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Hello friends, welcome to the course Essentials of Data Science with R Software - 2 

where we are trying to learn the topics of Sampling Theory and Linear Regression 

Analysis. In this module on Linear Regression Analysis, we are going to begin with a 

new chapter on Simple Linear Regression Analysis.  

So, in the last lecture we started a topic on linear regression analysis and I had tried my 

best to give you an overview of what is regression analysis, and what is our aim, and 

what we want to do. So, now in this lecture, I am going to start the topic on simple linear 

regression analysis.  

And after this the next chapter will be multiple linear regression analysis. Well, that is 

important for you to understand what is the difference between the two and why I am 

doing this chapter first. Well, in the case of simple linear regression analysis we consider 

only one independent variable that is there is only one variable, which is affecting the 

outcome. 

Well, this may not really hold in practice because in practice there are usually more than 

one independent variables which are affecting the output variable, but through this 

chapter, I will try to give you the basic concepts, and when you are trying to do in a 

simple framework with one independent and one dependent variable then it is easier for 

me to convey the concepts more easily.  

And whatever the concepts we are going to learn in this chapter they will simply be 

extended to the case of multiple linear regression model, but the problem will be that in 

the case of simple linear regression model I will be able to show you the things more 

clearly graphically as well as analytically. 
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And, in the case of multiple linear regression model when we have more than one 

independent variable then it will be difficult for me to show you each and everything 

graphically, but whatever the interpretation, whatever the concepts we are going to 

develop in this chapter they will simply be extended to the multiple linear regression 

model.  

So, this is the reason that why this is very important for all of us to understand and first 

learn the simple linear regression analysis, right. So, now in this lecture I am trying to 

give you different concepts, different definitions, and I will try to give you an idea that 

how the model is developed. And in the case of multiple linear regression model we will 

be dealing with the more realistic model, ok. So, let us begin our lecture with this slide. 

(Refer Slide Time: 03:07) 

 

So, in the case of a simple linear regression modeling as I said we consider the modeling 

between the dependent and only one independent variable, right. And when we are 

considering and when there is only one independent variable in the linear regression 

model, then the model is generally called as simple linear regression model. And when 

there are more than one independent variables in the model then the linear model is 

termed as multiple linear regression model.  

So, this is the basic difference between the simple and multiple linear regression model. 

There is another terminology and you should be careful about that thing that is called 
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multivariate linear regression model. So, in case of multivariate linear regression model 

there are more than one multiple linear regression model, which are considered together, 

but we are not going to consider it here, but that is important for you to know, ok. 

(Refer Slide Time: 04:08) 

 

So, now let me take a simple example and through that example I will try to give you 

different types of interpretations and various types of concept. So, in the last lecture I had 

taken an example where we have collected the marks of the student on three different 

variable, but now in this chapter I am trying to simplify that example and I will be taking 

the same example, but in the setup of simple linear regression model.  

So, we assume that here that we have a data set and where we have considered the marks 

of the student depend only on one variable and we have considered the variable that was 

number of hours per week of study. So, we know that the number of hours of per week 

of study that is going to affect the marks obtained in the examination. 

And now our objective is this that we want to find out the relationship between the marks 

of the student and the number of hours per week of study in terms of a mathematical 

equation, in terms of a statistical model. So, that is our basic objective, right. 
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(Refer Slide Time: 05:24) 

 

So, now this is the same data set that we considered earlier, but now you can see here 

that we have 20 students over here, and we have collected the marks of those 20 student 

and the corresponding value of X, which is indicating the number of hours per week, 

which a student has studied. So, these are the corresponding observations.  

So, the interpretation goes like this, suppose if I take the student number 1. So, student 

number 1 has got 180 marks and the student has studied for 34 hours in a week. 

Similarly, the student number 2 the student has got 116 marks and he has studied 12 

hours in a week. Similarly, student number 3 the student has got 118 marks and the 

student has studied 15 hours a week. So, this is our setup. 
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So, now we consider here a linear regression model and this is actually a linear model 

because, if you remember we had defined that how to call a model to be a linear model. 

