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Hello friends, welcome to the course Essentials of Data Science with R Software 2 where 

we are trying to understand the topics of Sampling Theory and Linear Regression 

Analysis and in this module on the Linear Regression Analysis, we are going to continue 

with our chapter Simple Linear Regression Analysis. 

So, in this lecture, we are going to consider another method of estimation for the 

regression parameters as well as the variance. So, you may recall that up to now, we have 

considered the principle of least squares and we have used the direct regression method 

estimation to obtain the value of the regression coefficients as well as the variance, 

variance of the random error component. 

In statistics, there are different types of estimation methods which are based on different 

types of concept, different types of philosophies and among them; one very popular 

method is maximum likelihood estimation. So, today, we are going to discuss about the 

Maximum Likelihood Estimation and then, we will talk about the test of hypothesis. 

So, first what is this maximum likelihood estimation? You see likelihood means what? 

The literal meaning of likelihood is what? It is related to the probability that what are the 

chances. So, you are trying to say maximum likelihood mean what are the maximum 

chances, chances of what? So, we are trying to draw a sample from some population. So, 

now, we need to assume a form of the population. So, we will assume that suppose your 

sample is coming from a normal population with some finite mean and finite variance. 

And now, we are assuming that the sample is truly representative of the population. So, 

that means, whatever you expect from the population that should be present in the 

sample also. So, that means, now you are trying to observe the sample and you are trying 

to estimate the most probable value of the parameter that may happen right. 
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So, in order to obtain the maximum likelihood estimation, what we try to do? We try to 

maximize the probability and we try to obtain the values of the parameters which are 

most probable to occur, and this is the basic idea about the maximum likelihood 

estimation.  

So, what we have to do? We simply have to write down the probability density function 

of all the observations and then, we have to maximize it because the probability 

distribution functions are going to give us the probability of occurrence, probability of 

occurrence of certain events. 

So, now, we are going to maximize this probability and we will try to find out the values 

of the parameter for which this probability will be maximum. So, now, if you try to see 

once you talk about maximization so, in finite sample, I can assume a nice probability 

distribution in which means we can do some algebra and we can find some exact 

expression of the maximum likelihood estimators. 

But in data sciences, what you can do? That you can use different types of algorithm 

also, if you are dealing with some complicated distribution which is not necessarily 

normal so, you can consider those thing, you can employ different types of optimization 

technique and a basic objective is this you simply have to maximize the likelihood or 

maximize the probability right. 

So, first we try to talk about the maximum likelihood estimation and then, I will give you 

the brief introduction to the test of hypothesis. Although, I am assuming that you have a 

sufficient background in statistics. So, all of you are familiar with the concepts of 

maximum likelihood estimation and test of hypothesis. So, let us begin our lecture from 

this slide right ok. 
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(Refer Slide Time: 04:31) 

 

So, now, we are going to consider the maximum likelihood estimation of the 

parameter0,1 and. You can recall that we had taken a model y =0 +1 x + and 

had mean 0 and variance of was. So, these are the three parameters in which we are 

interested. 

So, now, we are making one assumption that we are trying to associate a probability 

density function with epsilons because unless and until you associate a probability 

density function, you cannot write down the likelihood function. So, we assume that i's 

are identically and independently distributed following a normal distribution with mean 0 

and constant variance, right. 

So, first I try to give you the final outcome and then, I will try to show you how to get 

them. So, when we try to find out the maximum likelihood estimators of0,1 is2 in 

the linear regression model, this yi =0 +1Xi +i, i goes from 1 to n, then the maximum 

likelihood estimator of the0 intercept term turns out to be 1y b x  . 

So, you can see here, I am using here symbol hereb . So, that is really going to indicate 

that this estimator is different from b1. So, we had earlier denoted b0 and b1 for ordinary 

least square estimator and we will denote 0b  and 1b  for maximum likelihood estimator.  
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So, the estimator of1 slope parameter turns out to be 1
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can recall that these two estimators of0 and1 which are the maximum likelihood 

estimators of0 and1, they are the same as ordinary least square estimator right ok. 

Now, if you try to estimate the variance square, then the maximum likelihood 

estimator of2 comes out to be summation y ib 0 tilde 1b x i whole square divided by 

n and this we are denoting by here 2s . Now, you can see this is different from the 

ordinary least square estimator of2 what is the difference?  

