Measure Theoretic Probability 1
Professor Suprio Bhar
Department of Mathematics and Statistics
Indian Institute of Technology, Kanpur
Lecture 16
Law or Distribution of an RV
Welcome to this lecture. This is the first lecture of Week 4. We are now at a very

important juncture of this course. So, let us first take stock of the situation, whatever we
have learned in the first three weeks. And this is important because we are going to use
all of that knowledge in Week 4, we are going to connect all of that in Week 4. So, let us

try to recall one by one.

In Week 1, we studied o-fields on non intercepts. Together, with these o-fields, the non
intercepts, this pair gives you measurable spaces. Now, with these ideas, what we did in
Week 2, was to put a measure on top of measurable spaces. So, from Week 1 to Week 2,
we went from measurable spaces to measure spaces. And special examples of measure

spaces were probability spaces.

So that was a direct connection from Week 1 to Week 2. But in Week 3, again, we went
back to Week 1. We started looking at measurable structures, measurable spaces and we

studied measurable functions which can be defined on top of these measurable spaces.

So a priori, when you are talking about measurable functions, there was no connection
about the measures. So, if you have a measurable space, you can talk about measurable

functions on top of that.

So, from Week 1, we directly went to Week 3. So, there was no direct connection
between Week 2 and Week 3. But now, at the end of Week 3, we defined random
variables. And you suddenly found that we are talking about Borel measurable functions
on top of probability spaces. So, there was an additional probability measure given to you

on the domain side.

So now, we mentioned that this has to be clarified, what is the connection of this

probability measure, with respect to the measurable structure. So, this is exactly



connecting to the tie up between Week 2, which involves measures and Week 3, which

involves measurable functions.

So again, from Week 1 to Week 2, we went from measurable spaces to measure spaces.
From Week 1 to Week 3, we went from measurable spaces to measurable functions. Now,
we are going to tie up Week 2 and Week 3 by connecting measurable structures, measures
spaces and measurable functions. So, recall, from the last lecture of the previous week,
that we have defined random variables and random vectors as Borel measurable functions

on top of probability spaces.

So what you are going to do is to connect these measurable structures, measurable spaces,
measurable functions, together with these measures, which is available on the domain
side. So, that is what we are going to talk about in this lecture. And we are going to see
that this gives you a very, very important construction of a measure on the range side. So,

let us go ahead and start looking at the lecture notes.
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So again, just to quickly recall, in the previous lecture, we discussed the concepts of

random variables and random vectors on a probability space. But again the main point is

that we are yet to use the probability measure give to us. So, the probability measure that



was given to us on the domain side, this we have not used. So, let us see how we are

going to use this.
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So first, one quick point is that, all of the results that we have discussed in this lecture
notes are stated for general d-dimensional random vectors. But once you specify

dimension d = 1, you can always restrict your attention to random variables. So, it is not

a big issue.

. d . .
When you are talking about R valued random vectors, you simply rewrite the results for

d = 1, you will get the results for random variables. So, it is not a big issue. We are just

. . d
stating things in general framework for R valued random vectors.
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So let us start. The main idea is this. So, start with a random vector, taking values in R .

So, what is this? So, you have a probability space, ({2, F, P) and the range side, you

have the ([R{d, B]Rd) . So, with respect to these o-fields on the domain side and the range

side, the random variable X is measurable. But you are just given this additional

probability measure.

Now, let us put together all the information that we have. So, from the measurable
structure of X, that function, you know that for all the Borel sets, that is on the range side,

for all the Borel sets 4, the pre image lies in the domain side o-field.

So, this is simply pulling back or looking at pre images of sets, Borel sets on the range
side. If you pull them back, they are on the domain side o-field F. So, that is something
following from the measurable structure of the measurable function X. So, that is the first

piece of information.

So, the second piece of information that you are going to use is the fact that the
probability measure given to you is a function from the o-field F and it associates values

between Os and 1s. So, for any arbitrary set in your o-field on the domain side, the, you



are going to associate values between 0 and 1. So, that is what the probability measure

does, with appropriate additional properties like countable additivity and so on.

