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Lecture - 13
Algebraic Properties of Measurable Functions

Welcome to this lecture before we proceed let us quickly recall what we have been doing in this

week. So, we have looked at certain classes of functions defined on the sample space. And we

considered the measurability properties. We defined it as the functions for which the pre-images

of all measurable sets from the range side those pre-images should lie in the domain side -field.σ

And in particular, we are interested in the functions which take values in the space of real

numbers or extended real numbers or in higher dimensional Euclidean spaces.

So, there we are putting the appropriate Borel -fields on the range side and looking at all Borealσ

sets on the range side looking at their pre-images if the pre-images fall inside the domain side σ

-field then we are calling it as Borel measurable functions. So, we have so far discussed three

types of examples of such functions first were constant functions, second indicator functions, and

third continuous functions.

So, continuous functions we consider on the real line and also on higher dimensional Euclidean

spaces and we considered the ranges as either the real line or some . So, with such appropriateℝ𝑑

assumptions we have mentioned that such functions are also Borel measurable. So, we have such

types of examples at hand. So, with this, we are now going to proceed and look at certain nice

properties of these functions.

And as you shall see that these properties also allow us to construct more examples from the

existing examples. So, in this lecture, we are going to discuss the algebraic properties of these

functions. So, basically, we are going to look at algebraic operations on these functions like

addition and subtraction. So, let us move ahead with the slides.
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So, in the last two lectures we have discussed this concept of Borel measurable functions.
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In this lecture we are going to focus on the algebraic properties of these functions. And as

mentioned earlier we are going to see that these properties are going to help us construct more

examples. So, the first property that we are going to look at is described in this proposition. So,

what we are saying is that I am given two measurable functions, first one goes from to andΩ
1

Ω
2

then the second function goes from to .Ω
2

Ω
3



So, if you are just given these two functions and . So, you can talk about the function𝑓 𝑔 𝑔 ◦ 𝑓

whose domain is and the composition should land up in . So, and thenΩ
1

Ω
3

𝑓:  Ω
1
 → Ω

2
𝑔: Ω

2

. So, therefore, the composition is fine. And you can talk about the composition from to→ Ω
3

Ω
1

. See here of course you require that the range of should be contained in domain of .Ω
3

𝑓 𝑔

And here it is perfectly fine because the range of will be some subset of and that is the𝑓 Ω
2

Ω
2

domain of is well defined so that is not a problem. Now we are going to claim that this𝑔 ◦ 𝑓

composition will be measurable provided and were given to be measurable. So, now when𝑓 𝑔

you are looking at you will have appropriate -fields on the domain side and the range side.𝑓 σ

And you will require the appropriate measurability assumptions on . Similarly, for you will𝑓 𝑔

put the appropriate -fields on the domain side and the range side. So, it is important that youσ

keep the -field on to be the same. So, you keep the same -fields. So, then you also assumeσ Ω
2

σ

that is also measurable. So, given that and are measurable we claim that is also𝑔 𝑓 𝑔 𝑔 ◦ 𝑓

measurable.
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So how do you go about proving this? So again, let us go back to the definition. So, you want to

show that for arbitrary sets on the range of . So, the range is . And there the -field is .𝑔 ◦ 𝑓 Ω
3

σ ℱ
3

So, you will take arbitrary sets from there and you will like to look at the preimage under the



composition map. If the preimages fall inside the domain sides -field which is . Then youσ ℱ
1

will claim that is measurable.𝑔 ◦ 𝑓

So how do you check this? So first observe that if you look at the measurability of you will𝑔

immediately claim that for any arbitrary measurable set in which is in you will look at theℱ
3

Ω
3

preimage under . So, that will fall inside that domain side -field of . So, what is the domain𝑔 σ 𝑔

of that is and that domain side -field . So, therefore, the preimage of under the𝑔 Ω
2

σ ℱ
2

𝐴

function that will land up in this is by the measurability of .𝑔 ℱ
2

𝑔

But then you use the measurability of and look at the preimage of the set under the𝑓 𝑔−1(𝐴)

function . So, and use the measurability of f. So, So, now, you will𝑓 𝑔−1(𝐴) ∈  ℱ
2

𝑓 :  Ω
1
 →  Ω

2

take any set from the range side which is in . So, you can look at this set . So, that saidℱ
2

𝑔−1(𝐴)

if you look at the preimage under so that should land up in as per the measurability of .𝑓 ℱ
1