You can see here this 
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numerator part is; numerator is same as of 

OLSE, but if you come to denominator, denominator is different what is the difference? 

In case of ordinary least square estimator, this denominator was n2, but here it is n. 

So, the maximum likelihood estimators and ordinary least square estimator of0 and1 

are the same whereas, the ordinary least square estimator of2 and the maximum 

likelihood estimator of2, they are different. 

(Refer Slide Time: 08:22) 
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So, now, we try to see how these estimators have been obtained. So, we try to have a 

sketch of the proof of maximum likelihood estimators. So, one thing you have to 

remember that when you are writing thati is following a normal distribution with mean 

0 and variance2, then the probability density function of i will be given by 
1/2

2
0 12 2

1 1exp ( )
2 2 i iy x 
 

           
, right where your lies between   and . 

 So, this is actually the probability density function of N(0, 2). Now, you are assuming 

thati's are independent. So, when they are independent, then the joint density function 

of1,2,…,n this can be written as the product of the individual probabilities 

probability density function i goes from 1 to n and once you are assuming that i's are, 

they are identically distributed, identically means all1,2,…,n they have got the same 

distribution with mean 0 and variance2 right.  

So, this can be written here as say  ( ) n

if  , right. So, this is the basic concept which I 

am going to use here right. And you can see here that thisi is in is your yi 0 1 xi 

so, that is what I have written here. I have written the joint density function 

of1,2,…,n in terms of xi, yi,0,1 and2.  

So, you can see here this is the same thing, this is the 
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 , right. So, what we try to do here that we have to 

now maximize this likelihood function and we have to obtain the values of0,1 and2.  

So, we know that this likelihood and the log of likelihood both are monotonic functions. 

So, instead of maximizing the likelihood function, I can maximize the log likelihood 

also. So, that is going to give us the same outcome. So, now I consider here the log of 

this likelihood and I try to write down here this quantity will becomen by 2 log of 2 pi 

that means, I am taking here natural log, natural log is denoted by ln ok and this quantity 

here becomes here see here 2 2
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  and 

then, this quantity from here ok. 
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So, now this is the log likelihood which I have to maximize. So, I try to use here the 

principle of maxima and minima and I try to partially differentiate this log likelihood 

with respect to0,1 and2 and once I try to differentiate the log likelihood with respect 

to0, I obtain this result that you can verify, that is very straight forward.  

And similarly, when I try to partially differentiate log of likelihood with respect to1, 

then I get this value and similarly, when I try to differentiate the log likelihood or 

partially differentiate the log likelihood with respect to square, then I get here this 

value. Now, I try to equate them equal to 0 so, that is what I am doing here, all the three 

equations have been equated to 0 and these three equations are called as normal 

equations.  

Remember one thing, do not get confused that this word normal is coming from normal 

distribution. The normal in normal distribution and the normal in normal equation, they 

are different thing right. Even if you try to take here any other distribution say binomial 

or Poisson also, even then you will have normal equations. 

(Refer Slide Time: 13:25) 

 

These are the three normal equation that we have obtained and if you try to see what is 

this thing, this can be written as 0 1
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And now, can you really recall have you ever solved these equations earlier? They are 

the same equations as in the case of least square estimation. When you obtain the 

ordinary least square estimate, you solve the same equation. So, now, I do not need to 

solve it again right. 

So, if you try to solve them, they will give you here 1b   to be sxy /sxx and which I have 

denoted by see here 1b   which is the maximum likelihood estimator of1 and the 

maximum likelihood estimator of0, this is 0b , this is . 1y b x  . 

Now, if you try to solve this equation and try to substitute0 equal to 0b and1 equal to 

1b   in this equation and try to solve here, you will get here the value of2 that will be 

your estimate which is denoted as

2
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  . So, you can obtain these 

things. 

(Refer Slide Time: 15:36) 

 

And yeah, so, these are the final expression that you will get. So, these are the values 

which are expected to maximize the likelihood function, but how to cross check it? So, 

for that I will not do it here, but I will try to do it in more detail when we will try to 

consider the multiple linear regression model, but here, you can find out the second order 
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partial derivatives of the log likelihood something like you have find out the log of L, try 

to find out the second order derivative with respect to0,1,2 from where, from here 

right. 