But at the end of the day, for any arbitrary set on the domain side, as long as that set is in
your o-field, F, you can talk about the probability of that set. And that is what we are

going to use now.
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So, put these two pieces of information together, and look at this composition operation

: . o -1 . :
in some sense. What we are looking at is this P < X = operation. What does it do? It takes

a Borel set on the range side, pulls it back, to the domain side.

So, you get X _1(A), which is a set on the domain side o-field, F. You can talk about the
probability measure of that. So, that is the value. That is the value between 0 and 1. So,

this function is well defined. So, there is no issue in defining this function.
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But we are going to say that this function is very, very important and this gives you, in

fact, a probability measure on the range side. So, here again, for any Borel set A on the

range side, you are associating a value which is given by probability of X _1(A). So, you
are looking at probability of the pre image of the set A under X. And I claim that this is a

probability measure that is on the range side.
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So how do you go about proving this? So, you have already mentioned that P o X _1, that
is well defined, so that is not a problem and it also takes non negative values. In fact, we

have mentioned specifically that it takes values between 0 and 1. So, it is non negative.

. . d .
So, you have a non negative set function defined on R~ with Ble' So, that measurable

. ) -1
space on top of that, you have this important set function P o X

But then, you want to claim that this is a probability measure. So, there are two steps in

proving this thing. The first step, you are supposed to show that P o X ~!is a measure.

And to do that, you have to first verify countable additivity.

So, the second step will be looking at the P o X ! of the whole set and that should turn
out to be 1. So, let us first verify the countable additivity. So, to do that, what do you do?

You take a sequence of pairwise disjoint sets in BRd. So, you are going to verify the

countable additivity here.
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So now, look at the countable union U An. So, now, look at IP ° x

UA ) Now,
n

. . s . -1 .
putting the definition. So, for any set, you define it this way. So, itis P = X . So, it is

defined this way that you are looking at IP’(X _1( U An))

n=1
So, this is for any arbitrary set. So, therefore, it is also true for the countable union here.
But then, here you are going to use this very, very important property about the pre

images, that the union simply comes out. So, this was mentioned in our exercise.
So, it is simply the union of the individual pre images. So, that is a very important

) ) -1 .
information that X U
n=1

U

n=1

An) is nothing but the

X _1(An)). So, that is what you write
inside.

But then, you also make this important observation. As long as these An's are pairwise

disjoint, the pre images are also pair wise disjoint. So, this is a very, very important

observation. That you are starting off with pairwise disjoint sets An, and you are looking

. . : -1 . .
at this countable union, but you have now looked at this P = X = of this countable union
and you have written it in terms of the probability [P of this union of the sets which are
now pairwise disjoint. So, the pre images are not pairwise disjoint. What you are going to

use now is the countable additivity of the probability measure IP. So, that is given to you.
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So, you are going to use the countable additivity of the probability measure P, to claim

that P X' of the countable union is nothing but this ]P’(X _1(An)).

n=1

So, it is simply using the fact that the pre images are pairwise disjoint. And you are using

the fact that IP is a probability measure. In particular, it is countable additive. So, that is

what you do.
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But then you just re-write using the notation that you have introduced. So, it is nothing by

P-X _1(An). That is just by the definition. Now, compare the left hand side and the right

. . . -1, . .
hand side. It immediately tells you that P < X = is a set function, non negative set

function defined on BRd, and it has this countable additivity. So, this you have proved for

arbitrary pairwise disjoint sets An.

So, you have taken this sequence of pairwise disjoint sets An, and you have proved the

o -1
countable additivity. So, therefore, P © X  turned out to be a measure on BRd'
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But then you want to additionally claim that this is a probability measure. To do that, you
are looking at the probability of the whole set. So, P ° X ! of the whole set. What is the

. d . .. .
whole set? It is R . Put in the definition again.

So, it is probability of the pre image of P(X _1(]Rd) ) , but then X is a mapping from () to

R . So, therefore, if you are looking at the pre image of R’ , you are going to get the

whole set anyway. So, this is just using a property of the function. X is a function, you



look at the pre image of the whole range, you are just going to get the whole domain. So,

these are P(Q).