That it mean; that means, the expected value of y or the average value of y is considered 

and then you try to find out the partial derivatives of expected value of y with respect to 

each of the parameter, which are 0 1, here. 

And, if the partial derivative of say expected value of y with respect to 0 and with 

respect to 1 this comes out to be independent of say these parameters, then this model is 

called as linear model. And remember one thing when I am talking of the parameters 

here, parameters are essentially related to the regression parameter which are 0, 1. 

And similarly in the case of multiple linear regression model the regression parameters 

will be in terms of . Why I am telling you here? Because, you will see later on that we 

will also assume a probability distribution on the random error component and that will 

have its own parameters. 

So, the linearity of the model is defined with respect to the regression parameters. And if 

you try to see this model which I am denoting here by y = 0 + 1 X it is something like 

y = mx + c, which I had discussed in the last lecture. So, what I have done that this c has 

been replaced by  term, 0 and m is replaced by the term 1, and the interpretation of 0 

and 1 that is similar to the interpretation of the parameters m and c. 
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If you remember, if you try to plot a simple equation, linear equation, then the intercept 

term on the y axis that is indicated by c and the slope of the parameter that is indicated 

by m that is that tan of this  = m. So, you will see at a later stage that we will have a 

similar interpretation for 0 and 1 also, but this model or the equation, which I have 

written here this is comparable with y = m x + c, right. 

So, in this model which is called here as a simple linear regression model, y is our 

dependent variable or this is also called as the study variable. And there is only one 

independent variable, which is denoted as X and this is also called as explanatory 

variable.  

And in the books if you try to see this y and X have been given different types of names 

also, but I am concentrating on these two terminologies only, and here this 0 and 1 

these are the parameters of the model which are called as in general regression 

parameters or regression coefficients. 

And out of this these two parameters this 0 is the intercept term and 1 is the slope 

parameter. So, as the name suggests intercept term this intercept term is going to indicate 

the part on the y axis, which is intercepted by the line and 1 is going to indicate the 

slope of that parameter.  

And here we are adding here one more term , this  is an unobservable error component 

because when you are trying to collect the observations in practice this observation will 

not be exactly following this model, but there will be small deviations and those 

deviations are coming because of those factor, which are beyond our control and all and 

the effect of all such factors is being indicated here by the term , ok. 
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So, and  has a very important role. Actually in simple words if I try to explain it then  

accounts for the failure of data to lie on the straight line and it represents the difference 

between the true and observed values of y that we are going to obtain, what is this thing I 

will try to show you with some graphical also. 

And this is actually also termed as disturbance term and this is actually a random error 

component and this is also called as random error or say random error term. And as we 

have discussed there can be various reason, there can be several reasons for such 

differences in the observed value and the true value of the response variable, right. 

For example, if you try to consider the in case of multiple linear regression model then it 

makes better sense that there are some variables which are affecting the output, but we 

are unable to take observations on them because, they are qualitative, they are not really 

observable and there will be some inherit randomness in the observations, ok. 
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So, we assume here, that these random errors are iid that, that means, they are 

independently and identically distributed since they are random variable. So, we assume 

that they have got mean zero. So, we assume that here expected value of  is 0 and we 

assume that the variance of  is 2, which is constant.  

The reason that why we try to take the mean 0 is that when you are trying to observe the 

observations in real experiment, so since we are not really going to observe the exact 

values of the y. So, some values are will have the random error in the positive direction 

and some observation will have random errors in the negative direction. 

So, in totality if you try to consider the set of all the observation we can expect that the 

random error in the population is almost 0, and that we expect the same thing to happen 

in the sample also. At this moment I am not associating any probability distribution with 

, I am not assuming that whether they are normally distributed or binomially distributed, 

but I am simply assume that they have got the mean 0 and variance 2.  

