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Hello friends, welcome to the course Essentials of Data Science with R Software-2, 

where we are trying to understand the topics of Sampling Theory and Linear Regression 

Analysis. In this module on Linear Regression Analysis, we are going to begin with the 

new chapter on Variables Collection using the LASSO Regression. What is this LASSO 

regression? That is the first question we have to understand. 

You know particularly, when you are trying to work in the area of data science. The 

usually the data is collected in an automated way. And the cost of data collection is very 

less. For example, you can imagine that, whenever shopping websites want to collect the 

data they will try to create the login details. 

So, any customer who want to do some shopping from the site, the person has to first 

give all the information about herself or himself. And based on that there can be many 

more question from time to time, which can be answered by the customer for that 

website. So, now, the data is collected automatically. The cost is very very less; the 

administrative difficulties are very very less. 

So, now, in this process what is happening that sometime the experimenter become very 

enthusiastic and they try to collect the data on large number of variables. Definitely if a 

model has got large number of variables the model will be good. But there is a condition 

the condition is this, the variable have to be important variable. If you are trying to 

collect the information on those variable, which are not contributing in explaining the 

variation in Y, the model will not remain as good. 

So, the question now here is, that how to choose the important variables? So, for that we 

have considered the aspect of test of hypothesis, but definitely when you are working in 

a such a huge setup, where you have millions and billions of data and hundreds of 
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variables, these things may not work very well. And then in that case we have to look for 

some other alternatives. 

Well, I am not saying that those things are bad, right remember. I am saying that because 

the data is so huge though. So, for example, obtaining the regression coefficients by 

inverting the matrix X’X might be very difficult. You cannot obtain the inverse of a 

matrix of say 1 million by 1 million observation that is computationally very 

challenging. 

So, the question is we have, when we have this type of setup, we have large number of 

variables. How do we find out the important variables? Then only the important 

variables can be selected, they can be used in the construction of the model. So, this is 

achieved by LASSO regression.  

So, now, in this chapter we are going to discuss, that what is LASSO regression? But it is 

very important for you to first understand that how LASSO was developed and what is 

happening inside the LASSO regression. So, that you can take a correct out correct 

interpretation. 

So, in this lecture I am not going to give you much mathematical details. But I will try to 

connect couple of things together. I will *t with the linear regression modelling then, I 

will try to come on the independent variable, then I come to the problem of multi 

collinearity, then I will try to come to the ridge regression and finally I will jump into 

LASSO regression. 

So, this is how I am going to give this lecture. You please try to have some patience so, 

that you can interconnect all the things at the end. So, we begin our lecture, ok. 
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(Refer Slide Time: 04:36) 

 

So, now, we know that usually large number of factors and variables they affect any 

outcome of any process. And suppose we decide to consider all possible factors and 

variable. So, that means, we are using large number of independent variables and this 

will trigger its own issues. 

(Refer Slide Time: 04:58) 

 

There will be many complications which may arise when we are trying to consider large 

number of independent variable. For example, the explanatory power of the explanatory 

variable is distributed among large number of variables. 

1109



4 
 

You have done it by sum of regression in the analysis of variance, where you obtain the 

sum of a square due to total that was divided into sum of a square due to regression and 

sum of a square due to error.  

Now, the sum of a square due to regression is divided into large number of components. 

So, it is possible that every component becomes so small, that you cannot even judge 

that, which of the contribution is small and which contribution is large. 

For example, if there is a value say 20, which is now divided into suppose 100 

components. So, every component will become very small. So, in such situation it 

becomes challenging to identify, that which are the crucial variable, which are the 

important variable in the sense that they contribute more in understanding the model. 

And sometimes when you have large number of variables, suppose the number of 

independent variable X1, X2,…, Xk they become very large, then your matrix like (X’X)-

1. This is what you have to find.  

Now, the matrix X’X become so large, that it is difficult to get an inverse of this matrix 

and if you cannot get the inverse of this matrix even using the algorithm, then how you 

will estimate the parameters. So, these types of mathematical challenges also come into 

picture, ok. 

(Refer Slide Time: 06:33) 
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So, now, we our objective is this, we have to choose those variable which are more 

important and they contribute in the in explaining the model. So, this objective can be 

achieved by observing the values of regression coefficient that we already have 

discussed. 

If you remember we had discussed that, if H0 : j = 0 is accepted then the then how the 

model is revised, right. 