From these three equation, you try to differentiate them, once again you will get the 

second order partial derivatives and then, try to create the bordered Hessian matrix and 

then, you can show that these three values of0,1 and2 that you have obtained, they 

are maximizing the likelihood function. Hence, these three values can be call as the 

maximum likelihood estimators of0,1 as well as2 right ok. So, this was all about the 

maximum likelihood estimation. 

(Refer Slide Time: 16:53) 

 

Now, I try to come on different aspect which is test of hypothesis right. So, before I do, 

let me try to give you some idea. So, the first question is why do we conduct the test of 

hypothesis?  

And sometime, people get confused between the estimation and test of hypothesis. Now, 

you see you have employed two different estimation methods to estimate the same 

parameter0,1 and2. Fortunately, and just by chance, the estimators for0 and1, 

they come out to be the same.  
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The OLSE as well as MLE, they are the same for0 and1, but that is only by chance 

means it is not a rule that these estimators are going to be the same, but you have seen 

that the variance estimator for OLSE and MLE, they are different. So, now whatever 

estimation technique you use, they are based on the random sample. You are simply 

trying to find out some mean, some sum of squares and then, you are trying to compute 

the value of parameter. 

Now, suppose the sample changes, you have seen through the theory of sampling theory 

that as soon as you draw a different sample, you will get different values of the statistic. 

So, now the question is different samples will generate different types of values of these 

parameters. So, the question is which one is right, which one is wrong and various types 

of questions crops up. 

So, we assume that as long as we are getting the random samples and the difference in 

the values of these parameters that we are obtaining, that is just due to random variation 

we can accept it because we have no other option, the random variation is beyond our 

control. But if there is some assignable cause, that should be taken care right. 

So, what we try to do here that we try to find out the values from the sample and then, 

we try to compare them with some given values and based on that, we try to make a 

comment whether the estimated value can be considered to be the same as the value 

which we have assumed or it is known to us that is the main objective of test of 

hypothesis and what I am doing is this a very layman language right, I am not explaining 

you here the basic concepts of test of hypothesis right that I assume that you know it. 

So, one thing which I would like to clear that many times people get confused that the 

test of hypothesis can also give us the values of the parameter, the answer is no. The 

values of the parameter can be obtained only through the estimation methods, the test of 

hypothesis can only check whether the estimated values are equal to or less than or 

greater than the given values. So, the test of hypothesis is conducted against some known 

values. 

But if the hypothesis is not accepted, the then the methodology of test of hypothesis will 

not help us in identifying or knowing that well, what is the correct value the question 

goes. Suppose you estimate something and I say ok, the suppose you estimate the sample 
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mean to be 20 and I assume that the population mean is suppose 30 well, and if the 

difference is due to the random causes and suppose the hypothesis is not accepted so, 

that means, I will be concluding that the sample mean and the population mean are 

different. 

Now, you can ask me next question. Ok, you are saying that ok, these two values are 

different that I am accepting, but please tell me what is the correct value then, then I will 

say sorry, the test of hypothesis cannot answer this question that you have to look into 

your estimation method, the properties of estimation techniques and then, you have to 

decide that what can be a better value which will be close to the true value ok. So, that is 

the basic idea. 

Now, we are estimating here three quantities0,1 and2. So, we would like to conduct 

the test of hypothesis for all these three parameters. In this chapter, I am trying to show 

you that how you can conduct the test of hypothesis for this single parameters and in the 

case of multiple linear regression model, I will try to extend this concept of test of 

hypothesis in casting the equality or something like this for more than one parameters 

also right. 

And after this, I will try to consider the confidence interval. What is confidence interval? 

For example, you have utilized the principle of least square and method of maximum 

likelihood to estimate the values of0,1 and2. Well, these estimation techniques are 

giving you one particular value, the value of these parameters at a point so, these are 

actually point estimate.  

Point estimate means you are trying to say that ok, the value of this parameter is this, but 

now, the other alternative is this, I can find a probable interval in which the population 

parameter value will lie, right. The most simple example goes like this for example, if 

there is a medicine and we conduct a experiment; we conduct an experiment to know that 

what is the approximate number of hours by which the medicine can control the fever.  

You take a sample and suppose you find out the sample mean and then, try to compute 

the statistics and suppose you come to know that the value of the parameter is suppose 6 

hours so, that mean that medicine is expected to control the fever for 6 hours. But do you 

think that this 6 hours is going to be the same for all the persons?  
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Some person, in some person the medicine may be effective for say 5 hours 30 minutes 

and some persons the medicine will be effective for 6 hour 30 minutes, in some persons 

the time may be smaller than 6 or more than 6 also right. So, for that if I say ok, this 

medicine can control the body temperature or fever say from 5 to 7 hours, this also 

makes sense.  