At a later stage when we are going to develop the test of hypothesis and confidence 

interval then, we will need an assumption on the probability distribution of . At this 

moment we are aiming to estimate the values of regression coefficient and 2.  

So, as long as we are only doing the estimation process through the principle of least 

square which we are going to use first we do not need any assumption on the probability 
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distribution. On the other hand, there is another technique which is a maximum 

likelihood estimation. 

So, in case if you are going to choose the maximum likelihood estimation for estimating 

the regression coefficient; and this variance then in that case, right from the beginning, 

right from this slide you will need to assume the a probability distribution for this 

random error component. 

So, this you have to be clear that we are going to use here two types of approaches one is 

principle of least square and principle of maximum likelihood. The principle of least 

squared do not require any assumption on the probability with density function of  as far 

as estimation is concerned, but the maximum likelihood estimation will require the 

assumption of probability with density function, right from the beginning. 

But, after that after estimation when we are trying to construct the confidence interval or 

test of hypothesis, then in both the cases either the estimators have been obtained by least 

square or by maximum likelihood, we will need the assumption of some probability 

density function for , ok. 

(Refer Slide Time: 15:51) 

 

So, now since we have assumed that expected value of  is 0 and we also have assumed 

that the independent variable is fixed. It is fixed by because, it is controlled by the 

experimenter, well in case if the experimenter makes a mistake in giving the value of the 
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input variable means you cannot consider it to be random that is a mistake that is an 

intentional mistake. 

So, that is why this X is going to be considered as fixed or non stochastic. And since y 

here depends on  so, this y becomes random variable. And since we have assumed the 

E( to be 0 then I can write down here E(y) = 0 + 1 X + expected value of  and so, 

this becomes quantity becomes here 0. 

And also note that we are also assuming that 0 and 1 are fixed. And as we discussed in 

the introductory part this 0 and 1 sometime can be random also in that case we have a 

random coefficient model and this explanatory variable or the independent variable can 

also be random, and in that case the model is called as random regressor model, right. 

But, anyway we are going to consider here the setup where X 0, 1 they all are fixed. 

So, in this case E(y) = 0 + 1 X and variance of y is given by 2. Why? Because, you 

can see here variance of y will become variance of 0 + 1 X +  and since you are 

considering this quantity to be fixed. So, that is why this will be same as variance of  

because variance of a fixed quantity, variance of a constant is 0, ok. 

(Refer Slide Time: 17:46) 

 

So, now what is the setup that we start conducting the experiment, how? We try to 

choose a value of x say x1, and then we try to observe the value of the response variable 



11 

 

y which is denoted as say y1. So, x1 , y1 this is going to be the going to be a pair of 

observations. Why this is pair of observation? Because, x1 and y1 both are inter related to 

each other.  

When you are giving the value of x1 only then you are going to get the value of y1.So, 

then we try to repeat this experiment and we choose another value of independent 

variable say x2 we give it to the experiment and we then we try to observe y; and then we 

obtain another value of the response variable say here y2, and we try to repeat this 

experiment suppose a small n number of times and we have here the value of response 

variable as yN.  

So, essentially we will have a small n number of observation which are denoted as xi, yi 

on the independent and dependent variable. And now, what we have; what we have to 

do? Our objective is this that using these observations we have to find the value of 

regression coefficient 0, 1 and another parameter 2, right.  

And if you can recall that in the earlier lecture I had given you an example I had shown 

and I was trying to explain that if in this equation y =  mx + c, if you know x or y or the 

second option is if you know m and c then what will happen. So, this is exactly on the 

same lines that if you note the value of the parameter m and c then, you know the entire 

line all the properties of the line, where it is intersecting it on the x axis, y axis for a 

given value of x, what will be the value of y and each and everything. But just by 

knowing the value of x and y you will not come to know say information about the this 

linear model. 
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So, now we have so we have conducted the experiment and we have taken here the 20 

students and then we have obtained, we have collected the data on the marks, which they 

have obtained and we also ask the student that how many hours the person has studied, 

right. 

