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Hello friends, welcome to the course Essentials of Data Science with R software 2, 

where we are trying to learn the topics of Sampling Theory and Linear Regression 

Analysis.  

In this module on Linear Regression Analysis, we are going to continue with our chapter 

on the Multiple Linear Regression Analysis. So you can recall that in the earlier lecture, 

we had talked about the estimation of the parameters and we had seen that how those 

concepts can be implemented in the R software. 

So, now we are at a stage where we have estimated the parameters the regression 

coefficients as well as the variance. Now, the next step is the test of hypothesis and 

confidence interval. So, now in multiple linear regression model, test of hypothesis plays 

a very important role in making different types of very important conclusion about the 

model. 

For example, in case if you have taken some number of variables or you have selected 

some variables in your model, you would always like to know whether those variables 

are important or not, or the data which we have collected on those variable is it really 

helping you in explaining the variation in the value of response variable. 

So, basically, you would like to retain only the important variables which are 

contributing in the model in some way. How to get it done, that is the question now, and 

this is what we are going to do with the test of hypothesis.  

So, I will be considering two types of test of hypothesis; one is the test of hypothesis on a 

single regression coefficient, and I will be talking of the test of hypothesis when we have 
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more than one regression coefficients. Now, the next question is, why not I am saying 

that I am going to consider here the test of hypothesis for the 2? 

Well, that we already have covered. And whatever we have done in the case of simple 

linear regression modeling about the test of hypothesis and confidence interval for 2, 

the same story continues here.  

The procedure is the same, concept is the same, command is the same, package is the 

same. So that is why, now I am going to consider about the test of hypothesis and 

confidence interval estimation only for the regression coefficients. Well, so let us begin 

our lecture. 

(Refer Slide Time: 02:53) 

 

So, there are several important questions which can be answered through the test of 

hypothesis and they are concerning the regression coefficients. 

For example, if we want to know what is the overall adequacy of the model or we want 

to know which specific explanatory variable seems to be important and similarly, there 

are different types of questions which can be answered. So, in order to answer such 

question, we would like to develop the test of hypothesis for the regression parameters, 

right. 
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(Refer Slide Time: 03:27) 

 

So, first; we are going to consider the test of hypothesis on individual regression 

coefficients. Actually, we are going to consider two types of test of hypothesis; one for 

the individual regression coefficients and another will be analysis of variance, where we 

try to test the equality of all the regression coefficients, right. 

So, in this case, we try to consider the null hypothesis H0 : j  = 0 versus the alternative 

H1 : j    0, and you can remember that you had the model y=X  + , which had the 

parameter 1 , 2 ,… up to here k . 

So, we are trying to test any of this 1 , 2 ,…, k  here. And, what is the interpretation of 

the acceptance of hypothesis? If, H0  is accepted then it implies that the explanatory 

variable Xi which is corresponding to j  can be removed from the model.  

What does this mean? For example, suppose I have a multiple linear regression model 

with three variables X1, X2 and X3 which I can write like this y = X1 1  + X2 2  + X3 3  

+ . And now, suppose I try to test here say three hypothesis, H0  :  1  = 0 H0  : 2 =0 and 

H0  3 =0.  

And suppose, the first hypothesis H0   : 1 =0 is rejected, H0  :  2 =0 is accepted, and H0   : 

3 =0 is rejected. Now, what will happen? Once I say that H0  :  2 =0 is accepted; that 

means 2  is almost 0 in the population. That means, 2  is not significant.  
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Well, what does this mean? Now, if you try to put the same value in the model here in 

this model, now this can be written as y = X1  1  + X2  x (2 =0), which is coming from 

the test of hypothesis + 3  X3  + . So finally, this comes out to be X1  1  + X3  3  + . 

What does this mean? 

Now you can see here, that the variable X2  is not appearing in the model. Means, you 

can imagine that since 2  is close to 0; that means, the rate of change in the average 

value of y with respect to X2  is very small and possibly ignorable, and that is why we 

can believe or we can interpret that X2  is not an important variable. 

Hence, this variable can be removed from the model and the revised model will have 

only X1  and X3 . So, this is how you can see that the test of hypothesis plays an 

important role in the multiple linear regression analysis. It helps us in identifying the 

important variable in the model or it helps us in the selection of important variables in 

the model, ok. 