What is this? This is confidence interval estimates that means, we are trying to find out 

the value of the same parameter not at a point, but in the form of an interval. So, for the 

interval, there will be a lower limit, there will be an upper limit. So, our objective here is 

this, we already have now learnt that how to estimate the parameters at a point now, we 

will consider how to estimate them in an interval, right. 

So, first we try to consider the test of hypothesis and then, we come to the confidence 

interval estimation and you will see at a later stage that confidence interval estimation 

and test of hypothesis both are actually inter related through something. So, let us now 

come back to our slides ok. 

Now, we try to assume that we will be working under the normal population. This 

normal population will have some mean and will have some variance2. So, we have 

here two possibilities that this2 is known, or2 is unknown. So, we will consider here 

two possible cases and we will try to construct the test of hypothesis and confidence 

interval estimation under two possible cases, when2 is known and when2 is unknown. 

So, our model is going to be the same yi =0 +1 Xi +i and we have got small a 

number of pairs of observation and we assume that this i's are independent and 

identically distributed which are following a N(0, 2),  ok. 

898



12 

 

(Refer Slide Time: 26:14) 

 

So, now let me first consider the construction of test of hypothesis for the slope 

parameter1 and the first case, I try to take when2 is known and our H0 which is null 

hypothesis is1 =10. So,10 is some known value right, I can write down here say 

H01 = 2 or H01 = 100 whatever you want. 

So, you want to test that the values which you have obtained from the sample for this 

parameter1, are they equal to the value10 in the population or not right. So, this is our 

now set up that10 is some given constant. Now, if you remember in the case of ordinary 

least square estimation, we had already proved that the estimators b1 that is the least 

square estimator for the parameter1 is an unbiased estimator and its variance was 

obtained like this right. 

And we also had shown that b1 was a linear combination of y i's and now, we are since 

we are assuming here that i's are following normal 02 so, will be yi will be also be a 

normally distributed random variable why? Because the linear combination of normally 

distributed random variable under certain condition is also normal. 

And what will be the mean of yi? Mean of yi =0 + 1 xi because you are assuming x i 

to be fixed andi has mean 0. So, this will be here is the mean0 + 1 xi and what will 
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be the variance of yi? That will be variance of0 which is constant so, 0 the variance 

of1 xi which is constant so, 0. So, that will be same as the variance ofi which is2.  

So, I can write down here that yi follows a normal distribution with mean0 + 1 xi and 

variance2 and if you and you can recall that we had express b1 as 
1

n

i i
i

k y

 right, I am not 

going into the details once again. So, based on that, I can write down from here that b1 

has got a normal distribution whose mean is1 and variance is2 /sxx. 

Well, before I go further, let me clarify that I just finished the topic of maximum 

likelihood estimation and then, I started the test of hypothesis. So, please do not get 

confused that the test of hypothesis is based only for the maximum likelihood estimator 

right means that can be done for the ordinary least square estimation also and you have 

seen that at this moment, we are trying to construct the test of hypothesis and confidence 

interval for1 and0 which have got the same estimate in under the setup of least square 

estimation as well as maximum likelihood estimation. 

(Refer Slide Time: 29:47) 

 

Now, using this result, we can construct the statistics that 1 10
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   and this will 

follow a normal distribution with mean 0 and variance 1 when H0 is true, right.  
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There is a strong theory, I mean all those derivations we have in statistical inference, but 

we are not going to discuss those things here, you can just believe on me that this 

statistics will follow a N(0, 1)  distribution under H0. As soon as I say under H0 that 

means, when H0 is true.  

So, this sentence and when H0 is true, sometimes you will see that it is written in the 

book or sometime even I may use as under H0. So, that is the same thing right. So, now 

the decision rule to accept or reject H0 will be that reject H0, the H0 here is1 =10 

against H
1 
: 

1 
∫ 

10
  at level of significance if p value is less than, ok.  