So, this is how we have collected the 20 observations on xi and yi. So, this is our setup 

now, this setup we will assume that this is going to follow the model 0 + 1 X +  and 

based on that we will try to find the values of 0 and 1 in the first step, and after that we 

will try to find out the value of 2. 
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Now, in order to find out or in order to estimate the regression coefficient 0 and 1 are 

different types of estimation methods can be used, principle of least square, method of 

maximum likelihood and there are some other things also.  

So, that we are not going to consider here, they are something like orthogonal regression, 

inverse regression there are several other techniques also. And among all these 

techniques the least square estimation and maximum likelihood estimation are the 

popular methods for estimation, right. 

(Refer Slide Time: 21:48) 
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So, first we try to consider the least square estimation and our objective is this using the 

principle of least square we will try to find out the value of 0 and 1. What is your 

principle of least square? Suppose I have got the values of say here xi and yi and I try to 

plot this paired observation. So, suppose I am plotting them here like this. 

Now, what is my objective is this that I want to find here a straight line. So, the principle 

of least square says that please try to find out a line like this one in such a way which is 

passing through with the maximum number of points and in which the random error, 

which is happening here like this, which I am denoting by this vertical line this error is as 

minimum as possible, right. I will try to explain you in more detail as we move further. 

So, now we assume that all these xi and yi’s they are following the model y = 0 + 1 X + 

. So, this means, every pair of observation will also follow the same model, right. So, I 

can write for a given pair of observation xi and yi the simple linear regression model will 

also satisfy this equation and this equation is given here, that yi = 0 + 1 Xi + i, i =1, 

2,…,n, right. 

So, all this observation which you have written here they are going to follow the line y =  

0 + 1 X and this line, purple line will be your here 0 + 1 X. So, you can see here you 

are assuming this line purple line, but your observations are not exactly lying on the line 

some of them are lying on the line, but some of the observations are above the line and 

some observation are below the line, right. 

So, this is what I meant that if you try to see that there is random variation in the values 

of y, and whatever is this random variation that is indicating the presence of i’s. And 

that is what I said that some points will be lying above the line and some points will be 

lying below the line; like this over here I can draw. So, some points are lying above the 

line and some points are lying below the line. So, in general I will say that the in general 

the average error is 0, right. 
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So, as I tell you as I explain you briefly now I try to explain it more formally, suppose 

this is your here line. Y = 0 + 1 capital X. So, all the observations, which are obtained 

they are assumed that they will follow this line. So, all those points which are lying on 

this line over here they are indicated by Xi and Yi capital Xi, capital Yi. 

Now, in practice you are getting the observation which are not exactly lying on the line, 

but suppose let me take this observation. This is lying above the line, and this is the 

observation say xi a small xi small yi which you have observed. So, I can say this 

observation small xi and small yi that is expected to lie on this line, right.  

So, there is here some error here. Similarly, if you try to take here another observation 

here this observation is expected to lie on this line, but it is lying somewhere here so, 

there is some random error into it, right. So, these are your here i. I will try to show you 

more clearly.  

So, the principle of least square says that you try to find out the values of 0 and 1; such 

that the random errors are as minimum as possible and the lines and the line is passing 

through with the maximum number of points.  

So, what we try to do? We try to minimize the sum of squares of the difference between 

the observation and the line; that means, this observation and this observation. We will 

try to minimize this distance and this distance is for here each and every observation. 
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So, and the values of 0 and 1 that you will obtain from there they will be called as least 

squares estimation. And in particularly when you are trying to minimize these errors in 

the vertical direction here, you can see here in this direction then this method is called as 

direct regression method that is alternative name. And you will see in the literature that 

there are different types of regression method, inverse regression, orthogonal regression 

etc. 

(Refer Slide Time: 27:48) 

 

So, but here we are going to concentrate on the this vertical difference or the direct 

regression method, right. So, now I can reformulate it in a very simple sentence that, 

when the vertical difference between the observations and the line in the scatter diagram 

is considered and the sum of squares is minimized to obtain the estimates of 0 and 1, 

the method is known as direct regression.  

