− ∞, 𝑥] ℙ ◦ 𝑋−1

the notation introduced in the previous lecture, this is nothing but the probability of the

event . And therefore, you get back your familiar distribution function𝑋 ≤ 𝑥

corresponding to a random variable. So, this simply turns out from the definition of the

law.



(Refer Slide Time: 07:49)

And similar expressions can be derived for the random vector case. So, again if you are

working in -dimensions, take a point , which is made up of these components𝑑 𝑥

, this is a vector in . So, try to compute the distribution function at the(𝑥
1
,  .  .  .,  𝑥

𝑑
) ℝ𝑑

point .𝑥

So, that is nothing but, as per the definition of this default product of theℙ ◦ 𝑋−1

intervals. So, you are looking at this default product of the intervals and looking at the

probability measure of that. So, under the measure .ℙ ◦ 𝑋−1

(Refer Slide Time: 08:20)



But then, what you are saying is that you are looking at all points in the domain, suchω

that the random vector evaluated at the point , that is nothing butω {𝑋
1
(ω),  𝑋

2
(ω),  .  .  .,

. So, that is the -components. So, that thing should land up in this default𝑋
𝑑
(ω)} 𝑑

product.

(Refer Slide Time: 08:42)

And therefore, what you are saying is that you are looking at all points on the domain

side such that individual components exactly falls in these intervals .𝑋
𝑖
(ω) (− ∞, 𝑥

𝑖
]

(Refer Slide Time: 08:55)



And that can now be rewritten in terms of . This is simple inequalities, you𝑋
𝑖
(ω) ≤ 𝑥

𝑖

can write down. But this should happen for all the coordinates .𝑖 =  1,  .  .  .  , 𝑑

(Refer Slide Time: 09:10)

But then, you can now rewrite using your familiar notation suppress the and simplyω

rewrite it in terms of , and that is nothing but theℙ(𝑋
1

≤ 𝑥
1
,  𝑋

2
≤ 𝑥

2
,  .  .  .,  𝑋

𝑑
≤ 𝑥

𝑑
)

distribution function of the random vector x. Again, you are getting back the familiar

expression.



(Refer Slide Time: 09:30)

Now, we go ahead and look at certain simple examples to understand these computations

of distribution functions. So, in the previous lecture we computed the law for this

constant or degenerate random variable, which was taking value some constant given

constant value, and the law was exactly the Dirac measure situated or supported at that

point, at that constant value. So now we want to compute the distribution function

corresponding to this random variable.

(Refer Slide Time: 09:49)



So, what do you do? You follow the definition. So, the distribution function of 𝑋

evaluated at any in the real line, so that is nothing but of the interval. And𝑥 ℙ ◦ 𝑋−1

therefore, here in this case, is the Dirac mass, Dirac measure supported at theℙ ◦ 𝑋−1

point c.

And what does Dirac do? It checks whether the point c is in this interval or not. Now that

means that if the point c is not in the interval , if it is not there you will assign(− ∞,  𝑥 ]

the value 0. If the point is there in the interval, you will assign the value 1. So, this is

simply following the definition of the Dirac mass.

But then you can rewrite this condition, c belonging to these sets or not in terms of

certain simple inequalities. What are these inequalities? if the point𝑐 ∉ (− ∞,  𝑥]

. And it will be exactly equal to 1, that is, the point is exactly in the set if the is𝑥 < 𝑐 𝑐 𝑥

exceeding the value , or equal to c.𝑐

And that is exactly the distribution function of the degenerate random variable taking the

constant value c. So, you get back your familiar values for the distribution functions. But

this is through the law now. All these computations are going via the law.

(Refer Slide Time: 11:26)

And as we shall see many of the properties of the random variables or random vectors are

getting captured by this law. So, we are now going to study the properties of distribution



functions corresponding to probability measures or corresponding to random variables or

vectors.

(Refer Slide Time: 11:45)

And we are going to see that all these properties for this random variables or vectors that

you have already seen in your basic probability course are reappearing here and that is

all, I mean, you are just matching up with whatever you have seen earlier. But important

restriction, so far we have not talked about discrete or continuous random variables. We

are doing everything in general. So, that is a very big advantage of using this measure

theoretical approach.



(Refer Slide Time: 12:14)

So again, so let us start with these notations. So, in proposition 2, we are looking at a

specific random variable, and we are listing certain properties of the distribution function,

the well-known properties.

(Refer Slide Time: 12:25)

So, what is this? The first property says that the distribution function is non-decreasing.

