Essentials of Data Science with R Software - 1
Professor Shalabh
Department of Mathematics & Statistics
Indian Institute of Technology Kanpur
Lecture No. 06
Built-in Commands and Bivariate Plots

Hello, friends welcome to the course Essentials of Data Science with R software 1. In which
we are going to handle the topics of Probability theory and Statistical inference. So, you can
recall that in the last couple of lectures, we have learnt the very basic operations of the R
software like addition, multiplication, and other types of operations on a scalar or vector and

SO On.

Now, in this lecture and in the next lecture, I will try to pick up some more topics of the R
software, which I am going to use in the forthcoming lectures. So, in this lecture, I am going
to take up the topic of Built-in commands and as simply a plot command. You know, that R
has a wonderful capability for creating beautiful graphics and very informative graphics. And
it depends actually on you that what type of graphics do you think is going to convey the
hidden information inside the data. That will be your choice, that will be your decision, but in
this course, just to make the things very simple, I am just going to use here one type of simple

plot.

So, in this lecture, very quickly, I will try to discuss that how are we going to use the Built-in
commands and how are we going to use the plot command to create some simple graphics.
Well, I know that most of you have done these things in the R software, but it is important for
us to have a quick review. So, definitely, I will not be going into much detail, but I will very

quickly brush up the knowledge. So, let us begin our lecture.

(Refer Slide Time: 01:59)
___|

Built in commands
Some commands are readily available in R to compute the

mathematical functions.

How to use them and utilize them in computing various quantities?

So, you see in R software, we have two options that either I can write a command on the R
console and execute the program or there are some Built-in commands which are available or
which have been programmed by some other people. So, those commands are readily
available inside the R software to compute different types of mathematical functions. For
example, if you want to multiply, or if you want to sum, you want to find out the arithmetic
mean etc. So, my objective here is very simple that I want to show you that how are you

going to use them and how you have to be careful while using those operations.

(Refer Slide Time: 02:35)
___|

Maximum e
5max)(2.4,(7.3] -3.2, 4)| \WRConswle
R /> max(2.4, 7.3, =-3.2, &)

1] 7.3

>

ol

> max(/ci2.4, 7.3, -3.2, 4))
[1] 7.3

" R Conriole
>max{ c(2.4, 7.3, =3.2, 4))

1] 7.3

For example, that we try to take care a couple of examples to illustrate that how are we going

to handle it and how you have to be careful. Well, there is a long list of the such functions,

2

but definitely, it is not possible to take up all the commands which are available inside the R
software, but I am sure that if you try to learn these basic commands after that, there should

not be any problem for you to understand those commands.

Now, let me try to take here one simple example. Suppose you want to find out the maximum
value for a given data set. Suppose, I have two option here, the first option is this, those
people who are good in programming, they can write up complete program for find out the
maximum values. But those who are not good in programming, it is advised and preferable
that you can or they can use the built-in function, which can directly compute the maximum

value out of a given data set.

And similar is the justification for all other commands also. So, in case if you want to find out
the maximum of a given data set, then the command here is m a x max. And the rule here is
that you have to write down the values inside the parentheses. So, if you write here max and
inside the parentheses, if you try to write down the values, then it will give you the maximum

among the available values which are given inside the parenthesis.

But now there is a question. In order to answer that question, first, let me try to pose here two
examples. You can see here [want to find out here the maximum of four values 2.4, 7.3, -3.2,
and 4. So, you know that 7.3 is the maximum value and if you try to operate it on the R
console, it will try to give you the value here 7.3. And you can see here, this is a screenshot.
But if you try to see here, that in this example, I have not used the ¢ Command. ¢ command
means when [am trying to give here the values 2.4, 7.3, -3.2, and 4, | am not using here the ¢

command to combine these values but I am simply writing these values.

Now, I tried to do the same operation using the ¢ command and I tried to write down the
same values here, but I now use the ¢ command and I try to write down here all the data
values inside the parentheses, but without ¢ command and answer is once again 7.3. So, you
can see here that now, here, in this case, I have here two options that I can input the data

using the ¢ command or without using the ¢ command and it is giving us the same answer.