(Refer Slide Time: 06:38) 

 

So, now let us try to construct the test of hypothesis. So, we are going to test here as we 

discussed, H0  :  j  = 0 versus H1  :  j    0, right. So, now you can recall that we already 

had constructed this statistics in the case of simple linear regression model. And, there if 

you remember, we had taken for example, (b0 - 0) /se(b0).  
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So, this was the test statistics for 0, and similarly for 1  it was (b1  - 1 ) se(b1 ), where b0 

and b1  are the ordinary least square estimator of the intercept term and slope parameter 

in a simple linear regression model, and depending on whether 2 is known, 2 is 

unknown, we had used the z statistics or t statistics. 

So, here also we have the same thing. So, once we are trying to test the hypothesis H0   : 

j  = 0, where j  has been estimated by OLSE or MLSE as bj , right. So, the statistic 

which can be used here is t statistics. Why? Because, you have got only the sample of 

data and nobody is going to explain you or inform you what is the value of 2.  

So, you need to estimate the value of 2 from the sample itself,, right. So, the t statistics 

can be framed as bj  - j =0, right. So, this becomes bj  /se(bj ). And, this will follow here a 

t distribution with n - k - 1 degrees of freedom, right. Why there is n - k - 1 degrees of 

freedom?  

Because, you are trying to include an intercept term in the model. So, your total number 

of variables of variables are say k explanatory variables + intercept term. So, that is why 

the number here is k + 1, right. And that is why we have written this thing as n - k + 1, 

like this. And then, how to obtain the standard error of bj ? 

So, you can remember that we had obtained the ordinary least square estimator b, which 

was a k x 1 vector and we had obtained the covariance matrix of b, right, where we had 

discussed that the diagonal elements are going to indicate the variances and off diagonal 

elements are going to indicate the covariances.  

So, now if you try to take here b, b is a vector like b1  , b2 ,…, bk and somewhere it will 

be here bj . So, whatever is the diagonal element of this covariance matrix of b that is 

going to inform us the variance of bj .  

And if you try to take the positive square root, you will get the standard error of bj . And 

you can remember that this covariance matrix of b was 2 1( ' )X X  , right. So, if I try to 

write down this matrix here I say, suppose if I try to write down here C matrix.  

So, C = 1( ' )X X  . So, now this C matrix can be written as C11  C12  up to here like this, 

and somewhere on the j diagonal the element will be Cj j . So, I can write down very 
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simply that the 2ˆ( )j jjse b C  , where Cj j  is the j diagonal elements of the 

matrix 1( ' )X X  , right.  

So, this is now my test statistics for testing the significance of H0  : j  = 0. 

(Refer Slide Time: 10:48) 

 

Now, how to find the decision rule? So, now, we have two approaches, in that first 

approach is when we are trying to use the software, so in that case the software will give 

us the p value, that we already have discussed what is p value and how to take a 

conclusion. So, now I will not repeat it again, but I will say the simple decision rule is 

reject H0  against H1  at  level of significance if p value is smaller than . 

Or, if you come through the classical statistics and you try to divide the region into two 

parts; acceptance regions and rejection region and you try to take the type one error as , 

so that the region of rejection is on both sides of the t distribution, both sides are having 

 area. So, in this case, I can say the H0  is rejected if the calculated value of the 

statistic lies in the region of rejection, either here in the shaded area, right. 

So, if the critical value which is obtained from the probabilities of t table, it is here given 

like this, t at n - k - 1 degrees of freedom. Then I can say that reject H0  at  level of 
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significance whenever 
, 1

2

.
n k

t t
 

 . So, essentially I am trying to say that reject H0, right, 

ok. 

So, if you try to see this test, so you can observe that this is only a partial or marginal 

test. Why? Because, bj  is not independent; means the j th regression coefficient that you 

have used here and you have used its standard error this is not an independent value of 

parameters, right, but it depends on all other parameters and all other variables also, 

right. So I can consider or we can consider this test as a contribution of Xj  given the 

other explanatory variables in the model. 

So, we have here information on X1  , X2  , …,Xk  and then we have parameters say 1  , 

2  ,…, k , but we are trying to take out only one parameter j , and out of this complete 

information we are trying to consider only one regression coefficient bj , and then we are 

trying to construct the test of hypothesis for that, ok. 

