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Hello friends, welcome to the course Essentials of Data Science with R Software 2, 

where we are trying to learn the topics of Sampling Theory and Linear Regression 

Analysis. In this module on the Sampling Theory with R Software, we are going to 

continue with our chapter Bootstrap Methodology. So, you may recall that in the earlier 

lecture we introduced the concept of bootstrap methodology and I have taken an example 

to show you that how it works. 

My idea of taking the example was that I wanted to take out the fear from your heart, that 

ok, this is not something very complicated or difficult which you cannot understand. 

Now, you should be confident that, that was a very simple methodology and the example 

which I took for computation of the standard error that is pretty simple. You can always 

compute the statistics; you can always compute the standard error, variance, correlation 

coefficient whatever you want,, right. 

So, now in this lecture I will try to concentrate on two aspects; whenever we are trying to 

find an estimator after finding out the estimator we are always interested in finding out 

its bias and its standard error. Why? You may recall that I already have explained it in 

couple of lectures several times, that why this bias is important and why do we consider 

the unbiased estimators, why standard error is important, why do we consider the 

concept of variability. 

So, now how to estimate this bias and standard error using the bootstrap methodology? 

This means, now there are no barriers for you, whatever statistics you want to consider 

for the estimation of the parameters. Just consider it, forget about the theoretical 

properties, your interest lies in the amount of bias or standard error that will be available 

to you that is my promise. So, that is the advantage. 
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And that is why this, these are the topics which lay the foundations of data sciences, 

these are the computational intensive techniques. Once you are working in a more 

complicated environment, then you need better computing power, better computers, 

better computer structure, better database management system. But at least you know the 

way out now, that if I try to use this bootstrap I can handle the situation. 

You will have no option now onwards in your life to say, sorry sir I cannot do, it is 

difficult, this should this sentence should be deleted from your life as far as you are 

working in the statistics. You can always say sir this may not be the 100 percent correct 

value, but this is a very good value. And this is our approach of life. In our life we 

always have two option either to leave the problem or we try to solve the problem. 

Once I have taught you now you have no option in your life, you have only one option, 

you will never say no, but you will try to solve the problem as much as you can. After 

that   you can improve the solution that is always welcome, but you are not allowed to 

say no. 

So, now let us start our this lecture, in this lecture I am going to first introduce the 

concept of empirical distribution function. And, then I will try to show you how you can 

estimate the bias and standard error, right. So, let us start, but before we go to our 

methodology let me try to show you something over here. 

(Refer Slide Time: 04:16) 
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So, he is Bradley Efron, he is working at Stanford University. And, he  introduced the 

bootstrap methodology in 1979. And after that he and his colleague Robert J. Tibshirani, 

they had written a book this An Introduction to the Bootstrap. And if you try to read it 

from this book, this is a very simple and elementary book. 

And   so, we are considering the contribution of Bradley Efron, later on you will see that 

I will also consider the contribution of Robert Tibshirani, because he introduced the 

Lasso l a s s o. Lasso that we are going to discuss later on ok. So, now, we let us begin 

our lecture. 

(Refer Slide Time: 05:07) 

 

Now, you see in statistics whenever you are trying to do something, the first basic 

ingredient is distribution function, probability distribution function or cumulative 

distribution function. And that is our starting point and then we try to draw all statistical 

inferences based on that population, which is characterized by the corresponding 

distribution function. 

Now, think about a situation that in practice you have no population you have no idea 

what is my population. What you have in your hand? It is only a sample of data, a small 

sample of data. Now, the question is how will you get the probability function or the 

distribution function? The data is not going to tell you well my parent distribution is this, 

but now you have to depend on your own logic and hands these hands only. 
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You have to do something so, that you can know the distribution function, otherwise you 

cannot move forward. So, now a very good option is that instead of hitting at random 

here and there to find out the parent distribution of the sample, one good option is this 

why not to ask the sample itself. But, when I ask the sample, the sample is different 

dumb, the data is defined dumb, it is not going to reply us. 

So, now we have to develop some tools so, that we can retrieve the information about the 

parent distribution from where the sample has come. It is just like you find a small child 

somewhere and his parents are not around. And if you ask the child who are your 

parents, what is your address the child is so, small that it just cannot tell you what will 

you do, will you leave that child there itself or you will try to do something? 