But since P is a probability measure on this measurable space (£, F), so therefore, you

get, probability of (1 is nothing but 1. And hence, P ° X ! must be a probability measure
on the range side. So, using the measurable structure of X and the probability measure on
the domain side, you have constructed now probability measure on the range side. So,

this is a very, very important construction.
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And now, this is what, we are putting into definition. So, we are going to define this
thing. Law or distribution of a random vector. So, this is a very important step. So, take
this random vector as mentioned above and look at the probability measure that we just

discussed.
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So, this is P X ! This is the probability measure on (]Rd, B]Rd) . So, therefore, you

get a probability space here. (IR{d, BRd ) together with this probability measure, you get a

probability space.

What you are going to look at is this probability measure, and you are going to call it as
the law of X, law of the random vector X or the distribution of the random vector X. So,
be very certain about this terminology. I am going to call it the law of the random vector
X or the distribution of the random vector X. This is nothing but these probability

measures, that is getting defined on the range side.
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So therefore, you get this probability space and what you get is this induced probability
space. So, why do I call it a induced probability space? It is simply pushing forward the
probability measure that was on the domain side and you are pushing it to the range side.
You are pushing it forward in the forward direction. So, it is a induced probability
measure. This triple that you end up with, we are going to call it as the induced

probability space.
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But now, recall these notations that we have talked about in the previous lecture. So, look

at P > X_'(A). So, as per the definition, it is nothing but the probability of X (A). So,

that is what exactly what it is.

But then you put in the definition of the pre image so that is nothing but this thing. So,
you are looking at all points in the domain side such that X(w) € A. But then, we

introduce this concept, or we introduce this notation of suppressing the w’s.
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And therefore, what we chose to write was just writing it as X € A. This notation. So,
that is exactly what happens now. If you choose to suppress the w’s you simply get back

the probability of this event.

This is now a familiar notation to you. This familiar notation, that is already available in
your basic probability courses. So, therefore, we have now connected this familiar

notation with, coming from the actual law or distribution of the random vector X.

. : : -1, . :
So now, this, all these notations mean the same thing, so P < X " (A) is nothing but the

probability of X _1(A) and that is nothing but probability of X € A, that (())(14:25). So,

therefore, all these notations mean the same thing.
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So, now just for simplicity, we continue with the notations but let us consider the case

d = 1, one dimension case. So, you are talking about a real valued random variable now.

. d
So, so far we have, what in general random vectors, R case, but let us come back to

dimension 1.
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We can now use certain, following notations for convenience. And these familiar terms

will now appear, start appearing. Now, we are going to see familiar terms appearing.
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What are these? So, suppose you take A to be a singleton set {x}. So, it is on the range
side. You are looking at P(X € A). And that is, as per definition that we have just talked

about is nothing but all points in the domain, all w such that X(w) € {x}.

But that nothing but, you can rewrite it using this notation that it is all points w such that
X(w) = x. Now, if you choose to remove all these w’s, you exactly get back P(X) = x.
So, again, this is a familiar notation to you. So, now, all we are saying is that this appears

whenever you are looking at pre image of {x}. So, that is exactly what it is.
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Let us look at other sets of this type. So, let us look at a interval (— oo, x]. So, (— o0, x]

. So, you are looking at all these kind of specific types Borel sets.

What is this here? Now you are looking at probability of this event, put in the definition,
it is nothing but all points in the domain such that X(w) falls in this interval. But then

rewrite it using inequalities, so you just say all points in the domain such that X (w) < x.

So since your values are in this interval, then all values must be < x. And then you

choose to suppress the w, you get back your familiar notation, P(X < x).

And in fact, you can choose the do the same thing for other types of intervals and you
will, you can write down these notations using familiar notations involving these kind of
inequalities. These events, using these inequalities, for these type of intervals. (— oo, x),

(x, o) and [x, o). Just write it down, you will get back your familiar expressions.
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But then, what happens if you are looking at this kind of an interval when these things are
bounded. We are now choosing to look at (a, b), [a, b) and [a, b]. What happens here?
Put in the definition once more. So, you are saying that you are looking at all points in the

domain, w, such that X(w) lies in this interval.