(Refer Slide Time: 13:02) 

 

So, now I try to do one thing, I try to take one simple example and would try to show 

you that how you can conduct this test of hypothesis in the R software. 

So, I am going to take here again the same example that we have considered in the last 

couple of lectures that we have data of students, there are 20 students, and we have 

collected the data on their marks obtained in an examination out of 250. Then the 
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number of hours per week of study which is denoted as X1 , and number of assignments 

which they have submitted per month that is X2 , and the number of hours the student has 

played per week that is denoted by X3 . 

So, if you try to take a student, number 1, this means student number 1 has got 100 180 

marks out of 250 and the student has studied 34 hours in a week, the student has 

submitted 3 assignments per month, and the student has played for 15 hours in a week. 

And similarly, the similar data is for the 20 students here, right, ok. 

(Refer Slide Time: 14:07) 

 

So now, for conducting the test of hypothesis, what we are going to do? We are going to 

use the command summary in the lm. 

lm if you remember, we had used lm 2 with the linear regression model and whatever is 

the outcome of the lm, we will try to use the summary command on that outcome, which 

is obtained as an object, right. And for lm we already have discussed, that the command 

is lm and inside the parenthesis, you have to give the formula, you have to specify the 

model, and then you have to specify the data. 

There are other commands also, but we are not going to talk about them, ok. And then 

whatever is the outcome here that is actually called as an object. So we try to use the 

summary command on this object. And then, there will be lots of outcome and we will 

try to see which part is indicating the test of hypothesis part. 
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(Refer Slide Time: 15:01) 

 

So, I am going to consider here, the model y = 0 + 1  X1  + 2  X2  + 3  X3  + i, and we 

have got here 20 observation. So, I have created three data vectors for X1  , X2  , X3  and 

one data vector for y, which I have stored here and you can also give it in the framework 

of a data frame, so that depends on you, what you want to do, right. 

(Refer Slide Time: 15:31) 

 

So, first I will try to show you this analysis on my computer and then I will try to bring 

you on the R console. So, now, this is your familiar slide we have used it couple of times 
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earlier also that we have fitted here a model using the command lm and then whatever 

outcome is obtained from here. 

 I try to use the command summary over it, and then this was here is the total outcome. 

And, you can recall that earlier we had talked about this part is going to give you the 

value of b0 , b1  , b2  , b3 . So, this is b0, this is b1 , this is b2 , and this is b3 , and this 

column, this is trying to give you the standard error standard error of b0 and standard 

error of b1  and standard error of b2  and standard error of b3 .  

Now, we are going to considered about this aspect, right. But, before that you can also, 

now look here this aspect. I have not discussed about it up to now, but in the last time we 

had obtained the residuals, in the last lecture. So, you can see here, whatever residuals 

you have obtained here from say e1  , e2  ,…, e20 , this output is simply trying to give you 

a sort of distribution, in the sense that it is trying to give you what is the minimum value 

of the residual.  

What is the maximum value of the residuals and what is the first quartile, second quartile 

which is median and third quartile of the residuals. So, whatever residuals you have 

obtained, so this is the simple data about it. And yeah, this will simply give you some 

idea that how is the distribution.  

Because you are trying to assume that s are following a normal distribution and there 

are various types of assumptions that we try to test. Since we cannot observe , so we try 

to take the help of residuals to visualize them, and based on that we try to take different 

types of decisions.  

And this type of information, what is given here, this helps us in taking those types of 

decisions, right. So, now we are going to talk about this thing. 
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(Refer Slide Time: 17:50) 

 

(Refer Slide Time: 17:59) 

 

So, what I try to show you here, this is the screenshot. So, essentially now I can say once 

again we are going to consider on this part, ok. So now, so I have just copied here the 

part which I am going to consider just for the sake of clarity so that you do not get 

confused, right. So, you can see here this is the part, now which we are going to 

consider, right.  
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(Refer Slide Time: 18:14) 

 

So, now just for your recollection, we are considering here the H0  : j  = 0 versus H1 : j  

  0, and now j is going from 0, 1, 2, 3, j=0 stands for intercept term and j=1, 2, 3 stands 

for regression parameters 1  2  and 3 .  