𝑓

But this is a easy statement to check that that function the composition function if you𝑔 ◦ 𝑓

look at the preimage of the set under this function it can be written as this preimage meaning it𝐴

is the preimage of under the function . So, if you show this equality you will𝑔−1(𝐴) 𝑓

immediately claim using the measurability of and that the preimage of under is in𝑔 𝑓 𝐴 𝑔 ◦ 𝑓

.ℱ
1

And therefore, since you have proved it for any arbitrary set in therefore you can claim that𝐴 ℱ
3

is measurable. So, this is a very very important property and you will, you are going to see𝑔 ◦ 𝑓

the usage of these right now.
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So now what is this? So, we are going to apply this composition operation now. So, what is this

statement? So, I am starting off with now one measurable space . And look at some(Ω,  ℱ)

arbitrary function defined on . So, sticking values in some Euclidean space . So, now youΩ ℝ𝑑

can write the component functions as . So, what are these? These are all the𝑓
1
,  𝑓

2
,  .  .  .,  𝑓

𝑑( )
functions which take component wise values.

So how are they defined? So, you take f of some sample points so will be a vector in .ω 𝑓(ω) ℝ𝑑

And the first component of that will be given by the function , second component will be𝑓
1

given by the function . So, all of these functions these functions are𝑓
2

𝑓
1
,  𝑓

2
,  .  .  .,  𝑓

𝑑
𝑓

𝑖

functions from to . So, these are taking values in the real line. So, you can identify theseΩ ℝ

component functions as long as you are given the function .𝑓

Now, here is the statement. So, take to be Borel measurable that means you are looking at𝑓

appropriate -fields on the domain side and appropriate -fields on the range side. So, thatσ ℱ σ

will be the Borel -fields. Then with respect to these -fields you talk about the measurability ofσ σ

the function f.
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Now, if this is born measurable the statement says that the component functions are also Borel𝑓
𝑖

measurable. Now remember that this component functions are from to . So, therefore, you𝑓
𝑖

Ω ℝ

are going to use the Borel -field of the real line on the range side. And you are claiming that ifσ 𝑓

is measurable then is are also measurable. But this statement says something more that if you𝑓
𝑖

know that the component functions are Borel measurable.𝑓
𝑖

So, you have many component functions which are Borel measurables from to ℝ. Then the𝑑 Ω

original function is also Borel measurable. So, this is an if and only if statement. So, how do𝑓

you prove this?
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So, the proof goes by checking the measurability conditions on generating sets on the range side.

So, this was mentioned earlier in note 13 that we can check this just the measurability conditions

or the preimage of sets coming from the generating class from the range side. So, what to do so

start with thethese projection maps coordinate projection maps that were mentioned earlier. So,

these were also continuous functions.

And these turned out to be Borel measurable by the appropriate condition that we just mentioned

by looking at the preimages of the generating sets. Now, we are going to use those two things

together. So, one is about this preimages of generating sets. So, that is one thing that we are

going to use the second thing that we are going to use are this coordinate projection maps . So,π
𝑖

how do you proceed?
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So, start with Borel measurability of the function f which is from taking values in . So, thenΩ ℝ𝑑

what you can look at are these component functions can be obtained as a composition of the

projection maps with the actual function . So, this is so you can easily check this. So,𝑓 π
𝑖
 ◦ 𝑓

take a sample point in the domain. So, then if you look at evaluated at that sampleω π
𝑖
 ◦ 𝑓

point you will exactly get back the -th component function.ω 𝑖

So, that is this relation here. So, now as soon as you have the Borel measurability of put it𝑓

together with the Borel measurability of the functions . And then by the composition operationπ
𝑖

that was discussed in proportion 2 above. You immediately claimed that the component functions

’s are also Borel measurable. So, you will see the proof is very simple as long as you know all𝑓
𝑖
 

these facts.

So now for the converse we are going to use this thing about the preimage of generating sets. So,

now we are assuming that all the coordinate functions ’s are Borel measurable. So, they are𝑓
𝑖

from to . So, you are using the Borel measurability there with the real line the Borel -fieldΩ ℝ σ

on the real line on the range side. But then you want to claim the Borel measurability of the

function which is taking values in . So, we will be using the Borel -field of . So, to𝑓 ℝ𝑑 σ ℝ𝑑



check the Borel measurability of the function f you need to use the generating sets of Borel σ

-field on which is the range.ℝ𝑑
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So, then you use that and what are the generating sets there. So, recall from our discussions in

week one that for this you have to use this product of this type of left open right closed intervals.