So, how do you go about proving this? So, what you have to do? You have to evaluate it

at two points, and . So, choose , and then you evaluate the value then try to𝑥 𝑦 𝑥 < 𝑦

check whether the function values you can compare.



So, look at this difference of these two quantities. So, you evaluated at and subtract out𝑦

the, the value at . But then, put in the definition it is of this interval minus𝑥 ℙ ◦ 𝑋−1

of this interval.ℙ ◦ 𝑋−1

Now, use the finite additivity of the probability measure and write the intervalℙ ◦ 𝑋−1

as , and one of the terms will cancel off with this and that(− ∞,  𝑦] (− ∞,  𝑥] ∪ (𝑥,  𝑦]

will just leave you .ℙ ◦ 𝑋−1(𝑥,  𝑦]

Now, this interval whatever it is, it is a set, it is a Borel set on R and its size under the

probability measure cannot be negative, so always the size is non negative. Thisℙ ◦ 𝑋−1

is simply following the basic definition that are measure associates non negative values.

So therefore, you get that .And this property follows quite simply from𝐹
𝑋

(𝑦) ≥  𝐹
𝑋

(𝑥)

the basic definition that is a measure, probability measure and in particular it is aℙ ◦ 𝑋−1

measure. So, therefore the size of these sets will be non-negative.

(Refer Slide Time: 14:12)

So, let us try the next property, that is actually right continuous. So, how do you go𝐹
𝑋

over proving this? So, what you have to do? You have to verify the right continuity at all

the points on the real line. So, fix any arbitrary point . You want to verify that it is right𝑥

continuous.



Now, the way to check right continuity will be to approximate the point from the right𝑥

side. So, choose such a sequence after coming to the point from the right. So, it is𝑥

basically, you can choose it as a decreasing sequence of real numbers, decreasing to the

point .𝑥

But then, if you look at such intervals , they decrease and decrease to the(− ∞,  𝑥
𝑛
]

interval . This is a simple observation. And then you use the fact that the(− ∞,  𝑥]

probability measure is continuous from above. So, you can go through theℙ ◦ 𝑋−1

probability measures of these approximating intervals and after you take the limit you

will get back the probability measure of this resultant interval. So, that is continuity from

above

(Refer Slide Time: 15:16)

And therefore, what you end up having is the right limit at the point . So, let us compute𝑥

that. So, the right limit at the is nothing but the limit of these points . So, again, all𝑥 𝑥
𝑛

you are going to show is that no matter what sequence you choose from the right{𝑥
𝑛
}

approximating the point , you get the same value. So, it does not matter. So, here this𝑥

limit is now independent of the choice of the x ns

So, let us do the computations and we will immediately see that it is a really independent

of the choice of s. So, now put in the definition, it is of such sets as we𝑥
𝑛
' ℙ ◦ 𝑋−1



mentioned, but then use the continuity from above and that is nothing but of this.ℙ ◦ 𝑋−1

So, it is really independent of the choice of the sequence .{𝑥
𝑛
}

And now this quantity, whatever it is, as per definition, it is nothing but the distribution

function evaluated at the point . So, therefore the right limit is matching with the𝑥

function value and therefore the function is right continuous at this arbitrary point . So,𝑥

since is arbitrary, the point is arbitrary, you get the right continuity at all the points.𝑥 𝑥

(Refer Slide Time: 16:22)

But now, let us look at the left limit versions of this. And it will turn out that there are

possibly certain differences. It need not be left continuous. So, what happens here? So,

you again look at the distribution function of , and you try to evaluate these left limits at𝑋

each point on the real line.

You will get the left limit but the left limit is exactly the length of such an interval,

and which can be written as the .(− ∞,  𝑥) ℙ(𝑋 < 𝑥)



(Refer Slide Time: 17:07)

So, how do you show this? So, to show this we follow the similar procedure to the

argument in right continuity. So, what we did there was approximating it from the right.

here we will be approximating it from the left.

So, now will be a sequence which will be coming from the left hand side of{𝑥
𝑛
} 𝑥

increasing to . So, look at this. So, now these intervals, , they will increase𝑥 (− ∞,  𝑥
𝑛
]

and increase to the interval . So, this is a very important distinction from the(− ∞,  𝑥)

case of right continuity.

So, here you do not get the boundary point . So, these intervals, , the union of𝑥 (− ∞,  𝑥
𝑛
]

those they will actually turn out to be . Great.(− ∞,  𝑥 )



(Refer Slide Time: 17:50)

And then what happens? You look at the corresponding sizes and here you apply

continuity from below because the sets are now increasing. So, then the left limit

evaluated at the point is again the limit taken over such sequences and as you will see it𝑥

will again be independent of the choice of the sequence.

