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Hello, friends. Welcome to the course Essentials of Data Science with R Software – 2, 

where we are trying to learn the topics of Sampling Theory and Linear Regression 

Analysis. And, in this module on linear regression analysis, we are going to talk about 

the concepts of a Simple Linear Regression Analysis.  

So, up to now what we have done? That we have considered general form of the simple 

linear regression model which has only one independent variable we have estimated the 

regression parameters. Of course, the regression coefficients which were0 and1 they 

have been estimated as b0 and b1. Now, one more question arises you have 

estimated0,1, by b0 and b1 on the values of a sample of data. If the sample changes, 

then what will happen?  

Do you think that the same values of b0 and b1 will be obtained? Answer is no. These are 

sample dependent values. So, as the sample changes these values will be changing and 

why? Because they are the function of random variable, y is my random variable in the 

simple linear regression model. So, your b0 and b1 which are the estimators of the 

regression coefficient ordinary least square estimators of0 and1, they are the functions 

of y. 

Hence they are the function of a random variable. So, obviously, as the values of the 

variable changes these values will change. Once this b0 and b1 becomes a statistic, a 

random variable then obviously, the concept of variability comes into picture. The 

concept of coefficient, this confidence interval comes into picture. Just by estimating the 

values b0 and b1 will not help. But, you also need to tell that how much is the variation 

involve in the values of b0 and b1. 
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Second thing is, this you have assume the random error to have variance2, but would 

you not like to find out what is the amount of random variation in my data? Yes, so, that 

can be obtained by estimating the parameter2. So, essentially we had three parameters 

in this case0,1 and2.  

So, we already have estimated0 and1, now we will try to estimate2 also. So, in this 

lecture I will try to do all the things and also I will try to show you that how these things 

can be obtained in the R software. Well, when I try to show you the outcome in the R 

software there will be many more things. But, I will try to consider only some part of that 

outcome and remaining part I will try to take when we try to discuss the multiple linear 

regression model, ok. 

So, now, how to find out the variance of b0 and b1? Well, I do not know. Now how to 

obtain it? So obviously, first we need to do some algebra and we have to study the 

properties of this b0 and b1. I do not know whether these are good estimator or bad 

estimator because we have just obtained the values.  

These values can be good, these values can be bad. So, how to assure that the values 

which you have obtain through b0 and b1 they are good values and hence your model is 

good. So, for that we need to investigate the theoretical properties of b0 and b1, ok. So, I 

will try to give you the details of the theoretical properties and I will try to connect it 

with the data sciences ok. 
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(Refer Slide Time: 04:27) 

 

So, let us now begin with over lecture. First I try to give you the outcome and then I will 

try to show you the proof, right. So, you have considered the model y =0 plus1 x + , 

right and we have obtained this0 and1. How,1 is obtained by 1
xy

xx

s
b

s
  and0 is 

obtained by 0 1b y b x  . So, you can see here this depends on y, this also b1 also depends 

on y. So, hence they are statistic, they are estimator, they are random variables right. 

So, now, so, once they are estimators we would like to see whether they have nice 

properties or not. So, whenever we come to any statistical estimation procedure there are 

several criteria, there are several properties through which we try to check whether the 

estimator is good or bad. First property is say unbiasedness, then we have another 

property variability, then we have consistency, then we have sufficiency and we have 

completeness. 

I am not writing it an any order, right? They are these different properties are trying to 

give different type of information, but here I am going to consider this unbiasedness 

variability and consistency and sufficiency and completeness will automatically follow 

their, ok.  
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The first let me give you the final outcome. Both b1 and b0, they are the unbiased 

estimator of their respective regression coefficient E(b1)=1. So, b1 is an unbiased 

estimator of1 and similarly, E(b0) =0; that means, b0 is an unbiased estimator of0. 

Now, in case if you try to find out the variance of b0 and b1, then they are finally, 

obtained as
2

1( )
xx

Var b
s


 .

2
2

0
1( )

xx

x
Var b

n s


 
  

 
.  

And, if you try to find out the 2
0 1( , )

xx

x
Cov b b

s
  . So, now, you can observe hear one 

thing that if you want to know the amount of variation or co-variation of these estimators 

in your dataset you have to compute these three values.  

But, they are dependent on2 which is the population value and you do not know. So, if 

you really want to know these values for a given sample then you need to find the value 

of2 which we can denote as a 2̂ . Once you obtain the value of 2̂  then you can 

replacesquares in these three  expressions by 2̂  and you can compute the sampling 

variability, ok. 