You will try to find out that who are the parents and after some time, you can reach close 

to the truth distribution, right. You can reach close to the family of that boy. And if you 

work more finally, you will reach to the true parent of that children; the same story goes 

here in the bootstrapping. 

So, now we are going to first understand that once you have got a sample, how can you 

construct the distribution function just on the basis of sample, and I promising you this is 

very simple when you try to do it with bootstrap. So, let us try to do it ok. So, now, we 

know that the cumulative distribution function is obtained on the basis of a probability 

distribution function, or a probability mass function, or a probability density function. 

And this is and this actually creates the foundation of all statistical inference, whatever 

we want to do in a statistics this is based on this cumulative distribution function this is 

called a CDF. Now, when we do not have any such information about the probability 

distribution, then we cannot obtain the CDF. And, then we try to attempt to find it on the 

basis of given set of data.  

And, we use the concept of Empirical Distribution Function, which is called, denoted as 

EDF, E is coming from empirical, D is coming from the distribution, and F is coming 

from function. And well, I can tell you the final outcome, this EDF usually approximate 

the CDF well for last sample size.  
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Now, the next question is how large is the large and how small is the say small. So, I will 

say the rule of thumb is that if your statistics is very simple, then the sample size say I 

mean 30 and 40 will be sufficient, but if your statistics is complicated, then you have to 

take larger sample size. 

(Refer Slide Time: 09:44) 

 

So, now let us try to understand what is this EDF. Suppose we have a sample of size 

small n denoted as x1, x2,…, xn. This EDF is a discrete distribution that gives equal 

weight to each data point, weight or equivalently I can say probability. So, I have got 

here a small n number of points. 

So, if I say here probability of each xi is simply 1 upon n, so, all x1, x2,…, xn are equally 

probable. And based on this concept, now we conclude or we fix that we assign 

probability 1 upon n on each of this xi. And based on this we try to create the CDF, then 

the CDF is going to be a step function. Step function mean, it will be something like this 

here, here, here and like this and these jumps are going to be here at 1 upon n, right. 
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So, now based on this we have to construct our empirical distribution function. So, let 

me try to take a simple example to explain you how it is done. Once you understand the 

example, you will see that it is very simple. Suppose a dice is roll 100 times. What are 

the possible outcomes of the dice? They are 1, 2, 3, 4, 5 and 6 numbers on the upper 

face. 

So, we roll the die 100 times and we try to count that how many times 1 has come, how 

many times 2 has come and similarly how many times 6 has come. And we record that 

the number of times this xi equal to k that is k is the point on the upper face. So, once I 

take k equal to 1; that means, the number of points on the upper face of the dice which 

are obtained as 1 is 12. 

So, 12 times number 1 is obtained, 20 times number 2 is obtained, 10 times number 3 is 

obtained, 18 time number 4 is obtained, 24 times number 5 is obtained and 16 time 

number 6 is obtained. So, what is the frequency? The frequency is defined by the total 

number of occurrence divided by the total number of possible number. 

So, here the number of occurrences here is 12 out of 100, so, this becomes here 0.12. 

Similarly the frequency or I should actually call it relative frequency, because there are 

two types of frequencies; absolute frequency and relative frequency. So, here frequency 

means relative frequency. So, the relative frequency of point number 2 is 0.20, the 
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relative frequency of point number 3 is 10 upon 100 which is 0.1. And, similarly the 

relative frequencies of 4, 5 and 6 are also obtained, right. 

So, this relative frequency is obtained here by this expression that the number of xi equal 

to k divided by say small n. So, that is essentially the proportion of x in the sample x1, 

x2,…, xn, right. And   is here my sample space, right that is the set A, ok. So, now based 

on this I can define the empirical distribution function. 

Remember when you study the probability theory in statistics and when we try to teach 

the probability distribution and cumulative distribution function PDF and CDF. Then, 

you try to obtain the CDF using the PDF, ok. The same concept is being used here, now 

we have obtained the distribution of the probabilities on the given data set on the basis of 

given data sets, right. 

And similarly as you try to obtain the CDF from PDF in statistics that is the cumulative 

density function, cumulative distribution function from the probability density function. 

Similarly, we try to find out here empirical distribution function from this frequency 

distribution, which has been obtained by the relative frequencies, which is defined here 

by this  which is the proportion of x1, x2,…, xn in A, where A is denoting the even that 

is number of say this xi is equal to k, right. 