But that is the place where I would like to make you cautious. In this maximum command, it
is happening that if you are trying to give these values with or without using the ¢ command
both are working, but that may not really be true with many other functions. Now, you can
ask me why this is happening? One of the possible reason I can think is that because this R

software was developed by a team and when it is started different people all over the world,

3

they started contributing in this R package somebody wrote the program for maximum,

somebody wrote the program for sum, somebody wrote the program for variance etc.

It might be possible that when they are trying to write down the program, then the person
who has written the program for finding out the maximum he has written the program in
which the data has to be given without the ¢ command. But in case if somebody is writing a
program for finding out the sum, then that person may have written the program using the ¢
command that means the data has to be given with the c command. But later on, when people
tried to work together, they started converging, then they try to make such function at the
same level. So, they also introduced that if you try to give the data using the ¢ command in

the maximum function that will also work.

So, now what is happening that this ¢ command is working on the maximum with both, with
c and without c, but that will not happen always I will try to show you. So, now what you
have to do. My simple advice is that whenever you are trying to give us a set of data in the
format of a data vector, always use the ¢ command just to avoid all the confusion. Because
what will happen, I will show you that in some functions, if you do not give the data in the
format of c command, even then the output will be there. That output might be calculated in a

very different way than what you want.

Suppose you want to find out the sum of 3 numbers 1, 2, and 3. And if you simply write say
sum within parentheses 1, 2, and 3, possibly it may give you an answer only 1, that may not
add 2 and 3. But if you try to use the command sum and within parentheses you try to give
the data in terms of c, ¢ within parentheses 1, 2, 3, then possibly it will give you the answer 6.
So, now, you can see what will be the consequence, when you are trying to write down the
bigger program in the data science, you want to compute a complicated issue you want to

compute it and somewhere you are trying to use this function like sum or maximum.

And if you did not give the ¢ command it will not show you any type of mistake or error, the
R will compute the thing and R will not even inform you that there is any mistake or
problem. And once you are trying to do such complicated calculations at the end, you will not
be able to judge whether R has done the correct competitions or not because you have given

the command correctly to sum that is s u m.

So, that is why in order to make the life simple and to avoid any type of problem in the

programming, my very simple advice and sincere advice to you all is that whenever you are

4

trying to use a Built-in function try to give the data using the ¢ command that is the safest. So
now, let us come back to our slides and try to see some more operation I will try to show you

these operations on the R console also.

(Refer Slide Time: 10:01)

Minimum
" R Comole
> min(2.4, 7.3, =-3.2, 4)
[11 _3:.2“' > min(2.4, 7.3, -3.2, 4)

1] -3.2

> min((c2.4, 7.3, =3.2, 4))
[1] -3.2
- = & Comunie

> min{ c(2.4, 7.3, -3.2, 4)
11 -3.2

-
So, now, similarly, if you try to want to find out the minimum of the given values, then just
like this maximum, I have the command m i n minimum. And inside the pair of parentheses,
you have to give the values and it will try to give you the minimum value out of the values
inside the parentheses and then minimal also I have that same issue, if you try to use the
command c or do not use the command c to input the data, it will give you the correct value.
For example, you can see here that I am trying to find out the minimum of 2.4, 7.3, -3.2, and

4 and it is giving me the answer -3.2.

But here I am not using the ¢ command. But in case if you are trying to do the ¢ command
here, then the minimum of the values 2.4, 7.3, -3.2, and 4, this minimum is coming out we -
3.2. But here you are trying to use the ¢ command. So once again, I will suggest you that do
not get into this complication and simply try to use the ¢ command when you are trying to

enter the data.

(Refer Slide Time: 11:02)

Overview Over Other Functions

abs () Absolute value

sqrt() Square root

roum_:l() , floor(), cnilirlg() Rounding, up and down

sum() - p:c_ad_() Sum and product
log(), 1ogl0(), log2() 'Logarithms

_a_r:lq_:()_ = Ex.go;teﬁ;iamt_wzﬂ_on_"
;ﬁ;()_, cos(), tan(), .Trignnometricfunctio;"
asin(), acos(), atan()

sinh(), cosh(), tanh(), Hyperbolic functions

asinh(), acosh(), atanh()

—————————————————————————
Now, similar to maximum-minimum we have here different types of command, there is a
long list, but I just want to give you a glimpse and I am just trying to give you here a simple
function which we expect that possibly we will be using them or I expect that you will be
using when you are trying to write down the program for your data science, that is your
ultimate objective that is why you are here. So, now, in case if you want to find out the
absolute values, then there is a function here ‘abs’ and inside the parentheses, you have to

write down the data as a rule I will always say that just try to use the ¢ commands.