And we are going to test them by t statistics. So, this is the t statistics which will be 

computed for j=0, 1, 2, 3. So, there should be four values of t statistics, right, which are 

going to be obtained. So, if you try to see here in this outcome. 

(Refer Slide Time: 18:52) 

 

So, if you try to look here t values, here you can see here there is 1, 2, 3, 4. The first one 

is for intercept term, then second is for 1 , third is for 2  and fourth is for 3 . So, let us 

try to consider one by one. So, first I try to consider the test of hypothesis H0 : 0  = 0 
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against H1 : 0    0. So this hypothesis can be tested using the test statistics b0  upon 

standard error of b0 .  

Now, if you see, what is here b0 ? This is here b0 , you can see my pen. And, what is your 

here standard error of b0 , if you remember? This is the standard error of b0 , right. But, 

you do not need to compute it yourself, what I am trying to show you here that you must 

know that how a value has been obtained. So, if you try to see here this value here t, this 

has been obtained here like this, right.  

So, and this is going to be n = 20, k = here 4, so the total degrees of freedom are going to 

be 20 - 4 - 1 which is 15. So, this t statistics has got a t distribution with 15 degrees of 

freedom under H naught. And, you can see here now I will use the different color pen 

say blue, if you try to see here this thing.  

So this is here the p value, right. So, p value is written here, so you can see now here that 

this p value is something like 0.000000247. So this is much much smaller than the value 

of . So, we can take a conclusion that the H0  : 0 =0 is rejected at  level of 

significance.  

And hence, I can conclude that yes, intercept term 0  is important and it is contributing 

in my model, ok. 

(Refer Slide Time: 20:55) 
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Now, the same process I can repeat for 1  , 2  , 3 . So now, I try to consider here in the 

second line which is related to 1 . So, this is the estimate of 1 , which is the value of b1 , 

this is the value of standard error of b1  and this is the value of your t statistics 

corresponding to b1  and this is here the p value corresponding to the null hypothesis. 

So, in order to test H0 : 1 =0 versus H1  1    0, we use the same statistics t = b1 /se(b1 ) 

which is obtained here like this, and this also has got a t distribution with 15 degrees of 

freedom and the corresponding value of p = 2 x10 -16 which is much much smaller than 

the values of =0.05.  

So, we are essentially considering here the 5 percent level of level of significance, right. 

So,  here is 5 percent. So I can say here, that reject H0  1 =0 at 5 percent level of 

significance. This means, that X1  is also an important variable and X1  is contributing in 

explaining the variation in y. So, this X1  will remain in the model. That is an important 

variable. 

(Refer Slide Time: 22:12) 

 

And similarly, if we try to go for H0  :2 =0 versus H1 : 2    0 and the results for this 

hypothesis are given in the row for X2 . 
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So, this is the value of b2 , this is the standard error of b2 , and this is here the t value 

corresponding to b2 , and this is here the p value corresponding to b2 . So, you can see 

here that the t value comes out to be here 23.493 you can see here.  

And, you can also obtain manually, and this will also follow a t distribution with 15 

degrees of freedom under H0  and the corresponding p value here is given by this 7.9 into 

10 to the power - 14, which is very small than the value of =0.05. 

So, this hypothesis H0  :2 =0 is also rejected at 5 percent level of significance; hence, I 

can say that X2  is also an important variable and this variable has to remain in the model, 

ok. 

(Refer Slide Time: 23:14) 

 

That is going to give us an important information. Finally, I try to test the hypothesis 

exactly on the same line about 3 . So, H0  is 3 =0 versus H1 : 3    0, and the 

information related to H0  :3 =0 can be obtained from the last column of this outcome 

related to X3 . 

So, X3  means, this is about the regression coefficient associated with X3  which is 3  in 

our notation. So, again this is the value of b3 , this is the value of standard error of b3 , 

and this is the value of t statistics and this is the value of p value.  
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So, you can see here that this t statistics has been obtained here by 84.405 which follows 

a t distribution with 15 degrees of freedom, and the corresponding value of p is here 2 

into 10 to the power of - 16 which is smaller than the value of  = 0.05. So, H0  3 =0 is 

also rejected at 5 percent level of significance. So this X3  is also an important variable 

which is contributing in the model.  