Means I can just give you one thing that when you try to conduct the test of hypothesis, 

then you have the sampling distribution of this statistics Z1 which is say here N(0, 1)  so, 

we try to fix here so, it is a 2 sided in test of hypothesis because we are trying to take 

here not equal to. So, this region in the mid which is here the dotted region, this is the 

acceptance region and the shaded region here, this is the region of rejection. 

What we try to do? We try to find out the critical value from the table of N(0, 1)  which 

is here, this is the critical value and this is here the critical value and we try to see 

whether the calculated value of Z1 which is here whether this lies in the region of 

acceptance or region of rejection and based on that, we try to take a call whether H0 is 

going to be accepted or not. 

So, this is the basic fundamental that is the theory, but since we are going to work in the 

software so, the software’s usually give the outcome in terms of p value and then in that 

case, the rule is that reject H0 when p value is smaller than.  

So, since we are going to do all the things on the R software so, I will not be considering 

the classical approach of test of hypothesis which is based on the tabulated values of 

either normal, t, chi square, f etc., but I will be depending more on the p value. 
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(Refer Slide Time: 32:50) 

 

So, all the results whatever I am going to do here, they will be the based on p value. 

What is that p value? The p value is the smallest level of significance at which H0 would 

be rejected and when I say that the H0 is accepted, then accepting H0 means that the 

difference between the sample value and the hypothetical population value is not 

significant right ok. 

(Refer Slide Time: 33:16) 
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Now, I try to come to the construction of confidence interval under the same setup 

when2 is known. So, we know in the case of confidence interval, what we try to do? 

We try to obtain here the lower limit and we try to obtain here the upper limit and 

suppose my confidence coefficient is 1  so, usually when we are trying to consider a 

symmetric distribution like as N(0, 1) , then on the both side this shaded region will 

be and this dotted region in the mid will be 1 , right. 

So, these two values lower and upper limit, they are going to give us the values of the 

confidence interval. So, they are the lower and upper limits of the confidence interval. 

So, our objective is this, we want to find out these values based on the statistics. So, what 

we try to do here that we are assuming that my confidence coefficient is 1  so, 

confidence interval for1 can be obtained in this case, using the Z 1 

statistics right.  

So, Z1 is your you know nothing but b1 1 divided by standard deviation of b1. So, 

what we assume that this capital Z1 will be lying betweenzandzWhat are 

thiszandz/2? They are the say points on the distribution of N(0, 1)  

right. So, what we try to do?  

We simply write to this statement that the probability that the capital Z1 will be lying 

between the critical valueszandzand the probability of this event is 1 .  

So, now, I can rewrite here it like this. Now, you can see here, I simply have to simplify 

it, you can write down this thing here b; 1 10
2

xx

b

s





 which is lying betweenzand 

zand this can be written here as say b1 1 lying between sayzand square root 

of2 /sxx and here, zand square root of2 /sxx. 

Now, if you try to solve it here, now this1 will be lying between these two limits which 

we have obtained here. So, that is the usual approach to obtain the confidence intervals. 

So, you can see here now, I have obtained the probability that1 will be lying between 

these two limits and these probabilities were 1 . So, this value here, this is the lower 

confidence limit and this value here, this is the upper confidence limit. So, lower 
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confidence limit and the second one is upper confidence limit of the confidence interval 

right. 

(Refer Slide Time: 36:32) 

 

So, I can write down finally, that the confidence interval for 1 is given by 

these two limits where zis the points of the N(0, 1)  distribution. So, you 

can now see, this you have computed, you can obtain it from the software, this is known 

to us, this you can compute on the basis of given sample of data, this you can obtain 

from the table so, you can compute this entire limit similarly, you can compute the upper 

limit also and thus, you can compute the entire confidence interval. So, you can see here 

it is not difficult even if you want to compute it manually, but definitely, we are going to 

use it on the software. 
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And now, I come to the 2nd case where we assume that2 is unknown and we try to 

construct the hypothesis for the same parameter1, right. So, my hypothesis remain the 

same H01 =10 where10 is some given value or given constant. 

So, since we are assuming that2 is unknown so, we have a result from statistical 

inference that SSres upon2 follows a chi square distribution with n2 degrees of 

freedom and if you remember, we had already used it in the earlier lecture when we were 

trying to estimate the value of2 based on the least square estimation and we had 

obtained there that expected value of SSres /(n2) is2 right. 
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(Refer Slide Time: 38:12) 

 

So, now, actually I can also prove that if you try to see here that this is your here ssres and 

b1 was your sxy/sxx. These two quantities are independently distributed although, I am not 

proving it here, but that is pretty simple and right.  