At this moment there comes a question, that why I am writing here sum of squares? Why 

cannot I simply minimize the sum of this random errors i goes from 1 to n? Here there is 

a problem there are actually several problem. First problem is this sometime this i  is 

going to take a positive value and sometime it is going to take a negative value when it is 

measured with respect to the line.  

So, it is possible that the sum of all these random errors might be very close to 0 and that 

may indicate that the random variation in the data is very very less, right. So, that would 
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indicate that as if the data is containing very small amount of error and it will become 

difficult to justify it, if this is not really indicating the correct scenario because the data 

has error. 

So, what we try to do? That we have here two options that I can consider here the 

absolute values because I want to get rid of the sign or the second option here is 2

1

n

i
i



 . 

Now, in the next slide I will try to show you that how to minimize it. So, when we are 

trying to minimize it then using the principle of maxima and minima if you try to 

differentiate this part this will give you a linear equation, which can easily be solved, 

right. 

But in this case the  this error can also be minimized, but in this case there is no closed 

form solution, right. So, that is also considered, but in this case the solution can be 

obtained only for a given set of data. For a given set of data you try to use any 

optimization technique and try to find out the value of 0 and 1. 

So, depending on the optimization method that you will use in this case the values of the 

0 and 1 they are going to be different and this method is called as least absolute 

deviation method, right.  

So, we are not going to consider here although this is also popular and I will try to take 

up that issue at a later stage when we want to choose some important variable, but not 

now at this moment we are going to concentrate on the sum of squares, ok. 
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So, now what we try to do? That we are not assuming any assumption about the form of 

the probability distribution of this  i and we are simply assuming that i’s are iid, iid 

means they have been identically they are identically and independently distributed.  

Since they are independent so, for the covariance between i and j for i not equal to j 

will be 0 and we already have assumed that expected value of i = 0 and variance of i is 

equal to 2. Actually these assumptions on the properties of random variable will not be 

required to estimate the parameters, but they will be required when we try to establish 

the properties of the estimator, right.  

And as I said the assumption that we need this i’s to be for example, normally 

distributed that will be utilized when we are trying to construct the test of hypothesis and 

confidence interval for the parameters, right. 



19 

 

(Refer Slide Time: 32:27) 

 

So, now let me try to first explain you the method of direct regression. So, in the direct 

regression what I am trying to say? That you try to consider the sum of squares of the 

random errors which is 2

1

n

i
i



 . And since you have written that yi = 0 + 1 xi + i.  

So, this i is yi minus 0 minus 1 xi and so, I can rewrite this thing in terms of 0 and 1. 

Now, after this you simply have to use some optimization principle so, that you can 

minimize this function and obtain the values of 0 and 1. So, one of the most simple 

principle to optimize that we know is the principle of maxima and minima.  

So, employing the principle of maxima and minima and using the principle of least 

squares that we will try to obtain the estimates of 0 and 1. So, now what we do? We try 

to consider this function S 0, 1 and we try to differentiate it partially differentiate it 

with respect to the parameters 0 and 1. 



20 

 

(Refer Slide Time: 33:40) 

 

So, when I try to partially differentiate the function S with respect to 0 we get here this 

equation, and when we try to differentiate this function S with respect to 1 then we get 

here this equation. Now, what we have to do? We simply have to solve these two 

equation and we have to obtain the value of 0 and 1.  

For example, if you try to see here that is very simple, but if I try to show you here this 

equation can be written as here 0 1
1

( )
n

i i
i

y x 


  , right. So, this can be written as minus 

2 and 
1

n

i
i

y ny


 , where 
1

1 n

i
i

y y
n 

  that is the sample mean of yi.  