So, you put in the definition. So, it is nothing but the size of the set evaluated(− ∞,  𝑥
𝑛
]

in terms of the probability measure. So, it is the size of that. Great. But you use the

continuity from below, it will exactly be the, the size of the limit set. So, it is .(− ∞,  𝑥 )

And you rewrite it, it is exactly .ℙ(𝑋 < 𝑥)

So, the left limit is . And this is again expected from your usual understanding,ℙ(𝑋 < 𝑥)

or usual results that you have seen in your basic probability theory.



(Refer Slide Time: 18:46)

So now, we computed the right limit, we computed the left limit. You can now talk about

the discontinuities that can happen for such functions. So, you have a right continuous

non decreasing function, you have shown that it is right continuous, it has left limits but

there might be some issues with the discontinuity at these points.

So, the claim is this that the only discontinuities of , the distribution function of are𝐹
𝑋

𝑋

jump discontinuities. Again, you get back the familiar properties of the distribution

function. And now we can also say something about the jump size.

Again, you get back the familiar property that the jump size at any point is exactly the𝑥

probability of the event , which is nothing but now the size of the singleton set𝑋 = 𝑥 {𝑥}

in terms of the probability measure . So, how do you prove this?ℙ ◦ 𝑋−1



(Refer Slide Time: 19:38)

So, to talk about the discontinuities of this non decreasing right continuous function, you

just look at the left limits and the right limits. Since the left limits and the right limits

exist for any arbitrary point, you do not get any other type of discontinuities. Only

possible discontinuity is a jump discontinuity.

So, where the jump discontinuity simply means that the left limit and the right limit do

not agree. So, the jump discontinuity can occur only when the left limit and the right limit

at a point do not agree. So, let us try to see that.

(Refer Slide Time: 20:10)



So, if has a jump that means that you get a difference of values here. So, the left limit𝐹
𝑋

and the right limit might not match. So, look at this difference now. So, as for the

calculations above it is nothing but the size of this interval , and then you are(− ∞,  𝑥]

subtracting out the size of the interval . So, this is again all the expressions that(− ∞,  𝑥)

we have derived earlier.

But then you again use the finite additivity of the measure and write the intervalℙ ◦ 𝑋−1

as the disjoint union of the open interval and the singleton set .(− ∞,  𝑥] (− ∞,  𝑥) {𝑥}

So therefore, you will exactly end up with the size of the singleton set under the{𝑥}

probability measure and that is nothing but .ℙ ◦ 𝑋−1 ℙ(𝑋 = 𝑥)

So, whenever there is a mass situated at the value , whenever takes the value with𝑥 𝑋 𝑥 

some appropriate probability, positive probability then you get a jump. So, that is exactly

whatever you have seen in your basic probability theory.

(Refer Slide Time: 21:17)

But then, you can also consider limits at and . Again, this will follow from the∞ − ∞

basic properties of the probability measure and this will match with theℙ ◦ 𝑋−1

properties expected from your basic probability theory. So, what happens here? So, look

at the limit at .∞

(Refer Slide Time: 21:37)



So, what is this? So, you are looking at the limit of the distribution function values as

point goes to . So, put in the definition. So, it is the size of the interval𝑥 ∞ (− ∞,  𝑥]

closed under the probability measure and you are letting go to .ℙ ◦ 𝑋−1 𝑥 ∞

But these intervals, increase to the whole real line. So, remember these sets are(− ∞,  𝑥]

contained in the real line and if you look at the union of these, if you, if you go over

sequences you will exactly get back the whole real line. And you now use continuity

from below here.

So, when you are taking limit at , you use continuity from below. And hence what you∞

end up with is the probability of the whole real line under the probability measure

and that is exactly equal to 1. So, you get back the limit at to be 1.ℙ ◦ 𝑋−1 ∞



(Refer Slide Time: 22:29)

And now, what is the limit at ? You have to look at the limit of the sizes of these− ∞

sets, . But these sets are now decreasing. If you choose a sequence of(− ∞,  𝑥] {𝑥
𝑛
}

going to , you will immediately be able to show that these sets decrease and− ∞

decrease to the complete intersection which is the empty set, and therefore the probability

of that is exactly 0. So, , the size of that, size of the set, empty set under theℙ ◦ 𝑋−1

is 0. So, therefore the limit at is 0.ℙ ◦ 𝑋−1 − ∞

(Refer Slide Time: 23:02)



So, we are going to call this limit at , as and limit at as . So,∞ 𝐹
𝑋

(∞) − ∞ 𝐹
𝑋

(− ∞)

remember the original distribution function for this random variable X was defined on the

real line, but we have just extended the values of the function to the points and ,∞ − ∞

and therefore you can think of the distribution function as a function on the extended𝐹
𝑋

real line. So, this we can use later on. So, this factor we will be using later on.