So, and if you can show that these two are independently distributed which are actually 

independently distributed, you can try, then 1 10 1 10
0 2ˆ

( 2)
res

xxxx

b b
t

SS

n ss

 



 
 



. 

And if you try to write down this statistic, this will follow a t distribution with n2 

degrees of freedom when H0 is true right. So, this simply follows t(n2) under H0 that is 

when H0 is true. So, now, I can frame the decision rule which is pretty simple that reject 

H01 equal to10 against H11 is not equal to10 at level of significance if p value 

is less than ok. 

Before I go further, let me try to clarify one point. In this test of hypothesis, in this 

chapter, we are mostly interested in it testing the alternative hypothesis which is of the 

form of not equal to that is two-sided alternative hypothesis. Actually, this test of 

hypothesis is going to play a very important role when in the variables collection and in 

knowing whether a variable is important or good or bad right.  
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So, that is why we are considering here only the two-sided test of hypothesis otherwise, 

the left tilt test or right tilt test something like1 is greater than10 or1 is less than10, 

these type of hypothesis can easily be done exactly on the same line using the same 

statistics. So, do not get confused that why I am not considering here other type of test of 

hypothesis, they can be done exactly on the same way. 

(Refer Slide Time: 40:42) 

 

And similarly, if you want to construct the confidence interval, exactly you have to 

follow the same thing. Now, I will assume the confidence interval for1 

can be obtained using the t0 statistics and we assume that this t0 lies 

betweentandtwhere these two values are the critical values which are obtained 

from the t tables that is the table for the t probabilities and the probability of such an 

event is 1 . 

So, you simply try to substitute here the value of t0 and just try to simplify the simplify it 

exactly and the same way as we have done here right. Exactly, in the same way as we 

have done here, try to simplify it, very simple and then, you will obtain here this 

inequality and the probability that1 is lying between these two limits is equal to 1 . 
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And hence, I can obtain the confidence interval for1 when2 is unknown 

as here like this. So, you can see here all these things can be obtained from the data right 

and about this here t value that can be obtained from the table, but anyway I am not 

going to show it here manually because we are going to use the software. So, here, what 

is this thing? This tis the points on the t distribution with n2 degrees of 

freedom ok. 

(Refer Slide Time: 42:18) 
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Now, I come to the test of hypothesis for the0. Now, the test of hypothesis and 

confidence interval for0 under the case of2 and2 when2 is known and when2 is 

unknown can be constructed and develop exactly on the same line as I have done for1. 

The only thing is this, the variance of0 and estimate of variance of 0̂  which is the 

variance of b0 and  0̂var( )b , they will be only changed, right. 

So, under this case, you can see here we already have proved that expected value of b0 

which is the ordinary least square estimator of0, this is an unbiased estimator of0 and 

the variance of b0 can be obtained by this expression right that we already have obtained 

in the earlier lecture. 

So, now, I can use the Z statistics and I can construct my statistics by b0 00 which is 

a known quantity here, which is a given quantity here because my hypothesis is here 

H00 =00 or00 or00  you can say.  

So, this will also have a N(0, 1)  distribution when H0 is true. So, you can write your here 

decision rule exactly on the same line that you reject this H0, against H10 ∫00   at 

level of significance if p value is smaller than. 

(Refer Slide Time: 44:01) 
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And if you want to construct the confidence interval, you have to use the same technique 

that Z0 which is given here like this is lying betweenzandzand the probability 

of such an event is 1  right. So, we can simply solve this equation as we have done 

earlier and two times so, and you will obtain the lower limit here by this expression and 

upper limit by this expression. 

(Refer Slide Time: 44:34) 

 

And so, I can say that the confidence interval for this0 is given by these 

two limits, this is the lower confidence limit and this is the upper confidence limit right 

and as usual, this zis the points on the N(0, 1)  distribution. 
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And similarly, when2 is unknown, you know now and this case, we will have a t 

statistics and this statistics is given by b0 00   divided by the standard error of, this is 

the standard error of b0 and if you try to find out using the rules of probability theory and 

probability distribution, this statistics will have a t distribution with n2 degrees of 

freedom under H0 or when H0 is true. 