And similarly we can define the sample mean of the values of xi here like this, right. So, 

this I can write down here say n y - 0n - 1n x . And similarly this equation can be 

solved as summation here  minus 2 and this will become here 
1

n

i i
i

x y

  - n 0 -1

2

1

n

i
i

x

 , 

right. So, in case if you try to solve this equation and this equation then, what we obtain 

here? 
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So, if you simply try to put these two partial derivatives equal to 0, that is the principle of 

maxima minima and try to solve it you will get the values of 0 and 1. So, this is these 

two equations are called as normal equations. And whatever you are going to obtain after 

solving this thing these will be two values of 0 and 1, and they will be called as 

ordinary least square estimates of 0 and 1. 

(Refer Slide Time: 36:24) 
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So, means if you just try to do a 1 minute algebra and can if you try to solve it you will 

get the value of 0 as here like this, 1y x and actually that you can see from here also 

in this equation if you try to substitute this equation to be equal to 0, then you get here 

n y  or n will get cancel out y - 0 - 1 times x = 0. 

So, this implies that 0 will be y - 1 x . So, definitely if you want to know the value of 

0 then you need to know the value of 1. So, when I try to solve this second equation 

which is here from here you will get the 1 = 1

2

1

( )( )

( )

n

i i
i

n

i
i

x x y y

x x





 






. 

So, you can see here that these values are depending only on your observations xi and yi 

that you have obtained through the experiment. So, now, this 0 is going to be known to 

us only when 1 is known to us. So, what we propose? That, first we try to obtain the 1 

using this expression and then we try to substitute it, this value over here in this 

expression. 

But now, let me try to explain you the symbolic problem. You are trying to represent this 

1 this quantity which you have obtained here by 1, but 1 is the population parameter 

that is unknown to us, but this is the value which you have obtained here this can be 

obtained on the basis of given sample.  

So, this is essentially an estimator of 1 and an estimator of a parameter in statistics is 

denoted by say 1̂ or 1 you have to indicate it something. So, when you are trying to put 

the hat on this parameter that is indicating that the value with the hat can be estimated on 

the basis of given sample of data. 

So, now you try to replace this 1̂   here and you will get here like this. So, we are 

denoting this 1̂  here as say here b1 and this will now become this will now become 0 

hat and this 0 hat is indicated by b0. So, this is what exactly I have written here, right. 

So, this b0 is something like 0̂ and b1 is something like 1̂ .  
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So, the value of 1̂ is obtained here 1

2

1

( )( )

( )

n

i i
i

n

i
i

x x y y

x x





 






, which I have symbolically 

denoted by sxy and sxx. So,
1

( )( ),
n

xy i i
i

s x x y y


   2

1

( )
n

xx i
i

s x x


  . So, you can 

look that these two quantities are somewhat similar to the variance except that there is no 

divisor, right.  

So, the value of 1 can be obtained by sxy upon sxx and once you obtain this value you 

can substitute in the value of 0 and you can obtain the estimator of 0, which is 

indicated here by b0, right. So, this is called as least square estimate. So, this is 

essentially the ordinary least square estimate of 1 and this b0 is the ordinary least square 

estimate of 0, right. 

(Refer Slide Time: 40:59) 

 

So, what you have to; what you have obtained here, that you have obtained the values of 

0 and 1, but now there is a doubt whether the value which you have obtained here for 

0 and 1 are they really going to make this sum of square minimum or maximum that 

we do not know. 
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So, what we try to do? The principle of maxima and minima suggest that we have to take 

the second order derivative, and we have to check whether these values are really 

maximizing or minimizing the sum of squares. So, what we try to do?  

We obtain here the Hessian matrix, so this is obtained here by the second order partial 

derivative of the as function with respect to 0, 1 and with respect to 0 and 1 that is a 

very simple algebra if you simply differentiate it you will get here this thing. 

And then, in order to check whether this quantity is going to be maximized is a positive 

or negative we try to obtain its determinant and this determinant is obtained here, say 

here absolute said determinant value of H, remember this thing this is determinant not 

absolute, right. And this is here like this and this comes out to be 2

1

4 ( )
n

i
i

n x x


 which is 

always greater than 0. 

