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Hello friends. Welcome to the course Essentials of Data Science with R Software - 2, 

where we are trying to understand the topics of Sampling Theory and Linear Regression 

Analysis and we are going to continue with our module on the Linear Regression 

Analysis and we are going to continue with our chapter on the Multiple Linear 

Regression Analysis. 

So, you can recall that in the earlier lecture, I have given you a brief background about 

what is multiple linear regression model and what are the basic assumptions; what is the 

setup; how are we going to collect the observation; how are we going to represent them 

in the form of a vectors and matrices and so on.  

So, now, in this lecture, I am going to estimate the parameterbut before that, you have 

to go back to your lectures in simple linear regression model and you have to recall that 

how we have done the estimation of parameters0 and1. We had used the principle of 

least squares and maximum likelihood estimator and we had minimized the sum of a 

square due to random errors.  

So, now exactly the same thing, I am going to follow here in the case of multiple linear 

regression model. But how to do it, that is my objective in this lecture to explain you 

because I had told you earlier that, please try to have this simple linear regression model 

very clearly and try to understand the basic fundamental, they are looking very simple; 

but they will be used in the case of multiple linear regression model.  

So, if you have not done it, so better is to go back and try to have a look and then, you try 

to watch this video ok. So, let us begin our lecture.  
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So, now we are going to consider the principle of least squares and method of maximum 

likelihood estimation for the estimation of the parametersand2. So, you may recall 

our model was y = X + where y is a n x 1 vector of observation on the response. X is 

a n x k matrix of explanatory variable in which n observation on each of the k 

explanatory variable have been obtained,is a k x 1 vector of regression coefficient 

andis a n x 1 vector of say random errors. 

Now, in case if I try to employ the principle of least square, then the least square 

estimator which we are obtaining foris given by here b. 1( ' ) ' .b X X X y  So, you can 

see here X is known to us; y is known to us and so, we can estimate this parameterAnd 

you can see here that this expression this is of order here, X  is k by n; X is n x k; X  k x  

n and y here is n x 1. So, b is going to be a vector of order k x 1. 

Essentially, what b is doing? This b is going to be something like b1 b2,…, bk and what b 

is doing? b is trying to estimate the parameter vectorwhich was1,2,…,k right. So, 

b1 is the estimator of1, b2 is the estimator of2 and so on. So, you can see here now the 

estimators are in the form of vectors right.  

But when I am saying that estimator of1 is b1 estimator of2 is b 2; it does not mean 

that they are independent right. This is a joint of joint estimator of1,2,k right. So, 
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because this is a vector quantity. So, all b1, b2,…,bk, they are not really independent in 

general. 

So, next is our estimator of2. Once you have obtained thevector by b, then we have 

to replace ̂ by b and we can write down the 2̂   as (y - X b)’ (y - X b). This is the 

symbol. Here is this is’you know it;’of a matrix or the’of a vector.  

And this is divided by here by n = k. So, n is the number of observations and k is the 

number of explanatory variables. So, now, you know y, you know X, you know b, you 

know n, you know k; so you can estimate this2 and the estimated value will be 

indicated by results we which we are going to consider and yeah, I will try to show you 

the proof also. But what you have to consider that when you consider the simple linear 

regression model, then yourvector was something like0 and1 right and similarly, 

you had obtained this here ̂  0 and ̂  1 as b0 and b1 respectively.  

And when you consider the estimate of2 in the case of simple linear regression model, 

then this divisor was actually 2; means here k was equal to 2. Why k was equal to 2? 

Because you were writing the model0 +1 X as0 x 1. 

So, that means, you had two explanatory variable; one was variable which always takes 

the value 1 and say another was your X. So, that is why it was k + 2. So, remember, the 

point which I am trying to emphasize which sometime create a confusion among the 

students is that the divisor in the case of estimator of2 is given by 1 upon number of 

observations = number of explanatory variable.  

Now, in any case if the number of explanatory variables are more or less, they are de 

converted by different formula, different expression; then, we can adjust them 

accordingly right ok. 
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So, now let me try to give you here the basic idea behind the formulation of this 

estimator and its proof. So, you can recall the least square estimation in the case of 

simple linear regression model; y =0 +1 X +right. So, so you may recall that we 

had a line, which we expected to fit here, like this and then, we had the observation 

which are lying on this line.  

They were denoted by capital Xi Yi. All these observations will satisfy the line y =0 

+1 X and then, we had observed those points at the same value of X and the observed 

value was obtained somewhere here, which was on the upper side of the line and the 

observed points were denoted as  xi and yi right. 