Similarly, in case if you want to find out the square root you have the command ‘sqrt’.
Similarly, for finding out rounding up and down of the number we have the command ‘round,
floor, ceiling’. And similarly, to find out the sum and product we have the ‘sum’ and ‘prod’
commands, that will mean if you try to write down the number inside the parenthesis, they
will give you the sum or product of those number inside the parentheses. Similarly, if you try
to find out different types of log functions, we have the command here ‘log, log10, and log 2’

etc.

And similarly, if you want to find out exponential function like it e raised power of here x,
then you have the command here ‘exp’. And similarly, if you want to find out here at any
trigonometric function, we have the Built-in commands here ‘sin, cos, tan’, for cosec it is
‘asin’, for a sec it is ‘acos’, and for cot it is ‘atan’. And similarly, for the hyperbolic

functions, we have the ‘sinh, cosh, tanh, asinh, acosh, atanh’. And then there is a long list, but

instead of going through these commands that we try to hear, take here some example to

show you that how they are going to work.

(Refer Slide Time: 12:45)

Examples
> sgrt(9) = R R Console
(1] 3 |> sgrt(9)

1] 3
>
> sqgrt(c(25,16,9,4))
[1] 5 4 3 2
e
> sqrt(c(25,16,9,4))
[1] 5S4 32

And then what is the advantage of this Built-in function when you are trying to work in the R
software that is my ultimate goal. So, suppose if I try to take a scalar, and if I try to find out
the square root, suppose I want to find out the square root of 9 like this. So, you can see here,
this is coming out to be simply here 3. And now I try to use the same sqrt command over a

data vector. Suppose my data vector here is 25, 16, 9, 4.

So, you will see here when this square root function is operating on the data vector, this will
become like a square root of 25, square root of 16, square root of 9, and the square root of 4.
And you will get an answer here 4,5,3,2. And this is the screenshot. So, we can see here that

there is a Built-in function that is also operating over the data as a vector.

(Refer Slide Time: 13:38)

EE
Examples
> sum(c(5;4,35241)) # R Comcle

[1] 15 > sum(c(5,4,3,2,1))
21 15
>
> prod(c(5;4;3;271))
= W R Conole

[1] 120
= > prod(c(5,4,3,2,1))
(1] 120

>

And similarly, if you want to find out here the sum and product function, suppose you want
to find out the sum of a set of numbers, so you simply try to give those numbers using the ¢
commands and try to use the Built-in command here sum, s u m will give you the sum of all
the numbers which are written inside the parentheses using the ¢ command. And you will see

here that if I try to write down here, sum of ¢ 5,4,3,2,1, this will give me the sum of 5 plus 4

plus 3 plus 2 plus 1 and this answer will come out here to 15.

And similarly, if you want to find out the product of the numbers just try to give those
numbers inside the parenthesis just like sum. You use here prod product function, and this

will give you the output of 5 into 4 into 3 into 2 into 1 which is here 120. So, before we try to

go further, let me try to show you these things on the R console itself.

(Refer Slide Time: 14:35)

=l slm]] @l s

O

> max(1,2,3.4)
[1] 4

> max({c{(l.2,3,4))
[1] 4

> min(e(l,62
1] 1
>min(l.2.3,4)

1] 1

>

> sgrt(l6)

[1] 4

> EETRRL6. 25, 3%)
Error in sqrti{lé,
> sgrt(ces(l6, 25
[1] 4 5 6

> sum(a(l, 2,3))
(1] &

> sum(1l,2,3)

[1] &

> prod(c(l,2,3))
[1] &

> prod(1,2,3)

[1) &

- 1

3.4))

25,
36))

36) : 3 arguments passed to 'sqrt’

which r$

So, if I try to take here the first example of maximum, so if you try to see here if I try to take
the maximum of 1,2,3,4. This is giving me the 4, but if [try to give here the values here like
maximum of ¢ 1,2,3,4, that is the same data set, but [am trying to give the values inside the
parentheses using the ¢ command. So, this will give me the value here 4. So, you can see here

it is not making any difference.