So, you will choose this numbers , . And look at this interval , take the𝑎
𝑖

𝑏
𝑖

𝑎
𝑖

< 𝑏
𝑖

(𝑎
𝑖
,  𝑏

𝑖
)

product of them for product. So, these are all the generating sets on the . So, the Borel𝑑 ℝ𝑑 σ

-field of .ℝ𝑑

So therefore, if you look at the preimage of these sets and if you just verify the appropriate

condition for these sets then you are done. But then it is easy to check that the preimage under f

that can be written as this condition. So, what are these you are saying that these points that are

in this preimage. So, for these points the -th component lies in to . So, that is what the left𝑖 𝑎
𝑖
 𝑏

𝑖

hand side means. So, if you put a sample point on the left-hand side then lies in this𝑓(ω)

product.

So therefore, individually component-wise the ith coordinate lies in ai to bi that left open right

closed interval. And that is what exactly is stated on the range side. So, check this and therefore

what you were able to write is that the left-hand side is equal to the range side where on the



right-hand side you have the preimages involving the component functions. So, now in this

component functions if you assume the measurability as given in the hypothesis.

Then these preimages lies in the domain side -field which is . And therefore, the finiteσ ℱ

intersection is available there. And therefore the right-hand side is falling inside the domain side

-field.σ
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Therefore, using the Borel measurability of the component function ’s you get the𝑓
𝑖

measurability of the function this completes the proof. So, now what is this identification once𝑓

more? So, using these composition operations that we discussed.
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We have been able to show that if you want to talk about valued measurable functions. It isℝ𝑑

good enough that you talk about the measurability, the real-valued measurability of the

component functions and vice versa. So, that is the identification that as long as you have d many

component functions which are measurable put them together you will get a valuedℝ𝑑

measurable functions.

On the other hand, given a valued measurable functions the component functionsℝ𝑑

immediately turned out to be Borel measurable. So, with that result at hand, we are now going to

proceed towards certain interesting observations.
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But first in exercise 4 we mentioned that all these results that are discussed for the real valued

functions or valued functions can be extended with extended real line as the range side. Butℝ𝑑

these we are not going to use too much. So, on the range side where we have to use when youℝ‾
𝑑

are looking at the - dimensional versions. But you can still use usual ideas to talk about the𝑑

Borel -fields on .σ ℝ‾
𝑑

So, we have skipped that in the discussions in week 1. But you can still talk about the Borel σ

-fields on the default product of the extended real lines by usual method by looking atℝ𝑑‾

products of default products of the generating sets left open right close intervals on the extended

real line. So, if you look at such set it will generate the appropriate -field and you can actuallyσ

prove the analogous version of this identification of valued measurable functions with theℝ‾
𝑑

measurability of the component function so you can prove this.

So, this is an optional exercise given to you. So, in all of these results that we are going to state

many of these results can be stated either for real-valued functions or extended real-valued

functions and according to our convenience we are going to look at any one of these versions.

So, now we are going to go forward and discuss the main result of this lecture.
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So, what is this? So, look at functions defined on the same measurable space and taking(𝑓,  𝑔)

values in the real line. So, these are all given to be Borel measurable functions. Then what we are

going to say that look at other functions like this. So, what are these? So, look at so how𝑓 + 𝑔

is defined, so look at a sample point of that function is simply taking the value𝑓 + 𝑔 ω 𝑓 + 𝑔

.𝑓(ω) + 𝑔(ω)

So, just evaluated the original functions f and g at the sample point add them up you will get the

actual function . Similarly, that function is defined as . So, likewise,𝑓 + 𝑔 𝑓 − 𝑔 𝑓(ω) − 𝑔(ω)

you can go ahead and talk about the all the other functions like . So, product of and , ,𝑓𝑔 𝑓 𝑔 |𝑓|

, such functions. In particular, recall that constant functions are alwaysmin {𝑓,  𝑔} max {𝑓,  𝑔}

measurable.

In particular if you take to be identically 0 function. Then you can look at and𝑔 max {𝑓, 0}

. So, here just a quick note that is also a constant function is a constantmax {− 𝑓, 0} − 1 − 1

function and it is also Borel measurable. So, now we can talk about the product with the𝑓

constant function . So, that will give you the function . Another way to look at this− 1 − 𝑓

function is to look at the subtraction from 0.− 𝑓

So, 0 minus the function f will give you . So, since both the functions 0 the constant function− 𝑓

0 and the are measurable the function is also measurable. What we are doing? We are𝑓 − 𝑓



looking at this or and we are going to write as and these twomax {𝑓, 0} max {− 𝑓, 0} 𝑓+ 𝑓−

functions. We will see the usage of these functions in a minute. But what we are saying is that all

these functions that we are talking about they also be Borel measurable.