(Refer Slide Time: 24:19) 

 

So, now you can see here, you have identified that which are the variable. Fortunately, in 

this case, all the variables are important, but after that you will see that I will try to 

consider a topic on the variables collection and there you will see, that in the example 

which I have considered that all the variables are not going to be selected, all the 

variables cannot be considered as important. 

There will always be some variable which are contributing more some, are contributing 

less, so we have to take a logical decision based on the statistical rule, that which of the 

variables are important and which are not, right, ok. So after this, test of hypothesis let 

me come to the confidence interval estimation.  

But once again I will say that I already have explained you the concept of confidence 

interval estimation in the case of simple linear regression model, so here I will not spend 

much time on the explanation of the concept. And, I also had explained that how can you 
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construct the confidence interval. So the same methodology I am going to follow here 

also, right.  

So now, we are going to consider here the confidence interval for the individual 

regression coefficient. But, just for your information, the confidence interval can also be 

constructed for more than one regression coefficients here, which are called the 

simultaneous confidence interval. 

For example, if you try to take here say here, two parameters, 1  and 2 , then the 

confidence interval will be taking a look like an ellipsoid or ellipse, and if it is goes into 

3 direction say, three parameter then it would be like an ellipsoid and obviously, when it 

is in 1 the direction this is an interval. 

So, we consider now here the confidence interval for the individual regression 

coefficients, ok. 

(Refer Slide Time: 25:57) 

 

So, we assume here that  i’s are IID; that means, they are identically and independently 

distributed following a normal distribution with mean 0 and variance 2 in the model 

y=X  + . And, if you want to write about  that will be a multivariate normal 

distribution k dimensional multivariate normal distribution with mean vector 0 and 

covariance matrix 2 I. 
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So, that is the same thing, whatever you like. So, based on this assumption, I can write 

down that we already have found that, y will follow a normal distribution with mean X  

and covariance matrix 2 I. And hence, we also have found that b will also follow our 

normal distribution with mean expected value of b which is  and the covariance matrix 

of b is 2 1( ' )X X  , right. 

And, if you try to find out the marginal distribution of any regression coefficient from 

this one, because this is here a multivariate normal distribution of kth  dimension. So, if 

you try to find out the marginal distribution of any particular estimate say bj , so that is 

going to be a univariate normal distribution with mean j , and say this variance 2 Cj j , 

where Cj j  is the j th diagonal element of the matrix 1( ' )X X  .  

So, now based on that, we know that how to construct the t statistics. So, that is going to 

be (bj  - j )/se(bj). So, standard error of bj  can be obtained by replacing this 2 in the 

covariance matrix of bj  by 2̂  

So, I can write down the
2

~ ( )
ˆ

j j
j

jj

b
t t n k

C






  , and this is in general going to follow a t 

distribution with n - k degrees of freedom, right. So, if you remember that here, k is the 

number of explanatory variables in the model y=X  + .  

Where we have assumed that y is a n x 1 vector and X is a n x k matrix and  is a k x 1 

vector, right. So, this is what you have to always keep in mind. And, this 2̂ is going to 

be obtained from the expression, sum of square due to residual divided by n - k, and the 

alternative expression is given by like this. So that we already have discussed. 
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(Refer Slide Time: 28:33) 

 

So, now you can see that whatever concept, we have learnt up to now, we are trying to 

comprehend them and we try to use them. So now, if you go back to your lectures in the 

case of simple linear regression modeling and try to recall how we had constructed the 

confidence interval, then the same approach I am going to use here also. 

So, the 100 1 -  percent confidence interval for j  can be obtained as follows, right. Try 

to write down here the t statistics, and t statistics is going to follow a t distribution and on 

the left hand side and, right hand side of the t distribution with n - k degrees of freedom.  

I try to denote this area which is shaded here as  on the left hand side and shaded area 

on the, right hand side as . And, corresponding to which here, there will be two 

critical values. So this value is going to be - t and the value on the, right hand side will 

be t n - k and somewhere it will be the mean, ok. 