(Refer Slide Time: 23:32)

But now, you can derive other familiar properties, like the difference of the function

values for any two points, is exactly this quantity. Again, you follow the𝑎 < 𝑏

definitions that for , when they are finite, so when they are real numbers, you can put𝑎 𝑏

in the calculations once more, put in the definition .ℙ ◦ 𝑋−1(𝑎,  𝑏]

So, this is simply calculating by the finite additivity of the probability measure .ℙ ◦ 𝑋−1

So, you first put in the definition of in terms of , apply the finite additivity.𝐹
𝑋

ℙ ◦ 𝑋−1

So, this was discussed in statement Roman 1. So, you get back exactly this type of

probability of events.

But then let us see if we can interpret these results when . Now that we have𝑎 =− ∞

talked about the function values and at , we would like to make sense of this∞ − ∞

equality, if it holds in the cases when or . So now the idea is this, the𝑎 =− ∞ 𝑏 = ∞



left hand side makes sense because you have defined it and all you have to do is to take

appropriate limits on the right hand side.

(Refer Slide Time: 24:47)

So, this part of the proof is left as an exercise. Please use the definitions of the function

values at and as discussed above. So, please try to see this, that these appropriate∞ − ∞

versions of this equality holds when and . Of course, you have to use𝑎 =− ∞ 𝑏 = ∞

the, your familiar interpretations of such intervals whenever you are dealing with the

cases , . So please use the appropriate interpretations as given in the𝑎 =− ∞ 𝑏 = ∞

Week 1 discussions.



(Refer Slide Time: 25:24)

But then you can extend this idea that you have obtained for one single interval open a to

closed b, two finitely many such intervals. So, if you choose such pairwise disjoint

intervals you can look at the size of the union. So, this is a disjoint union, finite disjoint

union of such sets and look at the size of this under the probability measure .ℙ ◦ 𝑋−1

So, it is nothing but the of the individual sizes. So, it is a finite summation forℙ ◦ 𝑋−1

using finite additivity, and now individually, these sets have the size which is given by

the difference of the function values. So, for all these types of finite disjoint union of left

open, right closed intervals, you can get back the probability measure by the difference of

the function values. So, this is again simple application of the finite additivity.



(Refer Slide Time: 26:15)

But now, let us observe this, that the construction or the definition of the distribution

function as defined from the probability measure associated to the random variable or the

random vector. This is leading us to a function of this following form.

(Refer Slide Time: 26:32)

So, here we are just continuing on to add the details as discussed in Note 4 earlier.



(Refer Slide Time: 26:37)

So, I will just recall what we did in Note 4. So, in Note 4 we said that given this

collection of possible probability spaces and random variables on top of it, we have this

collection, the first collection. So, the second collection is the collection of all probability

measures and we may make this association, we created this function that sends elements

from the first collection to the elements in the second collection. So, you get probability

measures but, just by looking at the laws of these random variables on the domain side.𝑋

(Refer Slide Time: 27:11)



But then, for every probability measure now you have now sent it to a non decreasing

right continuous function with the properties that the limit at is 1 and limit at is∞ − ∞

0. So, this is just extending the Figure 1 that was mentioned in Note 4. We have just

added Figure 2, we have associated a function appropriate, function with nice, some nice

properties with every probability measure on the real line.

(Refer Slide Time: 27:27)

So here, we have just stated the one-dimensional version of this. So, we have taken things

for the random variables and therefore you get laws in terms of probability measures on

the real line and then corresponding to that you get distribution functions with these

properties, again, defined on the real line.



(Refer Slide Time: 27:54)

But later, we will talk about higher dimensional versions. But now importantly as

mentioned in Note 4 earlier, we mentioned that we are going to construct a function

going in the opposite direction of Figure 1. We are also going to construct a function

which goes in the opposite direction of Figure 2.

So, what we are going to do is to given functions of this type, non decreasing right

continuous with limits at , given as 1 and 0, given such functions we are going+ ∞ − ∞

to construct probability measures on the real line.

So that will basically make certain identification between collections of random

variables, collections of probability measures and collections of distribution functions.

So, we will make all these connections and that will be via certain functions which go in

the opposite directions of Figure 1 and Figure 2. So, we will see that.
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And this will actually allow us to construct probability measures on the real line from

certain class of functions. So, we will see that later.
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Now, we have discussed the properties of the distribution function for random variables.