And similarly, if you want to find out here the minimum then instead of here m a x you try to
use the command here minimum, minimum of ¢ 1,2,3,4, will be 1 that we know and if you
remove the ¢ command from this minimum command even then you will see the answer is

coming out to be here 1,2,3,4.

Now, in case if you try to find out here the square root of some value here say 16 you can see
here that answer is 4. Well, [am trying to take an example where you know the answer so,
that you can verify. That whatever R is doing that is convincing with what you know. And
similarly, if I want to find out say here is square root of 16, 25, and 36. Suppose, I do not give
here the ¢ operator and you can see here it is not working, but if you try to give here these

three values using the c command over here, then you will see that this is working.

And similarly, if you try to use here the sum command suppose if I want to sum here 1, 2,
and 3, three number 1, 2, and 3. So, I try to use the c command, and if I try to give here s u m
it is giving me 1 plus 2 plus 3 which is 6. But, in case if I try to remove here the c command.
Let us try to see what happens it is again giving me the number here 6. And similarly, if you

want to want to find out here the product of here ¢ 1, 2, 3.

So, you can see here that we know 1 into 2 is 2, 2 into 3 is 6. So, the answer is coming out to
be 6 and you can see here whether what will happen if I do not use here the ¢ command that
is still working. So, it may happen that in some cases ¢ command is working and in some
cases, the ¢ command is not working. For example, you have seen here in this square root
command, this is not working. So, now, let us try to consider here some more commands over

here.

(Refer Slide Time: 17:11)

Assignments

An assignment can also be used to save values in variables:

> x = ¢(3,4,5,6) NE—
> x=¢c(3,4.5,86)

>y = x°2 y o >

— >y = x"2

-

>y >y

(1] 9 16 23 36 [1] 9 16 25 36
>

Now, suppose I have a variable, which is also in the form of a data vector, where the inputs
are going to be in the form of a data vector. So, now, you can see here that x is equal to here
3,4,5,6 that is my data vector, and if I try to define here a new variable y, which is simply
here x hat 2 that is x square. So, this also can be done. So, y will become here 9, 16, 25, 36.

So, that means when we are trying to define the variables in terms of data vectors, that is also

possible that is what I am trying to show you here.

(Refer Slide Time: 18:10)

=stelslall s &
e

> log(100Q)
[1] 4.80517
> exp(100)
[1] 2.688117e+43

> aha(-3)

(1] 3

> abs({e(-2,-3))

1] 2 3

> abs(-2,-3)

Exrror in abs(-2, -3) : 2 arguments passed to 'abs' which require$
>

> mean(e(1,2))

(1] 1.5

> mean(l,2)

1] 1,

>

And this is how things will work without any problem. And similarly, if I try to show you
here, some more operations, like as. Suppose, if I want to find out here, see here, log of some

value here 100 you can see here, this is not the log base 10 but this is log base. And similarly,

10

if you want to find out exponential of 100 you can see here because it is coming out to be

here 2.688.

And similarly, if you want to find out here the absolute value of here -3, this will come out to
be here 3 and if you want to find out here the absolute value of here some data vector here -2,
-3, and you can see here this is again coming out to be 2, 3, and if you want to know that,
whether the ¢ command will work in this command or not, you can see here this is not

working.

For example, I can show you here one thing. Suppose if I want to find out the arithmetic
mean of the 2 values 1 and 2, then the command here is mean. And if [try to give here mean
c 1, 2, you can see here because it will come on to be 1 plus 2 divided by 2 which is 1.5.
Now, means, I do not know whether the ¢ command is needed here or not. So, I tried to give

you here mean 1, 2, now you can see where this is going to give you only here the value 1.

Do you think that means 1 and 2 is 1. No, the mean of 1 and 2 is 1.5. But what it is doing
here, it is giving you an answer | that means it is trying to take only here the first value. This
is exactly what I was trying to tell you in the beginning that if you do not use the ¢ command,
for example, in the case of absolute it is giving you an error so you will come to know but in
the case of mean this is not giving you the correct value, but it is giving you some value, this
value is wrong, but when you are trying to execute this function inside a bigger program, then
it will not be possible for you to check each and every step for such a big data set and then it
will be computing something and you will never come to know that the value of mean has

been computed as 1.5 or 1.