So, and then what we had done? We had minimized the difference between the observed 

and true values or we had minimized the vertical distance between the line and the 

observations and we had minimized the sum of squares due to error. If you remember, 

you had minimized 2

1

n

i
i



 and you had denoted by S(0,1) and so on. You had 

differentiated use the principle of maxima and minima and then, you had obtained the 

values of or the estimators of0 and1. 
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So, now the same thing is going to be followed here also. Now, the estimator 

ofsuppose I denote this is my parameter and this is being estimated by ̂  and the 

ordinary least square estimator of thiswhich is ̂  is going to be denoted by symbol b. 

I am using here the symbol b, not ̂  because I want to extend the same symbol that you 

have used in the case of simple linear regression model right.  

So, suppose the estimator ofobtained by the method of least square estimation is 

obtained and this is denoted by here like this. I am using here because now, I am writing 

it here as a row vector. So, essentially here this b is something like b1 , b2,…, bk.  

So, I am denoting by b, the k x 1 vector of the ordinary least square estimator 

of1,2,…,k which are in the form of a vector ok. So, now, essentially, we have to 

obtain this value of b. So, how to obtain this value of b? We will again use the same 

principle that we try to minimize the sum of square due to error and sum of square due to 

error is 2

1

n

i
i



 . 

Now, you have to observe one thing that myhere is something like1, if you 

remember1,2,…,n. This was your here n x 1 vector. Now, if I try to write down 

here'what will be this thing1,2,…,n and1,2,…,n?  
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Now, if you try to multiply it, this will be1 into1, that is12; then2 into2, that is22 

and their sum. So, this will basically become12 +22 +n2. So, this is nothing but 

your 2

1

n

i
i



 . 

So, what I try to do here? I try to write down thetransposehere as in place of 

2

1

n

i
i



 and you will see that once I try to write down these quantities in the form of 

vectors and matrices, then many of my algebra will become very simple to understand 

and the expressions are easy to found.  

So, now, so I will write here like this and now, I am writinghere as a y - Xright. You 

remember y = X + and then, I try to write down here this y - Xin place ofSo, this 

is your here’ and this is yourand the values of y and X are given to us. 

So, what we try to now do? Our objective is this we would like to minimize this function 

Swhich is 2

1

n

i
i



 and we would like to obtain the value ofsuch that the value 

ofminimizes this sum of squared deviations right. So, the question comes what is the 

guarantee that the minimum will always exist. The minimum will always exist because 

asis a real valued convex and differentiable function right. 

(Refer Slide Time: 12:27) 
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So, what I can do? Exactly on the same lines as we had used the method of maximum 

minima in case of simple linear regression model, here also I will use the same principle. 

So, I try to expand this (y - X’ (y - Xwhich is equal to here  y’-’X’ and y - 

XSo, I try to multiply it and whatever is my outcome this is given here. 

So, you will see here that Swill come out to be like this y’y +’X’X= 2’X’y. 

Now, what we have to do? I simply have to use the principle of least square. So, I try to 

differentiate this Swith respect tovector. Now, remember one thing, here we are 

using the differentiation with respect to a vector. 

(Refer Slide Time: 13:21) 

 

So, in order to do it, first I try to show you the result which I have used with which is 

available in all the results related to the linear estimation. So, if there is a quadratic 

function, say f(z). and my variable here is capital Z. So, if the quadratic function is of the 

form Z’AZ, where Z is a m x 1 vector of real values and A is any m x m symmetric 

matrix.  

Then, the ( ) 2f z Az
z





  right. So, this is the same result which I have used here and 

after, so then. So, the ( ) 2 ' 2 'S
X X X y

 



 


and the

2 ( ) 2 '
'

S
X X


 




 
.  
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And yeah, means just I am trying to obtain the second differential also because that will 

be used to determine whether the obtained equation is providing the maxima or minima. 

So, just to be; so, I am just finding out the ' ' 0X X X y   .  

 So, you can see that this quantity is independent ofand this  X’X matrix, this is going 

to be at least non-negative definite always right. So, that will ensure that whatever the 

value ofwhich we are going to obtain by solving this normal equation, this is my here 

normal equation when I try to put it equal to 0 right. Whatever the solution, I obtain from 

this equation that is going to minimize the function S(that is the sum of squared 

deviations due to random error, right. 

So, if you try to put this partial derivative of Swith respect toequal to 0, then we 

get the normal equation and if you try to solve it, this is trying to give you here like this 

2X’X- 2X’y = 0 or I can write down here X’X= X’y. So, I can now say here, let b 

be the solution of solution forfrom this equation. So, I can write down that solution 

will satisfy this equation. So, X’X b = X’y. Now, I need to find out the value of b. 