So, now, I can construct the decision rule that reject H0 again this two-sided H1 at level 

of significance if p value is smaller than. So, now you can see that now means 

everything is very very similar once you have done the first case doing all other cases 

have the same story means everything is on the similar lines. 
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And similarly, you can also construct the confidence interval. So, in this case, the t0 

which is here this statistic will lie betweentandtat n2 degrees of freedom 

and the probability of such an event is 1 .  

So, if you simply try to solve this inequality, you will get here this as your lower 

confidence limit and this quantity here as a upper confidence limit and the probability of 

such an event will be 1 . So, the confidence coefficient is 1 . 

(Refer Slide Time: 46:30) 
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Hence, the confidence interval for0 can be obtained here like this right. 

So, now, we have obtained the confidence interval and test of hypothesis for0 and1 

under two cases when2 is known and2 is unknown. So, this is your here lower 

confidence limit, and this is your here upper confidence limit. 

(Refer Slide Time: 47:01) 

 

So, after this we consider the test of hypothesis and confidence interval for2. So, the 

test statistics for2 is found using the result that sum of square due to residual divided 

by2 follows a chi square distribution with n2 degrees of freedom. 

So, based on this, the test statistics for the hypothesis H02 =02 where02 is some 

known, value given value constant can be constructed and the final statistic comes out to 

be like this 

2

2 1
2
0

( )
n

i
i

c

y y









. So, this value can be obtained from the sample and this 

value is known. So, whole this chi square c statistics can be found manually also. 

And this statistics will follow a chi square distribution with n2 degrees of freedom 

under H0 that is when H0 is true ok. So, based on this, the decision rule can be made as a 

reject H0 against H1, two-sided hypothesis at level of significance if p value is smaller 

than, same thing what we have done earlier. 
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And you can also construct the confidence interval using the same result, but now, here 

you have to be careful normal and t distribution they are symmetric like this one, 

symmetric around their mean value right, but for chi square, chi square is not a 

symmetric distribution, and it has different shapes depending on the degrees of freedom 

like this right. Depending on the degrees of freedom is less 1, 2, 3, 4, then even the curve 

is like this. 

So, in this case, you cannot have a structure like that on the same inside will have 

the same value on the x-axis like we have done earlier thatz, then this is going to 

bez, this will not hold, but in this case, what we are going to do? Suppose this is 

here see here, then this is here 1 .  

So, you have to actually look into the book that how they are trying to consider. 

Sometime they take this area on the left-hand side to b1  and right hand side area 

to be so, you have to just check before you read a book. So, in this case, we are 

simply trying to say here suppose this is my here chi square value with and this is 

here the value which is chi square 1 .  

So, now I can say here that this statistics SSres upon2 will lie between these two limits 

on the chi square distribution and the probability of such an event will be 1 . And if 

you simply try to simplify this inequality, you get here these two limits.  
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So, this is going to be the lower confidence limit, and this is going to be the upper 

confidence limit and this will come out to be SSres divided by the corresponding value of 

chi square at 1  level significance level and SSres divided by chi square value 

at significance level.  

And based on that, the confidence interval will come out to be like this. So, 

you can see here that this is a function of SSres that is sum of square due to residuals and 

here, you have to be careful that and always remember that chi square is not a symmetric 

distribution. 

So, now, we come to an end of this lecture. Although, pretty long lecture, but my 

objective was to finish in a single shot so that your time is saved and I do not have to 

repeat the things between two lectures. I hope you do not mind it. Well, you can means 

listen to it in two parts. 

Well, so, my objective was here that I have given you the main idea about the test of 

hypothesis, your question will be where it is going to be used, but believe me for some 

time, this is one of the very important tool in statistical modeling, particularly under the 

linear regression analysis and I will show you later on that without this, you just cannot 

work in linear regression analysis. 

Yes, sometime people, students get confused that why I am trying to do all this theory, 

but when you come to multiple linear regression model, I am promising you each and 

everything whatever you have done that will play a very important role and without 

understanding these things, you cannot do it and my problem is this here, I can show you 

all the things, I can create a confidence interval. 

I can give you all the values individually, but in case of multiple linear regression model, 

I will not be able to show you things more clearly, but you will have to assume, you will 

have to think in your mind that this is how the things will look like that is the idea right. 

So, have patience, have confidence on me, have faith on me and try to revise it, try to see 

it, try to settle down this concept in your mind and I will see you in the next lecture till 

then, goodbye.  
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