So, this is the set of those values. So, now, this can be defined as simply here f̂ ; f̂   is a 

symbol for EDF, because CDF is usually defined by capital F. So, we are trying to 

estimate it, so, we define it by or indicated by f̂ . So, this is going to be simply 

collection of all this relative frequencies. So, now, I can see here whatever  relative 

frequency I have obtained here, they are going to define our EDF, right. Do you think 

that is it very difficult, ok? 
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So, in other words if you want to make it a make a general, then I would say here that  

assigns to a set A in the sample space of x its empirical probability, which is computed 

by like this. The estimated probability of A is number of the data point, number of xi’s 

which are belonging to the set A divided by the total number of points. 

So, this is essentially the proportion of x1, x2,…, xn  in A. And yes, I am not giving you 

here the proof mathematical proof, but that proof is available in the books and from 

there, I can assure you and that we can prove that the vector of observed frequencies 

which is obtained here   … etc., which is our empirical distribution function EDF is 

a sufficient statistic for the true distribution. 

What does this mean? So, you can see here that your F is your here something like true 

distribution it is a true distribution, but it is unknown to us. So, it is just like our 

unknown parameter. Now, when I am trying to estimate it here by  which is based on 

the observed values and this is something like  which is known on the basis of given 

sample of data then we are trying to say this is a sufficient statistic. 

So that means,  is the sufficient statistics for F. What is these sufficient statistics? So, in 

statistics when we try to derive an estimator, then we want to judge whether the 

estimator is good or bad. So, for that several criteria have been proposed in statistical 
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inference, they are like unbiasedness, efficiency, consistency, sufficiency, completeness 

etcetera.  

So, each of this criteria has got a different interpretation and sufficient statistics means, 

that if you have a sample then this sample has certain amount of information and that 

information is contained in the any small say n sample value like x1, x2,…, xn. Suppose if 

I say n equal to 20. 

So, this so the information contained in the; is contained in the 20 values. Now, suppose 

I obtain a statistic, suppose I say I obtain sample mean, and I want to estimate the 

population mean using sample mean. So, sample mean is going to be estimated on the 

basis of these 20 observations. 

So, now I am saying whatever the information which is contained in those 20 

observation, the same information is contained in sample mean also or the sample mean 

is conveying us the same information, which these 20 observation or a small n number of 

observations are trying to convey.  

This is one of the most simple way to understand, the concept of sufficiency although 

this is a mathematical, there is a mathematical definition and there are some theorems 

and rules, which have to be satisfied before we can be confident that my statistics is a 

sufficient statistic. 

Well I am not going into those details over here, but if you wish you can refer to any 

statistical inference book and you will find the concept of sufficiency. So, in a very 

layman and simple language I can say if as if an estimator is sufficient, we have a reason 

to be happy that it is going to give us a good value. So, this is exactly what I am trying to 

prove here that whatever EDF you have obtained on the basis of sample of data, this is 

the sufficient statistic for the true data true distribution function. 

True distribution function is unknown to us. So, whatever value you are going to get 

from the EDF, you can depend upon it that is going to give you a good value ok. So, this 

means that all the information about capital F is contained in the sample x1, x2,…, xn is 

also contained in   that is the empirical distribution function. 
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So, now I come to another aspect. You may recall that if we have a true distribution 

function F and suppose we want to estimate a parameter . Then, this  is actually a 

function of some function of here F; I am not using here the symbol here F, because 

otherwise that will create confusion, so, I am calling it here is a  is equal to t F. So, this 

is some function. 

And from this one we try to estimate  , but now my problem is this we do not know this 

F or , rather I have here empirical distribution , but my objective is the same that I 

want to estimate the same parameter  by the same estimator . So, the question is how 

to estimate  on the basis of .  

So, for that I use here the plug in principle, the literal meaning of plug-in is that you 

simply try to insert or replace the value. So, now, let us try to first understand what is this 

plug-in principle and what are the plug-in estimators. So, the plug-in principle is a simple 

method of estimation of parameters which is based on Empirical Distribution Function; 

EDF. 

And suppose I have a parameter  which is a function of F and it is denoted by t(F), then 

this parameter can be estimated by its plug-in estimator which is defined as is equal to 
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t( ). That means, what are you trying to do? That you wanted to estimate the parameter 

or the function  or t F based on the actual distribution function capital F. 