So, now you assume that this statistic t lies between -t  n - k and + t n - k, and you 

simply try to solve this inequality and you can obtain that, this is here the lower limit of 

the confidence interval and this is here the upper limit of the confidence interval. So you 

can very easily solve it and hence, the 100 (1 - )% confidence interval for j  can be 

obtained here like this, ok.  
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So, this is how you can obtain the confidence interval. Which is very simple straight 

forward. Now, this bj  is known to you, t n - k can be obtained from the table, that can be 

also be obtained as a percentile directly from the R software. These values they are 

available from the output of the software. 

So, this lower limit and upper limit can be computed manually also very easily, but 

definitely we are going to use here the software. 

(Refer Slide Time: 30:27) 

 

So, now in the R software how would you use it that is the next objective. So, we try to 

use command conf int. If you try to see, this is the same command that we had used 

earlier also. So, in this case what we try to do? First, we have to use the command lm and 

whatever is the outcome of this lm that is stored as an object and from that object, I have 

to extract the confidence interval of this individual regression coefficient. 

So, the command to find out the confidence interval goes like this, try to write down the 

command conf int, then try to write down the object, then try to write down the 

parameter, for which you want to have the confidence interval, and if you do not give 

any name of the parameter. 

Then all the confidence interval corresponding to all the parameters will be given in the 

output. And then you have defined here the level. So, remember level is defined here as 

1051



21 

 

say 1 - . So if you are trying to take 5 percent level of significance, then the level will 

be 0.95 that is 95 percent. 

(Refer Slide Time: 31:30) 

 

So, this is how we are going to do. So, this is the explanation of this command. So this is 

about object, this is about parameter, and this is about level. So, this is just for your 

information so that you can when you try to read this then you can recall all the things, 

ok. 

(Refer Slide Time: 31:46) 
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So, now let me try to use this command on the R console, and first I try to show you here 

the outcome and then I will try to show you on the R console, ok. So, now, first I try to 

consider here the confidence interval you can see here, I am trying to use here conf int 

and then inside the parenthesis.  

This is my object, this is the command to obtain the fitted linear regression model, and 

then I am trying to say here level is equal to 0.95; that means I want 95 percent 

confidence interval. And I am not using here the parameter or the option p a r m, because 

I want all the confidence interval related to all the parameters. So, you can see here this 

will be the outcome.  

And, you can see here this is here 2.5 percent and this is here 97.5 percent and then there 

are here 4 values and 4 values here. So, this 2.5 percent is indicating actually the lower 

limit of the confidence interval related to intercept term, related to X1  which is 1  for 2  

and for 3 . And similarly, this part here is the upper limit, which is the 97.5 percentile of 

the given data. 

So, now the thing is this, we try to first understand these four outcomes. So, first we try 

to consider this part which I have enclosed inside a rectangle, black rectangle. So this is 

about outcome you can see here I am highlighting it, ok. So we are going to concentrate 

on this part. So, first we consider the construction of the confidence interval, 95 percent 

confidence interval for 0 .  

So, you can recall that we have constructed the confidence interval for 0  like this, 

where the lower and upper limits are given by these two expressions. So, you can 

compute these values manually also, but in the software you can see, this is here the 

value. This is here the lower value and this is here the upper value, or I try to use here a 

different color pen say red color pen. 

So this value here is for the lower limit and the value of the upper limit, right. And 

similarly, if you try to find out the 95 percent confidence interval for the 1  then the 

interval is given by here like this and this value has been obtained here. Try to use this 

movement of my pen in blue color and this is the lower limit of the confidence interval 

which is obtained by this expression.  
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And this second value we try to look at moment of my pen, this is obtained here by this 

expression which is the upper limit of the confidence interval for 1 . So, this is how you 

can see, that these are the values and this is how they are computed in the software. 

(Refer Slide Time: 34:40) 

 

And similarly, if you try to concentrate on the confidence interval for 2  and 3 , try to 

concentrate on this part which is here inside the black, say, box, right. So, if you try to 

see here the 95 percent combination for 2 , this is here like this try to look into the 

column or the row of the X2 . 

So, this is here the value of the lower limit which is obtained by using this expression. 

This is the formula for the lower limit and this is the second value here is the value of the 

upper limit corresponding to 2 , and this is the value of the second that is the upper limit 

of the confidence interval. 