(Refer Slide Time: 08:12) 

 

So, that is what I am trying to show you here. So, this is the final visual that we are going 

to obtain after doing some algebra we will consider here a quantity which is called as 

869



5 

 

sum of square due to residuals. So, you remember that on the last time we had obtained 

the residuals e1, e 2,…, e n.  

So, you simply try to find out there 2

1

n

i
i

e

  and this is called as sum of residuals which is 

here like this. So, an unbiased estimator of2 is this quantity  2

2
resSS

s
n




, right. So, how 

it is obtained that I will try to show you in the further slides.  

So, now, I try to do one thing that in this expression what we have obtained here this2 

will be replaced by s2 , this2 will be replaced by s2  and this2 will be replaced by s2 . 

So, that is what I am doing here in this slide and thus we can find out the unbiased 

estimator of variance of b0 given by  0var( )b  and  1var( )b and the estimator of covariance 

between b0 and b1 as 0 1( , )Cov b b .  

So, I simply have replaced the2 by here s2 . So, based on this we can compute the 

standard errors of b0 and b1. So, what we have to do? We simply have to take the positive 

square root of variance of b0 that will give us the standard error of b0 and then we try to 

take the 
1var( )b and that will give us the standard error of b1. So, simply try to take 

the 
0var( )b  and 

1var( )b . So, that will give us the standard errors right, ok. 

(Refer Slide Time: 10:32) 
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So, now the first question comes first I try to show you that how these things are 

obtained in R software. So, I will try to use the same data that I use in the earlier same 

lecture where we had obtained the 20 observations on the students on their marks and 

that number of hours they study.  

So, but before that in order to extract the information on the variances of b0, b1 means 

their estimate and the value of2 we try to use the command here summary. So, 

summary of the lm y tilde x and, but this command will give you several outcomes and 

you have to identify that which of the outcome is going to give you the standard error of 

b0, b1 as well as the value of2. 

(Refer Slide Time: 11:32) 

 

So, before I try to go to the R console I means I have taken here the screen shot to 

explain you in a better way, right or if you wish I can show you first on the R console so 

that you have a confidence on me that whatever I am doing here this is correct. 
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(Refer Slide Time: 11:49) 

 

So, I try to take here the command here and I already had entered this data. 

(Refer Slide Time: 12:05) 

 

So, y is here like this, x is here like this. Sorry, x is here like this. 
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(Refer Slide Time: 12:14) 

 

And, now I try to find out the summary command, you can see here these are the values. 

So, I have just taken the screen shot of the same thing on this a slide. So, now in this 

output you have to just look for a minute, so that you can see there is something like here 

this part. You can see here this is the intercept m and this is here x and this is here 

estimate. So, this part is known towards this is the value of b0 75.79 and this is the value 

of b1 that 3.4, right ok.  

After this there is a column standard error. So, this is actually trying to give you the 

value of standard error of intercept term b0 and this is the second value which is trying to 

give you the standard error of the regression coefficient associated with x. And, here 

there is another thing which I have marked in red box, this is residual standard error. So, 

this is trying to give you the value of s. So, if you try to square. 
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(Refer Slide Time: 13:55) 

 

So, now in order to explain you these things more I have taken the snapshots of this and 

the they are actually here if you try to see they are here. So, first I try to look at the 

snapshot number 1. It is trying to give you here residual standard error is equal to 18.65 

on 18 degrees of freedom.  

So, what is this degrees of freedom because I will try to explain you later, but you can 

imagine that you are trying to estimate2 by 2̂  is equal to s2  and this is here a random 

variable and this random variable will have a sampling distribution and this sampling 

distribution will actually turn out to be related to chi square and the chi square will have 

certain degrees of freedom. So, these degrees of freedom are mentioned here, right. 

So, we had learnt that an unbiased estimator of2 was obtained here like this. So, this is 

trying to give you the residual standard error means it is trying to take the positive square 

of this quantity and this quantity here is s which is equal to 18.65. So, this will give you 

an idea about the variation in the data. 

So, now degrees of freedom are computed by n- 2 which are 20- 2 is equal to 18 degrees 

of freedom, right. So, that is the interpretation of first part. Similarly, if you come to the 

come to the second snap shot say 2 which is you can see here this is here, right. 
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(Refer Slide Time: 15:30) 

 

So, I am just copying and pasting it here. So, these are the estimates. So, this is the value 

of b0 this is the value of b1 and these are the standard error of b0 and this is the standard 

error of b1. How they have been obtained? We had obtained that the estimate of variance 

of b0 is given by this factor and if you want to find out the standard error you have to 

take the square root of this estimated variance. So, it is trying to compute it on the basis 

of given set of data because x and y are known to us.  

So, you can compute all these quantities s2 , 2x , sxx and this values turns out to be 12.78. 