And, but now I am trying to use it use the empirical distribution and we are trying to 

estimate  by  and  is obtained just by replacing by  and note one thing that t remains 

the same, t here in  and t here in  they are the same, right.  

So, we are using the same function and then we are simply trying to replace the unknown 

frequencies by estimated frequencies or the unknown F by now empirical. So, this   is 

called as say plug-in estimate of the population parameter , right. 

(Refer Slide Time: 22:56) 

 

So, now this plug-in principle is going to play a very important role in estimating 

different types of quantities using the bootstrap methodology. So, now, I try to explain 

you what is the basic principle of bootstrap methodology. So, we know that all the 

statistical methodologies and their results they heavily depend upon the assumed this 

probability distribution. 

If you assume that the sample is coming from normal distribution, then the properties 

will be entirely different, if the sample is coming from binomial. So obviously, when this 

information is not available, then one possible solution is that and it is reasonable to 
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assume that the observed sample contains all the available information about the 

underlying distribution, which is unknown to us. 

So, now the question is how to know this underlying distribution. So, one sample one 

simple solution is that we can use the resampling methodology. We can use the 

resampling technique and using the resampling technique on the available sample itself 

will provide many more samples. And we assume that every sample will provide a 

similar information which can be retrieved from the resampling of the distribution, right.  

(Refer Slide Time: 24:32) 

 

So, when I say resampling it is something like suppose if I know the population and 

suppose I draw here thousands of samples, but which is not possible here. So, I am trying 

to draw suppose thousand sample from the same sample, and then we are trying to go 

back in the reverse direction. And we are trying to construct the probability distribution. 

So, suppose  is the unknown parameter which we want to estimate. And suppose  is a 

function of x1, x2,…, xn this is a statistics which is based on the sample values and it is 

used to estimate the parameter . So, in order to do anything we need the we first need 

the sampling distribution of , for drawing any type of statistical inferences on . Means 

ideally we should have known the exact distribution of . 
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What does this mean? For example, you know in statistics that if x1, x2,…, xn this is 

following a normal distribution with  and 2. And, suppose if you assume that 2 is 

known, then you know that 
/

x

n





 this follows a normal distribution. And if 2 is 

unknown, then you know that 
/

x

s n


 which is the estimated standard error s this follows 

a t distribution with n minus 1 degrees of freedom. 

So, ideally what I am trying to say that this is my statistics, these are my two statistics 

and these are the exact distribution normal or say here t under two different condition. 

So, now, what I am trying to say finding such exact sampling distribution of  may 

always not be possible, and many time it is difficult or too complicated to handle, right. 

This is what I mean by exact sampling distribution. So, now, means if I can find out such 

type of information, then such information can be used for finding the standard error of 

any estimator or confidence interval for any of the estimate of  including the bias, right. 

(Refer Slide Time: 26:59) 

 

So, now as I said that this principle is going to immediate the usual statistical procedure. 

For example, suppose you assume for a while that the true distribution is known to us. 

Then, you try to draw different samples from this population and you try to estimate the 
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parameters and based on those parameter values you try to create an empirical 

distribution of . 

Now, this condition is that true distribution is unknown to us that is not known to us. So, 

sample cannot be drawn from there. One sample cannot be drawn from there how you 

can construct the empirical sampling distribution of ? So, what we try to do? Instead of 

doing this, we try to draw the samples through resampling technique from the original 

sample. And, we try to construct an empirical distribution from the values of . 

So, this bootstrapping method mimics the data generating process as if the samples are 

drawn from the original true distribution. So, now, this bootstrapping methodology is 

simply trying to copy the true generating process, right and that is why whatever the 

results you are going to get from here you can depend upon them. 

(Refer Slide Time: 28:42) 

 

So, now let me try to translate the bootstrap methodology, what we have understood 

through example in a more formal way. Suppose there is a population of capital N units 

and this population has got units U1, U2,…, UN. Well once you try to associate a random 

variable with this U, then these values will become x1, x2,…, xn.  

For example, U is some human being and X is the height. So, X1 will become the height 

of that concerned human being, ok. So, now I can say that suppose there is a variable 
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capital X, and though and then these capital N number of values will also have the 

capital N number of values on this variable. 

So, let all these values x1, x2,…, xN, they are clubbed together and they are indicated by 

here capital X. Now, I am using here the symbol underscore, right. So, this X is     is 

going to indicate all the values which are associated with 1st, 2nd  up to nth unit. Now, 

suppose from this population I try to draw here a sample. 