(Refer Slide Time: 07:02) 

 

So, that we know that if the value of any regression coefficient is very small say, ideally 

j = 0, then this means that the rate of change in the average value of study variable with 

respect to the unit change in the value of associated jth explanatory variable Xj is very 

small. 

You have done that partial derivative of expected value of Y with respect to Xj = 0, right. 

So, this indicates that Xj is not contributing significantly in explaining the behavior of 

the model. And hence, I can say that it is not a relevant variable and this variable can be 

dropped from the model. 

So, think about a situation where you have large number of variables. So obviously, 

when you have large number of variables there is a very high chance that these variables 

might be inter correlated. And you have a one basic assumption in multiple linear 
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regression model that your all X1, X2,…, Xk are linearly independent, the rank of X 

matrix is k. 

So, now, this assumption is violated. The independent variables are correlated. Once they 

are correlated then this creates the big question on the non singularity of the matrix X’X, 

finding out the inverse X’X becomes difficult. When the inverse of X’X is difficult to 

find or it gives you a wrong value. Then the standard errors of the ordinary least square 

estimator of , which are X2(X’X)-1 they will also become very high. 

So, it is possible that; if your variables are in are not independent, then the standard 

errors of the regression coefficient turn on turns out to be very high. In fact, this is one of 

the way by which we try to understand, that we are trying to assume that my independent 

variables are independent. But are they really 100 percent independent or not, this is how 

we try to see we try to look into the standard errors of the ordinarily square estimator 

regression coefficients, for the regression coefficients. 

Now, the question is this once you have large number of variable there are very high 

chances that those variables may be inter correlated somewhere and it is very difficult to 

find for us. Under this stage now, ordinary least square estimator cannot be used. This 

will give us a very bad result, wrong results this cannot be used.. 

So, now, the first question is this; we have to put some condition on the ordinary least 

square estimation methodology. And we need to find out the estimators of the regression 

coefficient in a different way. So, that we can estimate the parameters correctly.  

As far as this problem of correlation of independent variables is concerned, this is 

actually called as problem of multicollinearity. And how to obtain the estimates of the 

parameters under the problem of multicollinearity this is very difficult and no, 100 

percents good results have been obtained up to now. 

One of the very good method which gives us a good outcome is the ridge regression. So, 

ridge regression puts a penalty, on thus on the sum of  square due to random errors and 

then it tries to find out the value of the regression coefficient. So, this concept of 

regression of ridge regression has been extended and which will give us the LASSO 

regression. 
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So, now I am going to give you a brief introduction to the multicollinearity problem and 

ridge problem, ridge regression issue, right, ok. So, let us begin once again. 

(Refer Slide Time: 11:29) 

 

So, we assume that explanatory variables are independent of each other and the 

correlation between any two explanatory variable is ideally zero. But this is usually not 

possible in practice to achieve and the presence of such correlation increases the 

variability of the estimates of regression coefficients and consequently the model 

becomes undependable. This is called as a problem of multicollinearity. 

And when we have large number of explanatory variable, then this problem increases 

and the chances of occurrence of multicollinearity becomes more, right. 

(Refer Slide Time: 12:02) 
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So, in order to solve the multicollinearity problem, one good solution which have been 

suggested in the literature is the ridge regression. So, ridge regression is used to estimate 

the parameters under the problem of multicollinearity in the data. And the idea behind 

the ridge regression is to impose a penalty on the regression coefficients and then 

estimate it. What is this penalty, we will try to understand in the next couple of slides. 

But this imposition of penalty helps in helps us in getting a good value of regression 

coefficient and then this helps in choosing the those regression coefficients, which are 

away from zero. So, regression so, this ridge regression is going to help us in identifying 

those regression coefficient which are close to zero and possibly using the earlier 

concept, it will help us in choosing the important variable.. 

So, this assists in modelling in two ways; obtaining the estimates of the regression 

coefficient number one and number two choosing the irrelevant variable so that we can 

remove them from the model. 

(Refer Slide Time: 13:19) 

 

Actually, this concept was extended by Tibshirani. So, Professor Tibshirani, Professor RJ 

Tibshirani, he is at the Stanford University.. 

So, he has devised a different type of regression which is called as Least Absolute 

Shrinkage and Selection Operator regression. So, if you try to take the first letter of every 

word, this will briefly called as LASSO, L, A S S, O, right. So, this technique is called as 
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LASSO regression and it helps in choosing the explanatory variable whose 

corresponding regression coefficients are away from zero. 