So, hence this matrix here capital H is a positive definite matrix and therefore, this 

function S(0, 1) has a global minima at the values b0 and b1. So, now I can be confident 

that the value which you have obtained here b0 and b1 here they are really going to 

minimize the sum of squares, right. 

(Refer Slide Time: 43:06) 

 

So, now if you observe what you have obtained, you started with the model y = 0 + 1 X 

+ , where 0 and 1 are the population value so, they are unknown to us. So, what you 
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have done, you have estimated the value of 0 by b0 and the value of 1 by b1. So, b0 and 

b1 are the values of 0 and 1 respectively, which can be obtained on the basis of given 

sample of data.  

So, now what do I; what I can do? Now, I have obtained the unknown values of 0 and 

1 on the basis of given a sample of data, and I can rewrite my model as b0 + b1 X, b0 and 

b1 X they are going to be some numerical value. It can be something like y = 2 + 3x. So, 

now you have obtained this equation and in simple way I can say you have obtained a 

model. 

Now, you have a mathematical equation, which is going to represent the entire process 

and that will give you each and every information. So, you can see here when we say that 

we are going to find a model this is equivalent to saying that we want to know the values 

of parameters.  

Although, one parameter here it is 2 which is still unknown to us and we will consider 

how to estimate it, right. So, this is what you mean by finding out a models, right. So, 

modelling is equivalent to the estimation of parameters in the assumed form of the model 

and you also have assumed of that the form of the model is a linear equation, ok. 

(Refer Slide Time: 45:14) 

 

Now, what are the interpretation of this b0 and b1? So, for that you try to recall the 

equation y  = mx + c, what was you there m? m was indicating the slope of the line and c 
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was indicating the intercept term of the line something like this is your here c and this 

here is your slope say  then m = tan , right.  

So, the same interpretation can be extended to this line also because, you have obtained 

here a line something like b0 + b1 x. So, this is comparable with mx equal to c where b0 is 

equivalent to here c and b1 is equivalent to here m. 

(Refer Slide Time: 45:59) 

 

So, now what are the interpretation? So, since you have written the model as expected 

value of y = 0 + 1 X something like y = mx + c. So, 1 is the slope parameter, and if 

you try to see 1 is the differential coefficient of expected value of i y with respect to x; d 

of expected value of y with respect to dx. What is this? This is simply the rate of change 

in the average value of y when there is a unit change in the value of X. 

So, the value of 1 is indicating the rate of change in the average value of the response 

variable when the input variable has been changed by one unit. So, same is the 

interpretation for b1 also. So, if you get here for example, say b1 equal to 2 that means, if 

you try to change the value of x by 1 unit then there will be change of 2 units in the 

average value of y.  

So, you had a model here something like y = say here 0 + 1 X that was expected and 

your X was number of hours of study, and y was marks obtained in the examination. So, 
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now if you obtain here the model here plus some 2 times X so, that is indicating that if a 

student studies for 1 hour more, then the marks are going to be increased by 2 units.  

And definitely this also will have a sign say plus minus. So, plus is going to indicate that 

the rate of change is positive that means, increasing this is increasing that means the if X 

changes by 1 unit then, expected value of y will change by this 1 unit and this will 

increase; whereas, if this coefficient is negative that means, if X changes by 1 unit then 

expected value of y changes by  1 unit, but it decreases, right.  

And similarly 0 is your intercept term that means, if you try to substitute X equal to 0 in 

this model. Then, you get here 0 is equal to expected value of y. So, this is what the 

intercept term is going to indicate the average value of y when explanatory variable is 0. 

So, suppose if and the same interpretation goes for the estimated value b0 also.  

Suppose, if you get b0 = 3 or say 30 then your model becomes here 30 plus twice of X. 

So, you are trying to say that if a student does not study at all. Even then the student will 

get 30 marks and it is possible because, the student is attending the classes also and 

possibly he has learnt in the class also, right. 