But then analogous properties can be proved for random vectors. So, all you have to do is

to follow the definition and get back your familiar properties. Great. Just for simplicity let

us look at the two-dimensional case.
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So, this is a two-dimensional random variable or random vector. So, what you can check

now, this I have left as exercises, what you can check now is that if you let and𝑥
1

→ ∞

simultaneously, so the limit for the distribution function𝑥
2

→ ∞
𝑥

1
, 𝑥

2
∞

lim
→

𝐹
𝑋

(𝑥
1
,  𝑥

2
)

defined on , so I am saying that this will be taking the value 1 at the limit.ℝ2

So, you can define the function value, extend the function value at . So, please try(∞,  ∞)

to check this. Follow the definition, through the definition given by . Here, X is aℙ ◦ 𝑋−1

two-dimensional random vector.
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Similarly, you can talk about limits by fixing one of the coordinates and letting the other

one go down till . So, if you do that, again, by the similar calculations as done for− ∞

the random variables case, the one-dimensional case, you can again show that both these

limits will be 0.

So, if you fix one coordinate, let the other go down to you will get the value 0. So,− ∞

again these properties simply follow from the, continuity from below and above of the

probability measure . So please check this and try to write down these proofs.ℙ ◦ 𝑋−1
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But then for the two-dimensional case, what is the version of the non decreasing

property? So here what you can do is that you start with two values, two real numbers 𝑥
1

and and again choose another two real numbers and .𝑥
2

𝑦
1 

𝑦
2

So, you are going to choose these points , in the first coordinate and , in the𝑥
1

𝑥
2

𝑦
1 

𝑦
2

second coordinate. So, look at this kind of a product of intervals. So, this is a

two-dimensional set. So, the first coordinate lands up in , second coordinate lands(𝑥
1
,  𝑥

2
]

up in . So, now this is a nice set in the Borel - field on , and if you look at the(𝑦
1
,  𝑦

2
] σ ℝ2

size of that, that will be non, non negative that is simply by the definition of a probability

measure.
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But then what you can observe now is that of this interval can be written inℙ ◦ 𝑋−1

terms of the certain relations involving the distribution function. So, what you do is that

you rewrite the, you compute the function values, the distribution values at these points.

So, start with , subtract out these two quantities and add up this quantity.𝑥
2
,  𝑦

2

And what will happen is that since the probability of the product of intervals is

non-negative, you get this inequality that this combination of the function values must

also be non-negative. This is what we refer to as the non decreasing property of the

distribution function .𝐹
𝑋

So, this is in the two-dimensional case, so you get back the this, non decreasing property

following the properties of the corresponding probability measure, the measure

associated to these sets, the product of intervals like this that rectangle sets is

non-negative.

And question is, how do you prove such a relation? How do you go from probability of

product of intervals to this thing? The hint is that you use the inclusion exclusion

principle. So, please try to work this out.
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Now, again you have this familiar property of right continuity, so all you have to do you

have to let the limit for each of the coordinates, if you have, take the limits, each

coordinate simultaneously you get back the actual function value. So again, this will be

using the property of the corresponding probability measure . All you have to useℙ ◦ 𝑋−1

is the property continuity from above.
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But then, you can also work out the -dimensional versions of this. So, we have started𝑑

with the one dimension, just for simplicity we have just given a brief outline or brief



ideas about the two dimensional case, but now we are saying that the analogous versions

hold for the -dimensional case also.𝑑

So, please try to work out the non decreasing property, the right continuity, and other

properties. So, please write it down. So, this is for the -dimensional case, and that is left𝑑

as exercises.
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Now, a final comment is this, that as indicated in Note 8, so what was Note 8? So let us

go back to that. So, the Note 8 was this connection between random variables to

probability measures and to probability measures to the corresponding distribution



function. So, this was stated for the dimension 1 case. So, we are now going to state

certain things about the -dimensional case.𝑑

So, there is a corresponding version for the -dimensional case, for the random vectors𝑑

case. So, you actually have to start with random vectors on some probability space, go to

the corresponding law which is a probability measure on together with the Borelℝ𝑑 σ

-field on , and then corresponding to that probability measure you get a distributionℝ𝑑

function. You get this connection starting with random vectors, go to the probability

measure which is its law, and then go to the corresponding distribution function.

So, this connection, please try to write it down for the -dimensional case. So, in Note 8𝑑

it is written for the one-dimensional case please write down the -dimensional version.𝑑

We are going to continue the discussions about properties of the distribution function in

the next lecture, specifically we are going to talk about the jumps of distribution

functions. So, we stop here.