So, provided and are Borel measurable you will immediately get the Borel measurability of𝑓 𝑔

and so on. So, now let us quickly mentioned the usefulness of . So, what are these𝑓 + 𝑔 𝑓+ 𝑓−

functions? So, when the function f is taking non-negative values then is non-negative. So,𝑓(ω)

the maximum of and 0 will turn out to be . So, will be taking the value for𝑓(ω) 𝑓(ω) 𝑓+ 𝑓(ω)

those points where is already non-negative.𝑓

But if is taking a negative value at some point then is negative so the maximum is 0 here.𝑓 𝑓(ω)

So, therefore, will be taking the value 0. So, therefore, you are looking at the graph of the𝑓+

function small as long as it is above the value 0, as long as it is above the axis in some sense.𝑥

Then what you are doing is that you are looking at only that part, as long as this goes below the

value 0 you ignore those values and put the function constant function 0 there.

So that is what the function is it is looked it is called as the positive part of the function .𝑓+ 𝑓

You just look at the points where the function is taking positive values and that is where you𝑓

constantly (())(18:54) and obtained this function . On all the points where is taking negative𝑓+ 𝑓

values you assigned the value 0 in similarly is called the negative part of it is the𝑓 𝑓− 𝑓

amplitude or the modulus value of how far below is from 0.𝑓

So, as long as is taking negative values let us say if you compute the value it will turn out𝑓 − 2

to be . So, basically, it is giving the modulus of the distance from the 0. So, is saying that2 𝑓−

how far below the function is from 0. So, that is the negative part of . So, let us go ahead and𝑓 𝑓

prove this theorem that provided and are measurable functions, Borel measurable functions.𝑓 𝑔

Then all these algebraic operations will give you measurable functions. So, with this at hand as

long as you have some examples, explicit examples you can use these algebraic operations to

construct more examples. So, the proof is pretty simple. And it has the same structure for all

these functions. So, we discussed the proof for . For all the other functions you can try to𝑓 + 𝑔

work them out.



So how do you prove the measurability of ? So, remember is a function from to𝑓 + 𝑔 𝑓 + 𝑔 Ω

. So, again, you are using the domain side -field and the range side -field Borel -field orℝ σ ℱ σ σ

.ℝ
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So, how do you prove the measurability? So observe first that as long as and are Borel𝑓 𝑔

measurable you can talk about this function . So, this is a two dimensional function taking(𝑓,  𝑔)

values in . So, for each point in you look at . So, that is a value in . And byℝ2 Ω (𝑓(ω),  𝑔(ω)) ℝ2



the earlier proposition as long as this component functions and are Borel measurable this two𝑓 𝑔

dimensional function taking values in is also Borel measurable.ℝ2

So, this is immediately where we are applying this proposition. But now note that you have this

addition function on we are calling the function as . So, takes points and addsℝ2 ℎ ℎ (𝑥,  𝑦) ∈ ℝ2

them up. So, take the points and add up these values and . So, that is your function. So,(𝑥,  𝑦) 𝑥 𝑦

that is our function from to , observe that this is a continuous function. You had actuallyℝ2 ℝ

mentioned such functions from to any two dimensions.ℝ𝑑 ℝ𝑛

So, this if they are continuous, they will be Borel measurable. So, in particular here the function

is also measurable, Borel measurable. So, therefore, what you are going to do is toℎ:  ℝ2 → ℝ

use these two functions now. So, the first function is made up of this valued functionℝ2 (𝑓,  𝑔)

and the second function is this addition function .ℎ

(Refer Slide Time: 21:42)

So, put them together so look at the composition of with the two dimensional valuedℎ ℝ2

function . So, this composition how does it go. So, that function goes from to .(𝑓,  𝑔) (𝑓,  𝑔) Ω ℝ2

And goes from to . So, the composition goes from to . But if you put the sampleℎ ℝ2 ℝ Ω ℝ

points there and compute this composition, what does it give you. It gives you the addition of

for any sample point .𝑓(ω) + 𝑔(ω) ω



So, given any sample point if you compute this composition at that sample point you willω ω

simply get . And that is nothing but the function . So, therefore,𝑓(ω) + 𝑔(ω) 𝑓 + 𝑔 𝑓 + 𝑔

being the composition of these two measurable functions becomes Borel measurable. So, the

proof is pretty simple as long as you use all these algebraic properties that you have already

proved.