(Refer Slide Time: 49:27) 

 

So, the model which we have obtained after substituting the estimated value of 0 and   

this is called as fitted model or this is called as fitted linear regression model and that is 
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our objective that we want to find, this is our real model actually. So, when we say find a 

model we are trying to say that find the fitted model. 

And in this model if you try to substitute the values of xi for example, you have obtained 

in your example the values of xi that how many number of hours a student is studying, if 

you try to substitute these values in the fitted model then the corresponding values which 

you will obtain for y they are called the fitted values and they are indicated by ˆiy . So, yi 

is the observed value and ˆiy  is the fitted value, right. 

(Refer Slide Time: 50:31) 

 

And if you try to plot it on your this scatter diagram that we considered earlier. So, if you 

remember this was your here the true model, but these observations they are going to 

follow something like yi = 0 + 1 xi + i. So, you can see here that now based on the 

fitted model you also have obtained the value of ˆiy .  
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So, this ˆiy  is going to lie here because, yi hat is the value, which is now lying on the 

fitted line, right. And the difference between the value which you had observed and the 

value which you have obtained on the basis of fitted model for y this is called as residual, 

right. So, for a given observation so, this i-th observation, what I can do? I have observed 

value yi and then I have fitted the model here yi = b0 + b1 x.  

So, I substitute here the value of x equal to xi and I try to obtain here the fitted value and 

whatever is the difference between yi and ˆiy  this is the i-th residual. So obviously, you 

can see that the model is going to be good if these e i’s are as small as possible and 

ideally if this is, if they are 0. So, that all the points which you have observed here they 

must lie on the line, right.  

So, this is the concept of residuals. So, usually this is the difference between yi and ˆiy , 

but in practice we try to consider yi minus ˆiy  at least in this lecture, I am going to 

consider this definition the difference between yi and ˆiy  is indicated by yi minus ˆiy  I am 

not subtracting like yi hat minus y. So, the value of the ei can be obtained by yi minus the 

ˆiy  which is obtained by the fitted model b0 + b1 xi, right. 

So, now you can see here now, you have obtained here the model y equal to b0 + b1x you 

have obtained the values of  ŷ , if the model would have been following the model which 

you have obtained on the basis of given sample of data, right. So, now you have done 

you are done you have obtained the model and then you also have obtained the amount 

of error a sort of an idea about the amount of error, which is occurring in your data set 

because, you assume the model now you have obtained the fitted model.  

So, there is some difference between the observed and the true values of y. And based on 

that we can do many things we can see whether my model is good fitted or bad fitted if 

those e ii’s are 0, then my model is the model which is best fitted on the basis of given 

sample of data but, in practice it will never happen; there will be some values and our 

objective is that as we try to make it as minimum as possible.  

So, you can see here now in this lecture I have taken very small thing, very simple thing 

and I have tried to give you the idea that what is the interpretation of slope parameter 

how it is estimated on the basis of sample, how what is the interpretation of 1, how it is 
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estimated on the basis of given of sample, and then how is the difference between the 

observed and true values are obtained. 

Now, this concept will definitely help you when we try to consider the multiple linear 

regression model and there we will introduce more notations more concepts also, but my 

idea in this lecture was to give you a basics of this regression modeling. So, you are 

familiar with those terminology so, it will become very easy for me to explain you the 

concept of multiple linear regression model. 

But, the question here is how can we estimate all these things on the basis of R software? 

So, in the next time, I will try to take the same example which I have considered here 

and then I will try to show you that how these values can be obtained in the R software, 

but then the difference will be once you see the output you know what are you getting 

and how these values have been obtained. 

Earlier you are simply clicking, clicking, clicking on the software and you will getting 

some values you were trying to possibly do some hit and trials for the interpretations and 

that is how you are possibly working means, I expect that you are not doing this thing, 

but this is really happening with many people and that is my objective in this course that 

I want to make people learn that what is the correct way. So, you try to revise this 

concept, try to think about it and I will see you in the next lecture, till then good bye.  