And similarly, for this 3 , this value here X3  is trying to give you 3 . So, this is 

essentially the lower limit of the confidence interval and this is here the upper limit of 

the confidence interval.  

And this limits have been obtained the lower limit has been obtained by using this 

expression and the upper limit has been obtained by using this expression which is the 
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upper limit of the confidence interval. And you can see here, that these are the 95 percent 

confidence interval in which the 3  is expected to lie, right. 

(Refer Slide Time: 35:54) 

 

So, now this is the screenshot of the same thing what you have seen up to now. And, I 

will try to now show you all these things on the R console also. So, first let us try to 

consider the test of hypothesis. 

So, you can see here we have this data. So, I already have entered this data in the R 

console, I will show you and then we have to use this command here on the R console. 

(Refer Slide Time: 36:30) 
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(Refer Slide Time: 36:42) 

 

So, you can see here that I already have entered this data. You can see here, this is X1, 

this is X2, this is here X3 and this is this is here y. Now, if you remember, once you try 

to fit here model and then try to find out its summary command, it will look like this, 

right. 

So, you can now see at this part, this part here, right. So, this part whatever I have given 

here, this is the this thing which I will try to show you here, right. So, this is exactly the 

same thing. So, what you have to see here? That you try to look at this value, ok. I will 

just highlight it and you try to see the movement of my cursor.  

So, this value here is the t value for intercept term, and this is here which I am 

highlighting now, this is the p value corresponding to H0  :0 =0. And similarly, if you try 

to observe this highlighted value this is the t value corresponding to H0  :1 =0 and this is 

here is the p value which is the corresponding to H0  :1 =0. 

Similarly, this value highlighted here is the value of t statistics corresponding to H0  2 =0 

and this is the corresponding p value. And similarly, this last value which I am 

highlighting, this is the value of the t statistics corresponding to H0 : 3 =0 and this is the 

here is the p value which is corresponding to this hypothesis H0 : 3 =0. 

And yeah means; obviously, this significance code I they are trying to give you here, the 

value of  and then this these 3 stars are going to indicate at what level of  they are 
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being considered. And we had already I mean discussed these things when we had done 

the simple linear regression model. So I will skip that part. 

But you can see here, that finding out the conclusion about the test of hypothesis is not 

difficult at all, right. So, after this I will try to obtain here the confidence interval. So you 

can see here that we already have obtained this summary command, and we already have 

found the lm command. 

(Refer Slide Time: 38:54) 

 

So, I will try to use here this command and you can see here once I try to use it, I will 

clear the screen so that you can see it very clearly. You can see here, this is my 

confidence interval. 

So, this is the lower limit of the confidence interval for 0 , and this is the upper limit of 

the confidence interval for  0. Try to just watch where I am trying to highlight on the 

screen. And, this is the lower limit of the confidence interval for 1 , and this is the upper 

limit of the confidence interval for 1 .  

And similarly, this is here is the lower limit for the confidence interval for 2  and this is 

here is the upper limit of the confidence interval for 2 . And similarly, this is here the 

confidence interval for 3 , lower and upper limit, right. 

So, you can see here, it is not very difficult to find out the confidence interval in case of 

this multiple linear regression model in the R software, yes, ok now. So, the time has 
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come to stop in this lecture. And, I have given you the details about the test of hypothesis 

and confidence interval estimation for the individual coefficients, right.  

I am not considering here the simultaneous confidence interval, but that is not difficult. 

Once, you have understood these things, now you can actually try yourself. And this is 

what I want that you should stand on your own feet. Sometime I get many emails or calls 

people try to ask me.  

Well, I am making this mistake can you please help me, but I always say try to help 

yourself, because finally you have to stand on your own feet, that is the best thing in life. 

You should be complete and sufficient in yourself. You should not depend on anybody 

else, and if you try hard there is no reason that why you cannot solve the problem.  

So, that is my personal belief, and I believe that you also have the same philosophy in 

your life. So, now I will request you try to take an example, whatever example you have 

considered earlier and try to conduct the test of hypothesis and confidence interval 

estimation under those example and try to see what do you get.  

Try to learn how to interpret it. And the more you practice, the more you will be 

confident, more you will learn. So, you practice and I will see you in the next lecture 

with another topic on Multiple Linear Regression Model, till then good bye.  
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