So, what I can do? I can pre multiply by (X’X)-1  on both the sides. So, this will become 

here like this X’y. So, now this part becomes here identity matrix I and so, this b will 

come out to be like this; (X’X)-1X’y which we have obtained which is called as an 

ordinary least square estimator right ok.  

So, now, if you try to look at the structure of this ordinary least square estimator, you can 

see here this is involving a quantity (X’X)-1. Now, under what type of condition, this 

inverse will exist? So, we know that this inverse is going to exist only when rank of X 

matrix is equal to k, that is it is full column rank. 

Because only under that condition this X’X matrix will become a positive definite matrix 

right and that is the reason if you remember, we had made one assumption that rank of X 

= k, when we made different assumption for the multiple linear regression model. So, by 

assuming that rank of X = k, we can ensure that X’X matrix is a positive definite matrix 

and hence, the inverse will always exist.  

And thus, the least square estimator ofcan be obtained by here b and we already have 

seen that the second partial derivative of Swith respect tothis is also at least non 
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negative definite. So, now, I can assure that b minimizes SSo, this is our ordinary 

least square estimation. 

(Refer Slide Time: 18:23) 

 

So, now onwards, whenever we are trying to do anything in this course, we will always 

assume that X is a full column rank matrix. Well, just for your information, I can also 

share this information that it is possible that X may not be a full column rank matrix and 

yeah, this also happens.  

That means, all the columns of X1 , X2,,., Xk are not independent; they have got certain 

relationship. For example, if you try to take here 3 variables here X1 , X2 and X3. So, X1 is 

suppose the income and X 2 here is saving from that income and X 3 here is expenditure 

right from this income. Then, you know that X1 = X2+ X3 right, ok. 

So, now, under this thing this X1 X2, X3, three variables which you are taking here k 

equal to 3, all these variables will not be independent and the rank will be only here 

equal to 2. So, in that case, X will not remain as a full column rank matrix and this 

problem is actually termed as problem of multi-collinearity.  

So, I am not saying that this problem does not occur in practice. So, I am assuring you 

yes, it may happen that the data may have such an issue. Under those conditions, we 

have two options that either we try to use the tools for the multi-collinearity or we can 

obtain the generalized inverse of X’X. 
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So, the generalized inverse of X’X is obtained in a different way than the unique inverse 

of X’X, I am not going into those detail; but I am just informing you that it is possibility. 

That this possibility is there, but definitely the generalized inverse can be obtained in 

different ways and except one which is called as Moore Penrose inverse; Moore Penrose 

inverse, all other inverses are not unique.  

So, it is possible that for the same data set, different people may obtain different values 

ofusing the generalized inverse. Well, I am not going into those detail, but my 

objective was simply to inform you, to update you. Now, you remember that in the case 

of simple linear regression model, once we had obtained the value of0 as b0 and value 

of1 as b1 then, we had obtained the fitted model just by replacing0 by b0 and1 by a b1 

x.  

Now, the same thing, I try to do in the case of multiple linear regression model. Now, 

you see now you cannot blame me that I am not explaining anything because I already 

had told you during the lecture of simple linear regression model, that please try to 

understand these concepts very carefully because they because I will be using them there 

directly right. 

So, working on the same line, if you remember we had simply replaced the estimated 

value of the parameter in case of the or in place of the true parameter. So, same thing I 

am trying to do it here. So, our model was y = X + Now, I am trying to estimate 

thisby b.  

So, I can replace thisby b and I can write down y = b X. So, this is our fitted line or 

this is the fitted linear regression model right. And after this, if you remember in the case 

of simple linear regression model, we had taken the values of x  and then, using the fitted 

model, we had replaced the value of x say by x0 in the fitted model y = b0 + b1 x0 and this 

value was called as fitted value, ŷ . 

You can recall that we have taken several examples to explain you. So, now, the same 

concept, I am trying to extend it here and the fitted values for a given of given X here, 

they are denoted by here ŷ    and they will be X b right. So, I am using the same X over 

here; but now I am trying to obtain the value of y which are obtained through the fitted 

multiple linear regression model.  
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And if you try to do it, if I try to replace here the value of b which is (X’X)-1X’y like this, 

then I can write this ŷ   something like this H y. So, what I am doing here that I am 

writing this matrix, this component of this expression X(X’X)-1X’ = H, right. Actually, 

this H is a very important matrix in regression analysis; particularly, in multiple linear 

regression analysis, this matrix is called as hat matrix right. This is called as a hat matrix. 

(Refer Slide Time: 23:35) 

 

And hat matrix has a couple of properties which helps us in making very useful statistical 

inferences. This matrix, H which is hat matrix is symmetric; this is idempotent. That 

means, if you try to multiply H into H, you can see here if you try to see write down here 

X(X’X)-1X’which is your here H and if you try to repeat it here again, X(X’X)-1X’ this is 

here another H.  