Whatever is the outcome that will be used as an input to another function. So, that is what I
said that in the beginning that you have to be very careful when you are trying to use this
Built-in function. So, my ultimate methods for using this Built-in function is this handle with

care they are very useful, but you have to be very careful when you are trying to use them.

(Refer Slide Time: 20:51)

11

Bivariate plots:

Provide first hand visual information about the nature and

degree of relationship between two variables.

Relationship can be linear or nonlinear.

We discuss several types of plots through examples.

————————————————
Now, I try to come to another topic which we are going to use in our lecture, this is about the
Bivariate Plots. You know about the plots that plots will give you different types of display
and they also help us in retrieving a different type of information which is hidden inside that
data values and R has a wonderful capability to create very beautiful informative graphics.
And believe me, when you are trying to really venture into the topics of data sciences or the

subject of data science, you have to be very good in exploring different types of graphics.

Graphics will play a very important role when you are trying to work in the data sciences
because many times the information which can be understood by a graphic that is more
difficult to explain by a formula or words. For example, if I try to create here a smiley like
this one, you can see very clearly that this person looks to be happy, and if you try to write
down this the same thing, but if I try to write down here this face to be upward, instead of

upward it is downward, it will show that the person is not happy.

So, that is the advantage of using the graphics that you know very well, but instead of going
through with all possible topics or all possible graphics, I am trying to take here only 1 plot
which is a bivariate plot which I have used in the further lectures and rest depends on you that
how much you want to understand and learn the graphics in the R software. So, these
bivariate plots, they provide first-hand visual information about the nature and degree of the

relationship between the two variables.

Now, this relationship can be linear or this relationship can be nonlinear. This means if you
try to plot here a dataset, it may look like this or if a dataset is like this, it may look like this.

So, there are different types of ways by which you can determine whether the relationship is

12

linear or nonlinear that we will try to learn when we are trying to understand the different

topics of data sciences, but here I try to take 1 particular type of plot.

(Refer Slide Time: 23:17)

Bivariate plots: Scatter plot
Plot command:

x, y: Two datavectors
plot(x, y)
plot(x, y, type)

1. type
“p" for points | “1" for lines
“b" for both “c" for the lines part alone of “b"

“o" for both ‘overplotted’ | “s" for stair steps.

“h" for ‘histogram’ like (or ‘high-density’) vertical lines

|
And I try to show you with the different types of examples that how this is really going to
work. So, I am going to talk about the Bivariate Scatter plot in which I have two-dimensional
graphics in the form of that we have here X-axis, Y-axis and then we have data here in the
form of pair or something like xi, yi and then we try to plot this data here xi and here yi and

then we try to plot these values and then they will try to give us a two-dimensional plot.

So, suppose I have a data set into data vectors x and y which are given here like this, then the
command here is p 1 o t plot x, y inside the parentheses and after this, there are different types
of options which are available and that can make the graphics as informative as you want. For
example, 1 option here is to use the command here type. So now, in case if you try to use the

type is equal to p, then the graphic will be in the form of points, which is actually the default.

And if you try to use here the type is equal to ‘I, then the graphic is in the form of line and if
you try to use here the type is equal to ‘b’, then you will have your points in line both if you
try to use here ‘c' as type, then there will be lines which are only the part, alone of only b
means out of this b only lines will be there. And then if you try to use type is equal to ‘o’,
then both points and lines, they are overplotted and if you try to use type is equal to ‘s’ then
you will have a graphic in the form of stair steps and if you try to use here the type is equal to

‘h’, then the graphic is in the form of histogram or like high-density vertical lines.

(Refer Slide Time: 25:10)
13

|
Bivariate plots: Scatter plot
Plot command:

%, y: Two data vectors
plot(x, y)
plot(x, y, type) SEmE—

Get more details from help: help ("type")

Other options:

mzn an overall title for the plt_)t.
suba sub title for the plot.
xlaba title for the x axis.

ylaba title for the y axis._
as:thn y/x aspect ratio.

-
So, let us try to take a simple example and try to show you but before that, I just want to give
you one information that. Well, in this slide, I am trying to give you some basic operation,
but definitely, there are many more operations which are possible with this plot command
and my request will be that you please try to look into the help menu to understand those

commands, but some of the popular options which are needed to create such bivariate Plots.