And if you wish, you can go to his webpage and this paper is there in which he has 

introduced this LASSO. This is a very good technique and nowadays, different versions 

have been appear. 

(Refer Slide Time: 14:15) 

 

So, this is actually LASSO is a computational and algorithm based approach. You cannot 

find out the exact expressions of the estimator, as you have obtained in the case of 

ordinary least square estimator, maximum likely estimation and so on. 

But for a given set of data, there is an algorithm which you have to employ and finally, 

the algorithm will give you the outcome from where you have to choose the important 

variable, ok. So, now, after Tibshirani, introduced this LASSO many people have *ted 

working and this LASSO has been improved in different directions. 

And nowadays, various versions, extension, developments and improvements in LASSO 

have been developed and they have been extended in different directions. For example, 

nowadays you can see in the literature or they are available in the software’s also like; 

elastic net, LASSO, group LASSO, sparse LASSO, sparse group LASSO, overlap group 

LASSO, fused LASSO and so on. 
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If you go to any recent book on the computational statistics possibly, you will get all 

these topics over there. And in a general framework, such regression is called as 

regularized regression. Our objective is not to understand all the mathematical details 

behind the LASSO, but our object is that we want to introduce LASSO with a brief 

introduction to the ridge regression.. 

So, that we can connect the LASSO to the ridge regression and we can understand the 

importance of LASSO, ok. 

 (Refer Slide Time: 15:58) 

 

So, first we try to have a having some quick idea about the ridge regression modelling. 

So, whenever we have large number of explanatory variables, then many of them may 

not be impactful on the Y, the response variable. 

So, to overcome this problem, if one can choose only the significant or important 

explanatory variable and conduct the entire regression analysis based only on those 

important explanatory variables or covariates. So, for that various regression 

methodologies have been proposed to solve this problem, and among them one such 

approach is ridge regression. 
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So, in ridge regression what it does? That it tries to provide to minimize the same sum of 

square due to random error that was done in the case of ordinary least square estimator 

also, but it tries to put some penalty on it, right. So, ridge regression places a constraint 

on the sum of a squares of the coefficient weight and can be formulated as follows. 

So, it is trying to say, you try to consider this quantity which is your something like; 

2

1

n

j
j



  in the model Y = X  + , ok. And it is trying to say that you try to find out the 

value of  by minimizing this quantity. But, there is a condition this  has to be found 

under a condition such that a condition like this one; 2 *

1

k

j
j

t


 , right. This t * is a fixed 

quantity. 

So, now, if you try to see you are trying to put a constraint on thus on the sum of a square 

due to random errors and the constraint is in the form of sum of a squares of the 

regression coefficients. So, what will happen? Now, you can think about if your 

2 *

1

k

j
j

t


 , suppose we try to first understand the basic idea. 

Suppose t * is very very small, suppose 0.001. Now, you are trying to say that the sum of 

squares of regression coefficient is equal to 0.001. And suppose, if I take suppose k equal 

to here 5 for example, just to understand. So, 12 + 22 + 32 + 42 + 52 is equal to 0.001. 
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So, now, you are trying to say find out the value of  from this function, such that this 

condition the summation of j2 = 0.001 is satisfied, or if on you if you make it smaller 

than 0.001, then the condition becomes more strict. So, but you can see here what will be 

the possible values of js, those possible values of j will be very very close to 0. 

Now, on the other hand if you try to take here the value of your t * to be suppose 1000 

and if you try to find out j goes from 1 to 5 j2 should be equal to 1000, then what will 

happen that 12 + 22 + 32 + 42 + 52 should be 1000. So, in this case you can expect 

that none of the j is going to be very close to 0. 

So, now, these are two extreme conditions. That if you try to estimate your j in such a 

way such that this constraint is satisfied, then if you try to choose very small value of t * 

then most of the variables will turn out to be as if they are not important. And if you try 

to take very large value of t *, then most of the variable will turn out to be important. So, 

in both the cases you may not get a nice and correct outcome. 

So, the challenge here is that how to choose this t *. So, that you can get a reasonable 

value of t * and hence we can get a reasonable value of this regression coefficients. So, 

this is actually, when we try to write down this condition here, like as 2 *

1

k

j
j

t


  is less 

than equal to t *, this is called as penalty, right. Because this is a constraint which has 

been given a new name which is called as penalty. And you can see here I am writing 

now in red color. 