So, you can see here X’X into X’X whole inverse this becomes here I. So, now, what are 

you getting here in the next step? X (X’X)-1X’and this is same as here H. And similarly, 

if you try to find out the trace of the matrix H, then this is obtained by using the result. If 

you remember there is a result in matrix theory, which is something like trace of A B = 

trace of B A right.  

So, in those cases, what I am trying to do here that I am trying to find out the trace of 

here matrix H. So, I write it here say here H and then I try to write down this matrix here 

as say A and this matrix here say B and then, I try to use this result trace of A B = trace 

of B A. So, you can see here, this is your here B and this was your here A. 
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So, now, you can see here that this matrix here is X’X. So, X’X (X’X)-1, this is identity 

matrix of order k by k. So, we have a trace of Ik and trace of Ik is something like you are 

trying to write down 1, 1, 1, 1, 1 here k times. So, k into k matrix. So, this is going to be 

1 + 1 + 1 …  k times which is k. 

(Refer Slide Time: 25:39) 

 

(Refer Slide Time: 25:41) 

 

So, these are very important result that you will see that we will be using them and you 

will also use them in further lectures. Now, from the results that we obtained during the 

simple linear regression model, you had obtained the residuals. If you remember we had 

constructed this type of figure in which we fitted this model right.  
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This is now under this circumstances, this is your here fitted model and using the value 

of using the given value of X, you obtain the value of y. So, and the difference between 

the observed values which is here y and the values which you have obtained after fitting 

the model the which are your fitted values.  

So, the difference between the observed and fitted values of the variable is called as 

residuals. So, now earlier, you had residuals which were scalars right because you are 

trying to obtain for every Xi, here also they are going to be scalars; but I can express 

them very nicely in a form using the vectors and matrices. 

So, if you try to see, I am using the same result which I used earlier. So, the residual 

vector e is now defined as y - ŷ ; the only difference with respect to the simple linear 

regression model is that now this is a n x 1 vector right. So, means I am now fixing my 

notation that this difference is y - ŷ .  

So, now, ŷ   here is y is here y = X b. So, y - X b can be written as y - this X b can be 

written as H y. So, this is here y - H y. So, I can take out this y common on the right hand 

side and so this becomes I - H y. Now, I am using another notation H . H  is denoting 

this matrix I – H, right. So, you can see here H  is a matrix which is related to your hat 

matrix and this hat matrix also has the similar properties what we had in the case of H.  

Yeah, for example, you can see here these are the property in case of H. Now, in the case 

of H also, we have a similar properties  H  is a symmetric matrix and  H is also an 

idempotent matrix just like H and you can see here what I have shown you here is bar 

into H  is I = H into I - H and if you try to open it and use the property that H into H = 

H, you can see here this will again come out to be I - H which is same as H . 

And if you try to find out here trace of H matrix so, this is simply trace of the matrix, 

identity matrix of order n - trace of H. Trace of H you already have obtained. So, so, 

trace of this In - trace of H is simply your here n - k right. Sometimes, you have to be 

careful people try to make a mistake that you try to find out the trace of I - H.  

And since in the case of they try to write out trace of I and minus trace of H and if you 

remember that in the case of finding out the trace of here matrix H, we also had here say 

trace of I right. So, people try to people sometime get confused that this is also trace of I 
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and this is also trace of I; but what you have to keep in mind? This was an identity matrix 

of order n and now, this is a matrix of this is an identity matrix of order k.  

So, do not get confused that trace of I = trace of I is 0 which is wrong. So, this is equal to 

n = k ok. So, now, we come to an end in this lecture. My idea was very simple. Using the 

concept that we had earlier discussed in the case of simple linear regression model, I 

wanted to extend them to a multiple linear regression model; the only thing is this there 

are small differences in the algebra, the way we have obtained the expression; otherwise, 

the concepts and the definition they remain the same. 

And you will see that these things are going to work exactly on the same line at as b0 and 

b1 worked in the case of simple linear regression model. So, now the next question is you 

have obtained this value, you obtain the model, you have obtained the fitted values, you 

have obtained the residuals; now, how to obtain them on R console in the R software that 

is our next question.  

So, you will see that I am going to use the same commands which I used in the case of 

simple linear regression model right. So, that lecture is going to be very simple and 

straight forward provided. You come after a quick revision of the lecture in the chapter 

of simple linear regression model, where we had obtained the regression coefficient, 

fitted values and residuals in the R console. 

So, you please have a look and I will see you in the next lecture; till then, good bye. 
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