Suppose you want to give the overall title of the plot then I have to use the command here
‘main’ in case if you want to have the subtitle title for the plot, I have to use here the
command here ‘suba’. And similarly, if you want to have here the title on the X-axis, then
you have to use the command ‘xlaba’ and if you want to use the title on the Y axis, then you
have to give the command here ‘ylaba’ and if you want to control the aspect ratio, then you
have to give the command here a s p t h e, “aspthe’ and then you have to give all these things

over here.

Mean inside the parenthesis separated by commas, just try to write down these names, and
then you try to give these options. Similarly, you can also change the color by using the
command ¢ o 1 etc. But once again, [will request you to try to look into the help and try to

see the help plot or say help type that will give you more information.

(Refer Slide Time: 26:31)

14

—fH-- —— —— —— — — —— — — — —~|
Bivariate plots: Example

Number of marks obtained by students depend upon the number of

hours of study.

Data on marks out of 500 maximum marks and number of hours per

week for 20 students are collected as follows:

Marks out of 500.maximum marks
marka_t <- c(337,316,334,327,340,360, 374,330,352,
353,370,380,3844398,413,428,430,438,439,450)

Number of hour r week
hours <- c.‘@25,,25,26,27,28,30,26,29,32,33,34,

35,38,39,42743,44, 45,45.5)

So, now, in order to explain the use of these options in the plot command, we can try to take
here a very simple example to explain to you that how are we going to work. Suppose I take
here a simple example, where we have collected the data on 20 students on their marks and
these marks have been given means out of 500 maximum marks. And you know the marks of
a student they essentially depend that how many hours the student has studied. So, that is our
belief. So, we have collected the appeared observation on the number of hours of study of a

student and the marks.

So, these 20 observations are here under the two data vectors. See here marks and here
hours. So, if a student number 1 has studied 23 hours then it is evident from this data that this
is a 23 in the data vector hours and then we have here 337 in the marks that is the first
element in the data vector marks. So, this student who studied 23 hours has got 337 marks
and this is here like this. And similarly, the second student has studied for 25 hours and the
student has got 316 marks. So, it has been written in 25, 316 and so on and this data has been

stored exactly in the same way in these two data vectors.

15

(Refer Slide Time: 28:08)

Bivariate plots: Scatter plot
plot command:
%, y: Two datavectors -

Various type of plots are
possible to draw.

plot(x, y)

plot (hours, marks)

|
Now, I tried to use here the command plot. If you simply try to use here the command plot x
y by default it will give you the points. So, I try to use here these two data vectors and if |
write plot, hours, marks. And you will get here this type of graphics you can see here that this
is here hours, this is here marks and you can see here these are their different data points. So,
this is indicating that as if there is an approximately linear relationship between the number

of hours of study and marks, so that is giving you this type of information.

(Refer Slide Time: 28:44)

=S — — — —— ——— — ——~
Bivariate plots: Scatter plot
plot(hours, marks, "1")

“1" for lines,

16

Bivariate plots: Scatter plot
plot command:
%, y: Two data vectors 'l

Various type of plots are
possible to draw.

plot(x, y)

plot (hours, marks)

Bivariate plots: Scatter plot

plot(hours, marks, /"b")
“b" for both — line and point

]
And similarly, if you try to use here, the type is equal to 1 then what will happen all these
points which are here they are joined together like this one and so on and this is the output
here. So, there are no points, but those points have been joined by lines and that is why the
type here is | which means lines. And similarly, if you want to have here points and lines both

then you have to give here the type is equal to ‘b’.

You can also write down type is equal to within double quotes try to write down here ‘b’. So,
b means both lines and points both are there. For example, you can see here these are my

points and these are my lines and so on.

17

(Refer Slide Time: 29:34)
___|

Bivariate plots: Scatter plot
plot(hours, marks, "o") -

“o" for both ‘overplotted’

So, now, we take 1 more option that you can see here, that here these lines and here points

they are separated, but if you want to join them together, then the option here is you try to use

< 2 3 2

here, type is equal to ‘0’, ‘0o’ means overplotted, that you can see here, that there are points
here and these points are joined by the line and these lines are going over the points. So, this

option will give you this type of graphic.