Choose to rewrite it using the inequalities and remove w. You get back your familiar
notation in terms of the familiar events. So, it is nothing but the probability of X falling
between (a, b]. And you can choose to write down similar notations for other types of

intervals like (a, b), [a, b) and [a, b]. So, similar notations, you can find out.

All these things are just connecting to the familiar things that you have already seen in
your basic probability courses. With all these notations at hand, what we are now going to

do is to look at examples of laws of random vectors or random variables.
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So, you have defined it but we would like to see what kind of probability measure appear
on the range side. When you push forward the probability measure [P, which is appearing
on the domain side, you push it by the random variable X, what type of measures appear

on the range side.

So we are not choosing to look at this constant function. So, remember, on any
measurable space, you have this constant function and that is a nice measurable function.
So, therefore, this is a example of a random variable. So, this is a constant or degenerate

random variable, which just takes this single value, c.
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So here, we recall, that the pre-images are nothing but empty set or the whole set
depending on the choices that the value c is in the set or not. So, if c is there in the set,
you get back the whole set, Q. If the ¢ is not there in the set A, you get back the pre image

as empty set.

But then, look at the probability of that and you know exactly what these values are. So,

P X _1(A) is nothing but Os or 1s depending on the situation that c € A and ¢ € A.
But that is nothing but, you recall, that this is nothing but the Dirac measure, direct

supported at the point ¢, acting on A.

You are looking at the size of the set A according to the Dirac measure supported at the

. . -1. . :
point c. What you have found out is that P = X ~ is nothing but the Dirac measure.

So, for the constant or degenerate random variable, you have explicitly computed all

possible pre images and looked at the probability of those, all these events and what you

have actually figured out is that P o X s nothing but the Dirac measure supported at c.

This is the Dirac measure that is appearing on the range side.
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Now, let us look at something more constructive examples. So, take a look at the random
experiment of tossing a coin. So, you are going to get heads or tails as outcomes. So, that
is your sample space omega. But then, let us choose to consider this kind of a probability
measure on the domain side. So, you look at this power set, of course on the domain side.
So, this is the finite set, and this is a natural choice. So, the power set appears with this

set, so, empty set, the whole set, and the two singleton sets containing heads and the tails.

(Refer Slide Time: 20:23)

Mo, SL={NTE and F=2 =44 00 1]
Now, (nsden o ?nob&kﬁ\;% Mearwne P on
(55%) defined % R($)=0, RE)=1, PRWT
= b, RETD) =\ %, Fn some Rued e,
owr discussiong ™ Weak 3 dwblies :»\mt
oL of W Alowing fumctions one RV,

© K= /\'s\.'\ rve, KR %



So, this is a power set. So, consider this measure on this domain side. So, I am going to
associate these values. So, I say that I associate value 0. So, for a probability measure,
empty set of course has value 0. Then probability of the whole set, of course, I will

associate the value 1. This is a probability measure.

But then you have to specify the values for the singleton sets, heads and the tails. But if
you specify the value p, for the heads, then using this property that you can add the
probability of the compliment together with the probability of the original set and you
will get back 1.

So, you use this property and you will immediately claim that the probability of the
singleton set T must be 1 — p as long as c is the value of probability of the singleton set
heads. So, as soon as you specify this c, all these values are fixed for you. And I claim

that this is a probability measure. Stick this.
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But now, what you are going to do, is to look at this kind of functions on the domain side.

Look at this indicator functions. So, these singletons, as long as these singletons are

already appearing on the domain side o-field, they will give you that these indicators are

also measurable functions.



As long as these sets are appearing on the domain side, the corresponding indicators will
become measurable. This is something we have discussed in Week 3, as examples of

measurable functions.

But then, there is a probability measure on the domain side and therefore all these are

examples of random variables. So, you are lookingat1__, or 1

{H} {ry
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Or, you can choose to look at some combinations of those. As long as you have two
measurable functions, their subtraction is also a measurable function. You are using all

these nice properties.
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But now, what happens here? You can now look at the functions, 1 Y for example. Look

at this function. So, how does these functions evaluate? On the point H on the domain

side, you get the value 1, otherwise you get the value 0. There are the only two points.