You can see here this square, because of this square this constraint is called as L2 

penalty, this 2 is coming from this 2 actually, this is square. That is what you have to just 

keep in mind, because when you try to read any book on LASSO regression they will be 

talking of L2 penalty L1 penalty. So, I will try to explain you all these words, right. 

1118



13 
 

(Refer Slide Time: 21:07) 

 

So, this is what exactly I have written here, that this L2 penalty refers to the constraint 

this 2 *

1

k

j
j

t


 which means that, the coefficient are not estimated freely. But the 

estimated values have to satisfy this condition, right and this 2 is, because of this two, we 

will call it as a L2 penalty, right, ok. So, now, you have understood this thing. 

(Refer Slide Time: 21:35) 

 

So, how do we obtain it? In order to obtain the values of s under the ridge regression 

setup, we try we use the Lagrange multiplier technique for the constraint optimization 
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and we try to find out the value of  such that this sum of a square of random error is 

minimum and this condition is satisfied. 

So, I can formulate the value of  which will be obtained after optimizing this thing as 

the solution of  and the solution of  will be called as ridge regression estimator of  

denoted as  hat ridge. So, this is going to be obtained as a solution of this equation. So, 

you have to minimize the sum of a square due to random errors subject to this constraint. 

And here this  is a Lagrangian multiplier, right. So, what we try to do, that this problem 

can be written as a function which has to be minimized in order to get the ridge 

regression and this function is written here as a RSS as a function of  and . So, we try 

to write down the same thing if you remember this in nothing but, your ’ and this is a 

constraint on this , ok. 

(Refer Slide Time: 22:58) 

 

So, now, if you try to simply differentiate this RSS ( with respect to  and  and try to 

solve those two equation. For example, you can just partially differences this RSS(  

with respect to  and . And you try to solve the equation; you will get the ridge 

regression estimator here like this. 

So, if you try to see here the structure of this one, this is 1( ' ) ' ,X X I X y  . So, if you 

try to substitute here  = 0, what do you get? You get same as OLSE. So, now, you can 
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understand this thing very easily, since there were lot of variable lot of independent 

variable. 

So, possibly they were becoming correlated and because of which you were unable to 

find (X’X)-1 and this was creating the trouble in finding out the estimator as well as the 

standard errors. So, what I am trying to do? I am trying to add something on the 

diagonals of this matrix. And then I am trying to find out the inverse. 

Now, how to find out this  that is itself a challenge. So, at the moment you can assume 

that, ok one can find out a find out the optimum value of . For example, in the case of 

ridge regression this is one popular technique is to find out the value of  by using the 

ridge regression, right. 

So, this is what we are trying to do and this is how we are trying to obtain a modified 

version of the ordinary least square estimator, which will be called as ridge regression 

estimator of , ok. 

(Refer Slide Time: 24:41) 

 

So, this is exactly what I am trying to show you here, that if X1, X2,…, Xk are correlated, 

then X’X becomes singular and then (X’X)-1is not obtainable. 

So, the ordinary least square estimator cannot be obtained. So, when we are trying to add 

 values in the diagonal elements of X’X, then possibly it changes the matrix from 
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singular to non singularity and then possibly we can find out the inverse and hence we 

can obtain the ridge regression estimator, right. 

(Refer Slide Time: 25:13) 

 

Now, this concept has been extended to LASSO regression modelling. How, this LASSO 

regression is actually more helpful in collecting a subset of important explanatory 

variable from a pool of all the explanatory variables under consideration. So, this is also 

called as subsets selection. How this will help? Means, you have seen that in the case of 

ridge regression you have put a constraint that summation 2 is less than t *. 

So, this actually constraint is trying to help us in identifying the important variables and 

since you are putting a constraint. So, there is a high possibility that you will finally, end 

up in collecting those js which are not close to zero, right. So that is the basic idea here. 

Now, what Tibshirani did in the case of LASSO regression? He changed this constraint. 