This sample is going to be some small n number of values out of this capital x1, x2,…, 

xN, right. This i1, i2,…, in there i is going to indicate the particular sample. Suppose if I 

say here i equal to here say here 3, then this is my 3rd  sample. And 3rd  sample and then 

whatever the values I am getting here, they are indicated as follows.  

Suppose we are getting a small n number of values. So, I will be getting here 1st  value, 

2nd  value up to here nth value. And these values are obtained in the 3rd  sample, so, I will 

try to write down here I mean 3 here. So, 3 subscript 1 is going to denote the 1st  value in 

the 3rd  sample. The 3 subscript 2 is going to denote the 2nd  value in the 3rd  sample. And 

similarly here 3 subscript n is going to denote the nth value in the 3rd  sample. 

Similarly, if you try to take here the 4th sample, then 4 sample will be denoted as a 4 1, 4 

2 up to here 4 n, right. So, what does this mean? Suppose if I say that I have got here a 

sample here, say 1, 2, 3, 4. Now, I try to draw here sample say first sample s1 and I get 

here a value 4 1 2 3. 

So, this is my here sample number 1; 1st  value, this is my here sample number 1; 2nd  

value. This is my here sample number 1; 3rd  value and this is my here sample number 1; 

4th  value. And similarly if I try to draw here the second sample, suppose this comes out 

to be 4 3 2 1. 

So, this is 4 is now going to be 1st value in my 2nd  sample, 3 is going to be the 2nd  value 

in the 2nd  3 is going to be the 2nd  value in the 2nd  sample. And 2 is going to be the 3rd  

value in the 2nd  sample and 1 is going to be the 4th  value in the 2nd  sample. So, this is 

what I mean here by this symbol, right.  

So, we get here these numbers and then we try to define the sampling units, this is what I 

have explained you here in this example. And, then I try to define the values x1, x2,…, xn, 
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right. So, you can see here now this x1, x2,…, xn is denoted by say  symbol. And, then I 

try to define ,  is going to be defined as  ( ); that means, this is a function of x1, x2,…, 

xn and this is an estimator of , right ok. 

(Refer Slide Time: 33:08) 

 

So, now what I try to do here? That suppose my parameter is suppose population mean. 

So, I am not trying to take a particular example. So, that I can really explain you what is 

happening. So, this population parameter is defined as here  which is the 

population mean and this is unknown to us. 

And, suppose we decide that we would like to estimate  by  and  is going to be a 

function of x1, x2,…, xn say , which is suppose you try to choose here , 

right. Now, I try to choose here a sample.  

So, we already have drawn here a there a sample x, now that is my original sample. And, 

now from this sample which was x1, x2,…, xn  we are trying to say choose here n 

possible values. So, basically I am trying to choose a permutation of n values. And 

whatever is my permutation that will give me the value of my 1st sample. 

So, suppose this is a rearrangement of small n numbers. And then corresponding to these 

numbers I try to choose the value of corresponding x and which is going to create my 
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bootstrap sample. So,  is going to give me the first bootstrap sample. For example, if I 

try to suppose my original sample is something like four values 4, 2, 4, 5,, right. 

And, now I try to draw here a sample random sample with replacement, which is going 

to be one of the possible permutations of these four values. Suppose this sample comes 

out to be here s star which is here 2, 5, 4, 2, right. Now, corresponding to this 2 you try to 

choose thus the value of the corresponding value of x, which is your here x2. 

And, now it is indicated here as say  corresponding to this 5, you try to choose x5 

which is going to now the 2nd  unit in my sample 2nd  drawn unit. And this is indicated by 

here. Similarly, you try to take the choose the 3rd  value in the sample. And this is 

going to be the 4th  value in the original sample which is denoted here by .  

And, similarly you try to take the 2nd  value from the original sample which is going to 

constitute the 4th  value in the bootstrap sample that is the 4th value of x4, right. 

(Refer Slide Time: 36:09) 

 

So, this is how one can create the bootstrap samples. And this process is repeated a large 

number of times. And suppose we repeated capital B number of times and we obtain B 

bootstrap samples independently. So, now, these bootstrap samples are denoted as  ,   

,…,  , you can see here I have denoted here the symbol here . 
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So, this is actually indicating the first sample. So, whatever is the process which I have 

explained to you here this can be repeated and say capital B number of times, and we can 

obtain  ,   ,…,  . Now, based on this  ,   ,…,   simply trying to estimate your .  