And, similarly this quantity here 0.4379 this is the standard error of the regression 

coefficient which is estimated by b1 and this is the standard error here like this. 

So, we had seen that the estimate of variance of b1 was obtained by the expression s2/sxx 

and if you try to take the positive square this will give you the standard error of b1 which 

is here coming out to be 0.4379. So, this is how you are going to interpret these 2 

outcomes from the software right, ok. 
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(Refer Slide Time: 16:51) 

 

So, now to convince you that whatever we have used, how they have been obtained and 

how we can assure that the properties of unbiasedness standard error etc. are correct. So, 

now, I am going to consider the proofs of these results. So, I will try to give you a brief 

description.  

But my request is that unless and until you do this proof yourself using your own pen 

own book with your own hand it is difficult for you to understand. So, I will try to give 

you the steps here, but you are requested to do the same thing yourself. So, we had 

obtained here b1 by sxy  upon sxx and b0 was y bar- b1 x bar, right.  

And both if you try to see they are the linear combinations of y i's. They are the function 

of yi's. So, at least if I try to consider here b1 this I can write down as say b1 is equal to 

1
( )( )

n

i i
i

x x y y


  /sxx, right. So, in case if I try to write down this quantity here as say 

ki.  
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So, I can write down here this thing here is say k goes from 
1

n

i i
i

k y y


 , right and if 

you try to make it more simpler this will become 
1

n

i i
i

k y y


 summation i goes from 1 

to n ki right and summation ki if you try to see this is 
1

( )n
i

i xx

x x

s

 . 

So, this is n times, ok I can write down ( )i

xx

x x

s

 and 
1

( )n
i

i xx

x x

s

 . So, this becomes here 

0. So, that is why I am trying to write down here b1 as a summation 
1

n

i i
i

k y

 , right. So, 

and you can verify they are the 
1

0
n

i
i

k


 and 
1

1
n

i i
i

k x


 , ok. 

So, now if you try to take the E(b1) then I can write down 
1

( )
n

i i
i

k E y

 an E(yi) = b0 + b1 xi 

because expected value of i, i is 0 right. So, hence I can write down this quantity here as 

a  0 1
1 1

n n

i i i
i i

k k x 
 

  , right.  

So, 
1

0
n

i
i

k


 . So, the first part becomes 0 and  
1

1
n

i i
i

k x


 that you can verify. So, I get 

here E(b1)=1 that is and that establishes that b1 is an unbiased estimator of1. 
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(Refer Slide Time: 20:01) 

 

Similarly, if you want to check the unbiasedness of b0 then we try to consider 

here  0 1( )E b E y b x  . So, if you try to find out the value of y this is your 0 1x  . Do 

not write that that that   is equal to 0.  

Because you have to remember one thing we have made the assumption that E(= 0 

that mean this is over the whole population 1 over population size i goes from 1 to the 

entire populationi is equal to 0. But, when I am trying to write down here  this is 1 

upon n summation i goes from 1 to ni this will not be equal to 0, but when you try to 

take the expected value ofbar then this will become
1

1 ( ) 0
n

i
i

E
n




 . 

So, this is what I have done here and then- here b1 x . So, if you try to just take this 

quantity b0 + b1 x  because x is the x is nonstochastic, x is fixed. So, I can take out this 

quantity outside the bracket and E(b1 x ) this is that we already have proved that E(b1) = 

1. So, I can write down1 x . So, these two terms get cancelled out and we get here0. 

So, this b0 is also an unbiased estimator of0, ok. 
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So, after establishing the unbiasedness property or b0 and b1, let us try to find out the 

variances. So, we are assuming here that sincei's are IID they have got mean 0 and 

variance2. So, this y i's are also independently distributed. They will not be identically 

distributed remember because E(yi)= 0 + 1 xi and it depends on xi. So, if xi is changing 

this mean will be changing. So, I can only assume here that y i's are independently 

distributed.  

So, since I already have expressed b1 as say
1

n

i i
i

k y

 . So, I can write down 

the 2
1

1
( ) ( ) ( , )

n

i i i j i j
i i j i

Var b k Var y k k Cov y y
 

   . But, since I am assuming that yi and yj 

are independent so, this covariance will become 0 and this this part the second part will 

become simply 0. 

So, the variance of b1 comes out to be simply here ki as summation k i square summation 

I goes from 1 to n k i square and var(yi) is fixed2.  
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So, this variance comes out to be2 2

1

n

i
i

k

 . and which is here like this. And, if you try to 

simplify it here this in2 sxx this quantities nothing, but your sxx. So, 1 sxx gets cancelled 

out here and you get here the variance of b1 as
2

xxs

 . 