For other functions like you have to take the function as going from to𝑓 − 𝑔 ℎ (𝑥,  𝑦) 𝑥 − 𝑦

since that is continuous it will be Borel measurable use the appropriate identification by the

compositions and you will get the property. So, once you have done the hard work all these

properties now follow pretty easily.
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So, now one important factors here that we have so far discussed addition, subtraction,

multiplication, and some related operations like taking modulus maximum and minimum. But

then one important operation is missing that is the division. So, you are interested in what

happens if you divide a measurable function by another measurable function. But here you have

to be careful, you cannot divide by any function which is taking value 0.

So first of all, if you are dividing a real number by another real number you have to be careful if

the denominator is 0 so that is not defined. So, this is a similar operation when you are dividing a

function by another function you have to be careful that the denominator function is not



becoming 0 at some point so then it will not be different. So, therefore, we are going to restrict

our attention to .ℝ\{0}

So, we will exclude the point 0 from the real line. So, that will be considered for our range

spaces. So, you have that is what we are going to consider the denominator on. So, denominator

will be taking values on it will not take the value . So, then whenever we are going toℝ\{0} 0

talk about the range as . Then you have to talk about the appropriate -fields. And that wasℝ\{0} σ

discussed earlier in week 1, remember this is a Borel subset.ℝ\{0}

The singleton set is a Borel subset so their complement is also in the Borel -field. So, it is a{0} σ

Borel subset. For Borel subsets we have defined the Borel -fields. So, recall that constructionσ

there. And what we are going to talk about divisions by functions by measurable functions.ℝ

(Refer Slide Time: 24:39)

So, continue with as in real-valued function, real-valued measurable function on the𝑓

measurable space . But now the function you are going to divide by the function that(Ω,  ℱ) 𝑔

you have to be careful with and that is what we have just mentioned that take the range space as

so include 0 there. So, here what happens? You have to put the appropriate -field hereℝ\{0} σ

Borel -field on .σ ℝ\{0}

Then the claim that function that is well defined and that becomes measurable with respect to𝑓
𝑔

the appropriate -fields. So, here what happens the division is well defined. So, this is realσ



valued function because can take the value 0. So, the division can produce the value since the𝑓 0

numerator we allowed to be 0. So, how do you show this?
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So again, just to repeat. So, this is well defined as long as takes nonzero values. But then𝑓
𝑔 𝑔

observe that this function the division operation that we have been discussing is can be written as

this format . So, do you take two real numbers and but allow to take values inℝ × ℝ\{0} 𝑥 𝑦 𝑦

only. So, do not allow to take the value 0. Then you can talk about . So, will beℝ\{0} 𝑦 𝑥
𝑦

𝑥
𝑦

some real number including 0.



So, this is a continuous function as long as you vary and in this space. So, now the proof will𝑥 𝑦

follow similar to the earlier argument. Since this function division function that we have been

talking about here this is continuous it is also Borel measurable. And hence if you compose with

the function the two-dimensional function taking values in then the(𝑓,  𝑔) ℝ × (ℝ\{0})

composition will give you a measurable function Borel measurable function. So, therefore, 𝑓
𝑔

that is the resultant function will turn out to be measurable with respect to the appropriate σ

-fields. So, the proof is pretty simple to work out.
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So, our final exercise to finish up the lecture. So, here what we have taken is that we have

explicitly stated that the range of is but suppose you look at this following variant of𝑔 ℝ\{0}

this hypothesis. So, start with to be measurable but with real values. But then you specify that𝑔

the ranges . So, what is the difference with the previous hypothesis? In the previousℝ\{0}

hypothesis you were only checking measurability for measurable sets coming from .ℝ\{0}

But now you are saying is measurable with Borels in the field on . So, you have checked it𝑔 ℝ

for all Borel subsets of R not . So, with those measurable sets you have checked theℝ\{0}

preimages and that turn out to be in the domain set -field. So, now with this general conditionσ

now you assume that the range of g is contained in . Question is that whether is nowℝ\{0} 𝑔

measurable with respect to the -field on .σ ℝ\{0}



Since g is taking values inside you can now consider this question that it is a mappingℝ\{0}

from . And you put the appropriate domain side -field but the range side -fieldΩ → ℝ\{0} σ ℱ σ

now you take it to be the Borel -field on . So, given the fact that was originallyσ ℝ\{0} 𝑔

measurable with respect to the Borel -field with the additional fact that range of is nowσ ℝ 𝑔

can you say this, so try to work this out.ℝ\{0}

So, that is the exercise. So, in this lecture we have looked at these algebraic properties including

composition and all these usual arithmetic operations like addition, subtraction, multiplication,

and division. So, this will be useful in constructing more examples and we are going to discuss

certain continuity or limiting properties of measurable functions in the next lecture. So, we stop

here.