(Refer Slide Time: 30:09)
E—— 3

Bivariate plots: Scatter plot

plot(hours, marks, "h")

“h" for ‘histogram’ like (or ‘high-density’) vertical lines

And then in case if you use here the type is equal to h, h means high-density vertical lines
also histogram type of thing. So, all these points which are here they have been dropped with
a line on the X-axis and different type of information, we are going to use it. So, you have to

understand, how they are going to work and how they are going to interpret in the Decision

18

Sciences that we will try to discuss when we try to talk about the probability mass functions.
So, I just told you this thing, so, that you could be confident enough that we are going to use

these topics over there.

(Refer Slide Time: 30:48)
.
Bivariate plots: Scatter plot

plot(hours, marks, "s")

s" for stair steps.

-

And similarly, in case if you want to use here that type equal to ‘s’, then you will get here this
stair type of curve. You know, what is the meaning of a stair step, do you know that stairs are
like this and if somebody walks over here, it can go to the roof or some height and so, on. So,
far that you have to use here the type is equal to small ‘s’ and this will give you this type of
plot over here. So, now, what I try to do here that I try to use this data and I try to show you
these things on the R console also. So, let me try to just copy this data to avoid or to save

some time on this R console.

19

(Refer Slide Time: 31:38)

L= — =
e e Pt S—

> marks <- e{337,316,334,327,340,3%
>
> marks l
[1] 337 316 334 327 340 360 374 3%
[16] 428 430 438 439 450
> hours <- <(23,25,25,26,27,28,30.8
> hours
[1] 23.0 25.0 25.0 26.0 27.0 28.0%
(8] 26.0 29.0 32.0 33.0 34.0 35.08%
[15] 39.0 42.0 43.0 44.0 45.0 45.5
> plot(hours, marks)
> plot(hours, marks, type="p") - L - = =
> plot(hours, marks, typ--'lr) » = = l -

—ar
WOMO WD M0 &N 4D 48

-

So, you can see here this is my marks and then I tried to see here the data on hours. So, you
can see here, this is our hour's data and I tried to create here some space so, that I can show
you the graphic very clearly as this happened. So, you can see here now, this hour’s data is
like this. And if you try to plot here, plot between say hours here marks. So, you can see here

these graphics created like as here.

And similarly, if you try to change the type for example, you as I said that here that type is
equal to if you try to use it here point well this is the default and you already have got the
point. So, it will not make any change. I tried to make this graph a little bit smaller that you
can see both the things.

(Refer Slide Time: 32:30)

E——— —
R e Pt S—

PIIIiIIﬂI"I|||||||||||||||||||||==||||;:- =
> marks <- o(337,316,334,327,340,3%

>
> marks
[1] 337 316 334 327 340 360 374 33
[16] 428 430 438 439 450
> hours <- =(23,25,25,26,27,28,30.%
> hours i
[1) 23.0 25.0 25.0 26.0 27.0 28.0%
(B8] 26.0 29.0 32.0 33.0 34.0 35.08
[15] 39.0 42.0 43.0 44.0 45.0 45.5
> plot(hours, marks)
> plot{hours, marks, type="p") = - <
> plot(hours, marks, type="1") » » " - =
> plot(hours, marks, type="bl') s

| /
{

o M MU MG &N 4D am

20

Now, I try to change here that this type you can see here very clearly both the windows
together I tried to make it here type is equal to | that means line you can see here that the

same data has been plotted using the command 1 type plot.

(Refer Slide Time: 32:46)

!IIIIIIIE“IIlllllllllllllllllllllIIlI-Tuu..an&a-i-
> marks <- c(337,316,334,327,340,3§

>
> marks
[1] 337 316 334 327 340 360 374 33
[16] 428 430 438 439 450
> hours <- c(23,25,25,26,27,28,30,%
> hours ;
(1] 23.0 25.0 25.0 26.0 27.0 28.0%
[8] 26.0 29.0 32.0 33.0 34.0 35.0%
[15] 39.0 42.0 43.0 44.0 45.0 45.5

HOD MO M0 MO S0 4D em

> plot(hours, marks)

> plot(hours, marks, type="p") L
> plot(hours, marks, type="1") Y -
> plot(hours, marks, type="bh")

> plot(hours, marks, type="qf')

And similarly, if you want to have here points and lines here both you simply have to type
here type is equal to b that means both and you can see here this graph is changed and then

you have here points and lines both.