And instead of considering summation j2, he simply took the absolute value of ,j goes 

from 1 to k same as in both the case; j goes from 1 to k but instead of taking the square, 

Professor Tibshirani took the absolute value of j and same constraint was there. And 

this helped a lot in the selection of important variable. 
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(Refer Slide Time: 26:36) 

 

But, that there is a difference that regression, that in the case of ridge regression you 

have a very nice close form of the estimator. But in the case of LASSO you do not have 

a closed form of the estimator and the LASSO tries to produce a sparse solution, which is 

just contrast to the regression ridge regression. What is the meaning of this word sparse 

or what is the interpretation of sparse solution? 

LASSO will try to produce a solution of j in which several of the regression coefficient 

will be set to zero and this is what we want. The meaning of sparse in the context is that 

most of the elements are zero and that is why it is termed as his sparse and this is exactly 

what we want. We want that we want a procedure which can inform us well, in this 

process these many regression coefficients are close to zero. 

And hence after that I can take care and I can choose only those variable, which are not 

close to zero or the corresponding regression coefficients are not close to zero. Now if 

you try to compare the LASSO regression with ridge regression, ridge regression also 

tries to do the same thing, whose regression coefficients are nearly zero. 
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(Refer Slide Time: 28:07) 

 

But definitely, LASSO works better and that is why LASSO has become very important. 

So, now, if you try to see now, in this slide I am trying to formulate the LASSO problem. 

You can see I have not done anything here; I simply have taken the same expression 

which is here in the case of ridge regression. Try to look at this expression, right. You 

have all the slides, so you can very easily compare them. 

I am trying to take the same thing and just I am trying to play here, I simply try to change 

summation j2 to summation j. So, I try to minimize the 2

1

n

i
i



 , but I try to find out the 

value of  in such a way such that some of the *

1
| |

j

k

j t


 , right. 

So, I have done only one thing here now, you can see here this is only the 
1
| |

k

j
j



  that is 

all. But this small change made wonders, right and I wish if all of you can come up with 

such question small idea once in your life which can make you as popular as now, 

Professor Tibshirani has become, right.  

Anyway, so, the interpretation of this constraint that *

1
| |

j

k

j t


  exactly is the same as in 

the case of ridge regression. The only difference is this there we took the sum of a 
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squares and here we are trying to take the sum of absolute division that is all. Now, you 

have understood that if I try to take 2 *

1

k

j
j

t


  or greater than t * what is the outcome? 

Means I have I already explained you, now, you are simply trying to say instead of this 

summation j2 I will take 
1
| |

k

j
j



 , right. So, if you try to choose any value of t * you will 

have a similar outcome, right. 

(Refer Slide Time: 30:16) 

 

The question is this how you would try to choose the value of ?, right. So, this value of 

 primarily depends on the choice of this t*. So, I already have explained you what are 

the consequences of choosing the value of t*. If the value of t* is very small or very large 

what happens? So, this choice of t* plays a very crucial role in collecting the subset of 

explanatory variables. The larger value of t* will select those variables, which are away 

from zero. 
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And too small values of  can lead to overfitting when the model would tend to describe 

the random errors or noise in the data. So, that means, if you try to choose very small, try 

to choose very small value of  possibly it will reject all the variables and it will appear 

as if the model is controlled only by the random error. 

So, that is also not needed, you need to strike a balance between the two extreme values 

of t*. If t* become very very large, it is trying to show you as if all the variables are 

important this is also wrong. If the value of t* is very small, it is indicating that all the 

variable are worthless and that means, only the random error is going to control the 

process which is also wrong.  

So, now, you have to strike a balance between somewhere so that you can choose the 

value of  and this can be done using an appropriate algorithm, right. 

So, that is what I am trying to say here in my slide, that the too large values of  would 

lead to underfitting when the procedure cannot capture the underlying relationship. So, in 

both the cases the model will not be get, will not be good and we will get a high error 

value, when we try to experiment on the test data. What is this test data? I will try to 

show you. 
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You see, whenever you are trying to get here a model, what happened you have got here 

a data set. This data set is something like here say here y, X1, X2, …, Xk, right. So, now, 

this is the only data set from where we have to do each and everything. I need to find out 

the sum of square, I need to find out the value of  and I also need to find out the value 

of . Nobody is coming from sky to tell us all these values. 

So, what we try to do, we try to divide this data into several parts. For example, I can 

divide this data into suppose 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Now, what I will say here that I 

will try to divide them into for example, 8 into 8 is to 2. 8 part in one group and 2 part in 

one group. 