(Refer Slide Time: 23:30) 

 

So, you can see it is not difficult and similarly if you want to find out the variance of b0. 

So, variance of b0 can be written here like this because 0 1b y b x  . So, this will 

be 2
0 1 1( ) ( ) ( ) 2 ( , )Var b Var y x Var b xCov y b   . 

So, we already have obtained the variant of b1, but we have not obtained the covariance 

between y bar and b1. So, we try to find out the 1( , )Cov y b using the basic definition can 

be written here like this and if you try to substitute the value of y  and E( y ) and b1- 

E(b1).  

You can simply a just simplify this expression to this thing. And, if you try to substitute 

here the value of your y i, well you can obtain it directly also, but to make it more simple 

I will ask you to just substitute her this value of yi =0 +1 xi +i and try to simplify it 

here I have given you here the complete expression.  
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And you can see here once you take this expectation sign inside is all the terms are 

becoming 0. The first term will become because i
i

 is 0 this term also becomes 0 and 

this term also becomes here 0 and you already have proved that this is equal to 0, right. 

So, all these terms will become 0. So, 1( , )Cov y b =0 and hence variance of b0 comes out 

to be 2x /n + sxx.  

So, hence I can write down now here
2

2
0

1( )
xx

x
Var b

n s


 
  

 
. So, you substitute it and 

you will get here the same expression which we have written earlier ok. And, one thing 

you have to notice here that yeah that this here bracket sign, right. So, this will play an 

important role in making all these expectations to be 0. 

(Refer Slide Time: 25:52) 

 

Similarly, if you try to find out the 0 1( , )Cov b b , so, that will be simply covariance 

between 1 1( , ) ( )Cov y b xVar b . So, you already have proved that this quantity is 0. So, 

and 1( )Var b you already have obtained just substitute it here and you will get 

the 0 1( , )Cov b b . 
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So, you can see that is not difficult and after this I am just going to give you one property 

very important property I am not going to do the proof here. This is called the BLUE 

property B L U E. BLUE property and this property is also mentioned as a Gauss-

Markov theorem which states that the ordinary least square estimator b 0 and b1 

possesses the minimum variance in the class of linear and unbiased estimator. What does 

this mean? 

 If you try to take any parameter saycan have different estimators – 1̂ , 2̂ , many 

things first of all you try to sort out all the estimators which are unbiased. So, some of 

them will be biased some of them will be unbiased. So, we try to choose here all the 

estimator which are unbiased. 

Now, you try to find out the variance of each of the estimator each are unbiased then you 

will see out of these estimator the estimator which is based on ordinary least square 

estimation say b that will have the smallest variance. So, this property assures that the 

way you have computed the value of0 and1 using the b0 and b1 that is giving you an 

value which is unbiased and which got the minimum variance. So, you can believe on it 

that these are very good values. 

And, we call it as if and we call it as that they are the best linear unbiased estimator. So, 

this here B L U and here E, BLUE, right. So, this property helps us in in assuring that the 
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way you have obtained this numerical value they are going to give you the good value, 

right. 

(Refer Slide Time: 28:15) 

 

Now, I try to obtain the estimator of2, but before that let me try to do some homework. 

We try to define here the quantity residual some of squares. Residuals some of squares is 

denoted by SSres. SS and in  the subscript res this is defined as sum of squares of the 

residuals.  

So, this is 2 2

1 1

ˆ( )
n n

i i i
i i

e y y
 

   . The values of ˆiy  can be a can be written here as a b0 + b1 

xi and if you try to write down here all these things over here and then I can simplify this 

quantity as  2
1

1
( ) ( )

n

i i
i

y y b x x


   . And, if you try to open it this will come out to be 

the 2

1
( )

n

i
i

y y


 + the square of second quantity.  

And the cross project of first and second quantity, right. If you try to identify what are 

these things the first term is your s yy which is 2

1
( )

n

i
i

y y


 . The second term is b12  and 

this term here is sxx and what about the third term? Third term if you remember b1 was 
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1

2

1

( )( )

( )

n

i i
i

n

i
i

x x y y

x x





 






which is 1

( )( )
n

i i
i

xx

x x y y

s


 
. So, this quantity 

1
( )( )

n

i i
i

x x y y


  can be written as 

b1 sxx.  

So, this quantity here is written as say b1 sxx and so, this becomes here- 2 b12  sxx. So, if 

you try to simplify it just try to substitute the values of b1 here I can obtain this 

expression over here and finally, this will come out to be like this syy- s2xy /sxx and if you 

try to write down this quantity as a sxy/sxx into xy. So, this can be written syy- b1 sxy, right. 