You get these values.
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Similarly for 1, you can also figure out the appropriate values for the function.

{T}

Similarly, using the, the subtraction of these two functions, you can write down the actual

values of the function X on the points in the domain.

So here, for the head point, you get the value 1, for the tail point, you get the value minus
1. Here exactly, you are associating + 1 value to the heads and the tails. So, this is what
associating the numbers, numerical outcomes to random experiments, where there are

non numerical outcomes. This is the perfect example of that.
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So, you have these explicit measurable functions, X here, a, b, c. In three examples, you

have this.
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You also have this nice probability measure on the domain side, which you have

mentioned. Now, I claim that you can now try to compute the laws of these, P ° X - So,
just look at all possible pre images, evaluate the probability p of those events. And you

will get, exactly get back certain nice combinations of 80s and 815.

And for the function, when you are looking at the subtraction of these two indicators, you

are going to get the combinations of 8_1 and 8_1. So, this is a very, very interesting

observation. You are getting back the convex linear combinations of certain Dirac

masscs.

So please work this out. This gives you a very nice connection between the calculations
involving indicators and the corresponding laws. So, please try to figure out the law of

these random variables.
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So now, let us consolidate whatever we have done in the d dimensional case itself.
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So now, look at this situation. What we have done is that for arbitrary probability spaces

(Q, F, P) and random variable X defined on top of it, we have considered or

constructed this probability measure P o X ' And that gave you a example of a

probability measure on the range side.



So, look at the first type of things here. (2, F, P) , which is a probability space and
random variables, or random vectors X defined on top of it. So, that is the first type of

collections. And then, the second type of collections that you are going to get is the

collection of all probability measures on Borel o-field on R” . These measurable space.

And we are saying that in figure 1, we are obtaining a function from the first collection to

the second collection. So, from the first collection, you are looking at all these

information, (£, F, P) and X and using all these, you are constructing this P ° X -

which gives you a example of a probability measure.

So, for all these choices (£, F, P) and X, you have now associated these probability

-1 . o o .
measure P < X ~ on the range side. So, you get a probability measure in this collection.

So, from this set, original collection of probability spaces and random vectors, so that is
your first set contents. And the second set contents are probability measures. So, you
have now made a association, you have now made a function which goes from the first

set, or the first collection to the second set.
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But then, we are going to, later, we are to talk about a function going in the opposite
direction. So, what we are going to say is that given probability measures, we would like

to construct certain probability spaces and random vectors such that the corresponding

-1 o . .
law P = X ~ turn out to be the exactly the probability measure given to us. This, we are

going to see later on.
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But this will allow us to construct random variables or random vectors with the specified
law. So, you are going to start with specific probability measure on the range side and
you are going to construct back examples of random variables or random vectors with

that law. This, we will do later.
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However, it is important to note that the association, or the function that we have done in
figure 1, that from the probability spaces and random vectors you have gone to the
probability measures, this is not one to one. How do you show this? So consider the case

of constants C and look at the corresponding degenerate random variables. So, go back to

simple one dimensional case.
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So now, in any probability space, you can talk about this Borel measurable function
which is this constant or degenerate random variable. And we have seen that for all such
choices of probability spaces and random variables defined on top of this, the law will be

exactly the Dirac measure supported at c.

So, no matter what probability space you choose, as long as you choose this random
variable defined on top of such a probability space as the constant, that constant, then you
are going to get this exact law, this exact probability measure on the range side, on the

Borel o-field.



So therefore, you are saying that for all such choices on the domain side of that function
that we have now mentioned, so for all such choices, where the random variable is
degenerate, that constant, then you are going to get exactly the same probability measure,

the Dirac measure supported at the constant.

So therefore, this is not a one-to-one function. So, therefore, when you are talking about
the functions that are going in the opposite direction of figure 1, you have to be careful
with that. We will see what does it mean later on when we talk about it. But in this
lecture, we have constructed the law or distribution of random vectors. So, we are going

to continue this discussion in the next lecture. We stop here.