So, you will have here first value of  using the first sample, second value of  using the 

second sample and Bth capital Bth value of  using the capital Bth sample, right. So, 

now, I have here as     ,  ,…,  . Now, this B can be actually 500, 1000 or even larger. 

Now, with the help of computer actually it does not make any difference, this is a matter 

of only just couple of seconds or couple of minutes. Means, if you try to draw the sample 

of 500 or 1000, I think usually this is a matter of only some seconds only. So, the rule is 

this if I try to make B as bigger as possible my approximation will become better and we 

will be getting good results, right.  

So, with the help of computers we can make this B as large as we want to approximate 

the sampling distribution of the statistics. Now, so you have obtained such B samples 

and you have obtained the capital V values of . Now, I am asking please see what I am 

doing.  

I am saying just find out the mean and variance of these B values that is all, I am not 

asking you a very big thing to do. So, the arithmetic mean of these B values will be 

defined as *

1

1 ˆ( )
B

b
b

x
B



 , I mean the that is the bth sample. 

And the variance using the concept of capital S2  which was 2 2

1

1
( )

1

N

i
i

S x x
N 

 
  . This 

quantity can be the variance can be computed by this quantity VB, right. So, this is 

simply the variance that can be obtained in r using the var command, right ok. 
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Now, this is the statistical rule. Because, up to now we do not know what we have done 

is really good or bad. So, now, here comes the statistics and it has been proved using the 

statistical tool statistical methodology that for large small n and capital B if you means if 

your sample is reasonably large and your B is also large, then this quantity VB. What is 

here VB? You can see here this is your here VB, right. 

• This VB approximate the variance of ( ) 

; that means, suppose you had known the true population. That means, you had knew the, 

suppose you knew the capital F from this capital F you try to find out the exact variance 

of  means you try to compute .  

And, then you try to find out its exact variant just like we have done in the case of simple 

random sampling, that we had a population from there we draw a sample of size n. Then 

we computed  y  and then we computed variance of y , right. So, what bootstrap is saying 

that VB will approximately while approximate the value of variance of (x). And, the 

empirical distribution of theta hat  -  ( ) will be approximately close to the true 

distribution of theta has  x X which is here the population. 

This means here what? Suppose you knew the true population, then you would like to 

find out these value ( ) – ( , because everything is known to you and then you will try 
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to find out the distribution of this quantity. But, this is known to us sorry this is not 

known to us  population value is unknown to us. So, we cannot compute it. So, we are 

trying to estimate it on the basis of sample and those samples have been obtained on the 

basis of this bootstrapping. 

And you can notice here that this theta 0 hat is the bootstrap estimate of , right. So, if 

you try to use it here, then both the distribution are going to be close enough. And in case 

if you want to find out the bootstrap estimate of standard error of , you simply have to 

take the positive square root of the variance that you have obtained that is square root of 

V B.  

So, you can see here this is very simple and straight forward to obtain any distribution 

any standard error. And similarly this concept can be extended to any parameter. 

(Refer Slide Time: 42:26) 

 

This I will try to show you with some example. Now, in case if you want to find out the 

bias of this estimate, then now it is very simple. The estimate of bootstrap bias can be 

obtained by just using the bootstrap estimate of  minus its empirical distribution 

function,, right. 

So,  is the true parameter and  is based on the empirical distribution . And which is 

simply the plug-in estimate of . And, if you try to do it here it is very easy to compute 
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this bootstrap estimate. Well, you are not going to compute it manually because software 

will give you this output, but my idea of to, of explanation is you should know what are 

you getting. 

(Refer Slide Time: 43:35) 

 

And, similarly if you want to estimate or find the standard error of , earlier I said that if 

you have got the variance of y  high bar and if you take its positive square root, possibly 

the properties of square root of variance of y  or estimate are not going to be the same as 

the variance of  y estimator. 

But, now I am saying that if you want to do it just take the positive square root of the 

variance of the bootstrapped values that you have obtained, through the resampling 

methods that is all. Now, what this  can be your correlation coefficient  can be your 

coefficient of variation or  can be any function of x1, x2,…, xn. 

Now, you can see the importance. This can be any complicated function of x1, x2,…, xn. 