(Refer Slide Time: 33:00)

—_—
A e e Salegn Seles
<lctul slml | @l &

> marks <- <(337,316,334,327,340,3%

>

> marks
[1] 337 316 334 327 340 360 374 33
[16] 428 430 438 439 450

> hours <- c(23,25,25,26,27,28,30,%

> hours l
[1] 23.0 25.0 25.0 26.0 27.0 28.08
[8] 26.0 29.0 32.0 33.0 34.0 35.0%
[15] 39.0 42.0 43.0 44.0 45.0 45.5

n

> plot{hours,
> plot(hours,
> plot(hours,
> plet{hours,
> plot(hours,
> plot{hours,

And similarly, but they are separated, but if you want to over plot them, just try to use the

option type is equal to o and you can see here this is the figure in which the points and lines

they are overplotted.

marks)
marks,
marks,
marks,
marks,
marks,

type="p")
type="1")
type="b")
type="a")
type="hl")

21

WD M MO MO & 4N &
L)
L]

(Refer Slide Time: 33:13)

>
> marks

> marks <- c(337,316,334,327,340,3%

[1] 337 316 334 327 340 360 374 3%
[16] 428 430 438 439 450
> hours <- c(23,25,25,26,27,28,30,5

[1]) 23.0 25.0 25.0 26.0 27.0 28.0%
[8] 26.0 29.0 32.0 33.0 34.0 35.08%
[15] 39.0 42.0 43.0 44.0 45.0 45.5

plot {hours,
plot(hours,
plot (hours,
plet{hours,

plot(hours,
plot (hours,
plot(hours,

>
>
>
>
> plot(hours,
>
>
>
>

plot (hours,

marks)
marks,
marks,
marks,
marks,
marks,
marks,
marks,
marks

type="p")
type="1")
type="b")
type="0o")
type="h")
W-now,
type="h")

§
§
§
> hours fi
¥
]
B

type="s|")

And similarly, if you try to use here the option H, then you will get your histogram type or
say high-density vertical lines that you can see here formation of the point means you can see
here if I try to show you here this thing and if I try to show you here this thing from the same

point these lines will be dropped you can see here.

(Refer Slide Time: 33:33)

> marks <- e(337,316,334,327,340,38%
>
> marks
[1] 337 316 334 327 340 360 374 3%
[16] 428 430 438 439 450
> hours <- <(23,25,25,26,27,28,30,9%
> hours
{1} 23.0 25.0 25.0 26.0 27.0 28.0%
[8] 26.0 29.0 32.0 33.0 34.0 35.08
[15] 39.0 42.0 43.0 44.0 45.0 45.5

plot(hours,
plot(hours,
plot (hours,
plot (hours,
plot (hours,
plot(hours,
plot(hours,
plot (hours,
plot (hours,

VVVVVVYVFVVVY

marks)
marks,
marks,
marks,
marks,
marks,
marks,
marks,
marks,

-
WO MI M0 MO &N 4D W8

B

{—

And similarly, if you want to have the plot of stairs, steps type, so you have to use that type
equal to s and you can see here that this command is producing this type of graphic. So, now,

we come to an end to this lecture and I have given you a basic idea, basic background about

22

the plot command and the built-in functions. But definitely, my idea was very simple. I just

wanted to sensitize you that we are going to use some built-in functions and some graphics.

Well, when we are trying to use the built-in function, definitely we are going to introduce
many more built-in functions. But my idea of telling you this built-in function was that how
to use those new functions. So, the moral of the story what we have learned in the built-in
function that you have to just write down the function and then you have to write down the
data inside the parenthesis, but the rule what we are going to follow that we are always going
to write down the data using the ¢ command. Otherwise, I do not want to make the life

complicated or confusing. As simple as that and similarly for the graphic also.

Well, I am going to use only these graphics because I will be working at a very basic
fundamental level, but when you are trying to work in the Decision Sciences the data size is
very big. And this is only you who is going to take a call that which of that tool whether this
is analytical tool or graphical tool has to be used, your basic objective will be only that

whatever is the hidden information inside the data that you have to bring out.

And for that what you have to do, nobody will come from the sky to inform you this is only
you who has to think and who has to take a call and that is how you will become a data
scientist. So, you think about this, try to have a quick revision of these commands, try to

practice this, and I will see you in the next lecture with some more topics. Till then, goodbye.

23