So, this is the form of SSres ok. 

(Refer Slide Time: 30:44) 

  

Now, we can obtain the estimate of2 using this SSres, right. Since and you can see here 

this SSres is a function of yi's and now we assume here that yi are say normally 

distributed. They have got a normal distribution with mean0 +1 xi and variance2. 

So, I am now trying to associate distribution with yi because if you want to use the 

property of chi square the random variable yi has to be normally distributed. So, 

assuming that yi is normally distributed this SSres has a chi square distribution with n- 2 

degrees of freedom.  

Well, the I’m not giving you here the prove because that is the part of statistics and we 

use it as a standard result. So, I can write down here SSres /2 will follow a chi square 
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with n- 2 degrees of freedom and in case if I try to find out the with the expectation of a 

chi square random variable, then the expectation of a chi square random variable is the 

same as the degrees of freedom. So, my random variable here is SSres /2 and which is 

equal to here n- 2. 

So, I can write down here expected value of SSres = (n- 2)2 and from there I can write 

down here that 2̂  is SSres /(n- 2) right. Or even I can write down here it in a much 

simpler way SSres /(n- 2) =2 and from there I can obtain that 2̂  and 2̂  has been 

indicated by s2 . So, now, s2  becomes an unbiased estimator of the2, right. 

(Refer Slide Time: 32:52) 

 

So, now you can see these things are not very difficult and once you have obtained the 

estimate of2, now you try to consider the variance of b0 and b1 and try to replace2 by 

s2  here. So, this will give you the estimators of the variance of b0 and variance of b1.  

And, if you try to take the square positive square root of these quantity, so, this will give 

you the standard errors, right. So, it is not difficult at all. You can see a little bit thing, 

little bit knowledge of statistics and small algebra is only needed to obtain these things. 
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Well, after that just for your information possibly these properties may be useful for you 

I am just trying to state here simple properties of these estimator that if you try to obtain 

1
0,

n

i i
i

x e


 if you try to obtain 
1

ˆ 0,
n

i i
i

y e


 and 
1 1

ˆ
n n

i i
i i

y y
 

  . And, the fitted line which 

you have obtained this will always pass through the sample means x  and y . 

Well, these properties are not actually difficult to prove. If you try to look into any of the 

book it will just a matter of only couple of minutes. So, do not think that these are very 

difficult. So, that is why I am not giving you here, but my objective as I said it is 

essentially to motivate you to for decision sciences and for data sciences.  

So, that is the reason I am not giving you the proof of these properties. So, now we come 

to an end for this lecture. Now, this lecture was very important at least in my opinion 

why because I established that whatever you are trying to compute those values have to 

be good values.  

So, you are trying to compute0 and1, so, you have to assure that you are computing a 

good value. So, for that I have given you Gauss Markov theorem and that will insure that 

those numerical values are good; good in the sense of having some nice statistical 

properties, right. 
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And, then I have shown you that different outcomes of R software they are not coming 

from sky they are simply computed and one should know that how they are competed 

because that will help at a later stage. How? When you are trying to work with a very 

huge dataset, then you will not have an opportunity to look the data physically with your 

eyes, but you have to look into these values. For example, if you find that the value of 
2̂  or s2  is coming not to be very huge.  

Then possibly you can look into the dataset and possibly you can do something to control 

the variability first because if the data has lots variability your model will not be good. 

That is the first principle. Sometimes whatever outcome you are getting here they may 

not really match with what is happening in the real life. 

These types of observation will trigger inside your mind and would try to indicate that 

there is something wrong somewhere. Where wrong? That we do not know we have to 

look into the data, we have to look into these values and we have to find what wrong is 

happening at what point because of this the outcome is not matching with the real values. 

For example, sometime you see that the coefficient of the1 is coming out to be negative 

whereas, you can see that when the values of independent variables are increasing then 

the response is also increasing. So, why this is happening there can be some reasons.  

For example, although I am not considering here, but if you try to see such an outcome 

that will trigger in your mind that well there can be problem of multicollinearity into data 

and then you try to look into those diagnostic, those tools and try to solve the problem. 

As I said whenever the data comes data will not follow your rule data will have its own 

rules, that will have its own conditions and you are the one who should know how to 

control those condition and get the good outcome.  

So, that is why it is very important for you that just by looking at the outcome of the 

software will not be helpful, but you must know that what are the values which are being 

computed so that if the software outcome is not matching you can look back into your 

analysis and try to use better tools, maybe some other type of analysis, right. So, ok so, 

now, you practice you think about it and I will see you in the next lecture. Till then, 

goodbye.  
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