So, what I would say that I will try to use this part say 8 parts for the model fitting and 

then I will try to use this model to judge the model fitting over the remaining 2 parts of 

the data. So, I will try to cross validate my model with this 2 parts of the data. So, this 

process is actually called as cross validation. So, cross validation is one of the most 

important techniques that can be used to find a most suitable value of  for a given data. 

And when I say more suitable, more suitable mean that we are trying to find out the 

value of  which would allow us to predict the values of study variable with the highest 

accuracy. So, we are going to consider the criteria of prediction errors and then we will 

try to minimize the error in such a way such that we get good prediction. 
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So, in order to conduct the cross validation as I said, we have defined we have divided 

the data into two parts for example, here you can see 8 is to 2, and this part is called as 

training data, right. And this part is called here see here, test data that you can see. So, I 

am going to explain you here that we have now, the some data set. Here, I am trying to 

divide it into two parts training data set and other part will be test data set, right. 

So, the data on which you are going to fit the model this is training data set and the part 

of the data where you are going to cross validate your model that is called the test data 

set, right. So, this training data set is used to calculate the coefficients and then these 

coefficient estimates are validated on the test set. So, we try to understand this algorithm 

in a little bit detail so, that you can understand it very quickly. 
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So, what we try to do? That suppose we get a data and we try to divide the data into 

suppose say capital B blocks and every block has got an equal length. And one of the 

block is assigned the role of test set while the remaining B - 1 blocks together can 

constitute the training set, right. 

So, it actually, this is also an issue; means, sometime people try to divide use two parts, 

sometimes people try to divide into only use one part for the test data set, though that 

depends on the experiment also. And the complications in the experiment and 

complications in the data set also. But in practice usually, we try to divide the total data 

into 10 blocks or 5 blocks. 

So, that is called as 10 cross validation or 5 cross validation. 
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Then after this we try to choose a grid of values, say  =  s. So, suppose I can take  is 

equal to say between 0 and 5 and then I can say 0.1, 0.2, 0.3 up to 5.0 or even I can say 

alternative is this 0.1, 0.5, 1.0 and so on. 

Whatever you want that we have to actually experiment to see where I am getting a good 

value. So, I try to choose a particular value of  from this sequence and then using this 

sequence I try to minimize the sum of a square due to regression, which is defined here 

like this. So, this is your actually residual sum of a squares which I try to minimize. 

So, whatever is the solution of after this minimization that will be the solution of LASSO 

estimator of , right. And where here this here k that you have to remember this is the k 

is going from here 1 to B, which is here the blocks, blocks index of the blocks it is not 

the number of independent variable that you have chosen in the case of multiple linear 

regression model remember, right. 

So, this is the so, it is trying to say that you have to choose the k, which where this k is 

going to be the index of the block which is selected for the test data. 
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Now, you can choose different values of  which are defined here as say  s and then try 

to obtain the average of these residual sum of a squares over all the blocks. 

So, we try to take the arithmetic mean of all the residual sum of a squares over all the 

blocks and I try to find out their arithmetic mean. And then you try to see, whatever is 

the value of , which gives us the minimum value of MSE that is that equal to  equal to 

 s, right. 

So, you try to do this calculation and then try to see that what is the value among all the 

calculation which is trying to give us the minimum MSE. And then that corresponding 

value is chosen as . So now, we come to an end to this lecture. Well, I must confess that 

I have not given you the theory of all these things which is not so easy to explain in half 

an hour or 1 hour time. 

And for that, I would request you if you are interested then please try to look into the 

books and research paper which I have indicated here also, right. But, my idea is very 

simple, because we are now going to work in the area of data sciences. So, we are more 

interested in the computation also. Given a data set, given a large number of variables 

how you will you choose the important variable that is my objective here in this course. 

So, I and then there are several concept which are linked together to give you a fair idea 

about the LASSO regression. So, I have tried my best to give you good overview, how 
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the LASSO works. There are various types of algorithm, people are coming with 

different types of algorithm and they claim that this algorithm is better than this and in R 

software also there is a package LASSO, which gives us all the computations. 

So, my more interest in this chapter is to show you, how can you compute it and how 

you are going to interpret the results. So, you try to have a review of this lecture, try to 

connect all these concepts together, that how the correlation in the explanatory variable 

disturb the properties of ordinary least square estimator, which gives rise to the ridge 

regression estimator and which helps in the development of LASSO regression. And I 

will see you in the next lecture with a application of data set using the LASSO package 

in R software. Till then good bye.  
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