And, this function can be the same function which earlier used to makes a make our life 

difficult from the algebra point of view. But, now at least we are unable to possibly solve 

the algebra, but at least numerically for a given sample, we can have a nice value, we can 

have a good value ok. 
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So, now let me try to take a very simple example to just illustrate what I have done. So, 

suppose I have the same example which I took earlier in the lecture that I have here 4 

balls, which are of different colors and they have got different weights, 2 kg, 4 kg, 6 kg 

and 8 kg. And, suppose we are interested in finding the standard error of the coefficient 

of variation of the weights of these balls. The coefficient of variation is defined as the 

standard deviation divided by mean. So, these are your here population value. 

So, the it is something like / means  is the, so  is the standard deviation and  is the 

population mean and both are actually unknown to us. So, what we propose? That we 

replace  by ̂ and  by ̂ , where ̂  and ̂  are based on some sample values. 

So, what we try to do here now we use the bootstrap methodology. So, we have here a 

sample of size 4, I try to draw here bootstrap samples of size 4 by SRSWR. And, then I 

try to find out the standard error of this CV, how? Let me try to show you. 
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Suppose, this is my population or the original sample, I try to draw here 4 samples. Say 

first sample comes out to be 2, 2, 2, 2; that means, all are red colored ball, they have got 

the same weight. Now, I try to find out the CV of this sample in R I have given you here 

the screenshot of the outcome, I have just taken the square root of variance of these 

values 2, 2, 2, 2 divided by mean of these values. And this comes out to be 0  ; 

obviously, because all the values are the same. So, the variance is going to be 0. 

But this is possible, so, I have taken this example to assure you that this can be there 

though do not get confused. Now, I try to take one more bootstrap sample, suppose this 

comes out to be 4, 6, 6, 4 and I try to find out its CV. So, now, the CV is coming out to 

be 0.2309401. And, similarly if I try to take here 3rd bootstrap sample over here, and 

whose values are coming out to be 2, 8, 6, 4 and I try to find out its CV which is coming 

out to be close to 0.51.  

And, then I can continue here and then I can means, obtain here B such samples. And for 

each of the sample I try to compute the CV, now you can obtain you can see here you 

have got here the values CV1, CV2 up to here CVB. Now, I am saying just try to find out 

the variance of these values and take their positive square root. 

So, simply trying to compute this, this is the variance of this take the positive square root 

of the variance this is going to give you the standard error of these CV values, right. So, 
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you can see here this was very simple and now you can imagine that instead of CV you 

can take any other thing. In some more example, I will try to show you that when we 

have more than one variable, say two variable then I can also compute the correlation 

coefficient ok. 

So,, right, so now, this is the time to stop in this lecture. I have given you the basic 

methodology basic principle behind this bootstrapping and then I have taken an example 

to convince you that it is not difficult and how it can be executed. Well, on the next class 

I will try to do the same thing in the software also. And after that we will consider the 

confidence interval estimation. 

First I want to make sure that you have understood these things, and you know how to 

compute at least these quantities or you know how to execute these things in R software. 

So, I would say try to think about it, try to settle down these concepts in your mind, try to 

convince yourself that the results are going to be good, try to take some artificial data 

sets where you know that what is the population values. From that population you try to 

draw. 

Suppose a sample and from there you try to find out the bootstrap values, then you try to 

take couple of more samples. And you try to repeat the same bootstrap methodology. 

And, then try to see well you will see that the values which you are obtaining even by 

taking different sample from the same population, they are not differing much  . They 

will be differing, but you always have to keep in mind that you do not know the true 

value; once you do not know the true value you have no other option. 

So, try to make this approximation as good as possible, and now you can see that this 

will be depending on whether your sample is representative or not. So, that is why all the 

sampling techniques once again comes into picture, all those fundamentals whatever you 

have studied they come here in the picture. And, if you do not know and suppose 

somebody draws a wrong sample even the bootstrap sample bootstrap estimates will also 

be wrong. 

Then, please do not blame the statistics. The problem lies with the candidate who do not 

know statistics. And the bigger problem is this without knowing the statistics he has 

jumped into the area of data science. So, once again I have proved that statistics is an 
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integral part of data science. So, if you want to become a data science you have no 

escape route now. You have to study only then you can be a successful data scientist. So, 

wish you all the best and I will see you in the next lecture, till then good bye. 


