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Essentials of Data Science with R Software – 1 
Professor. Shalabh 

Department of Mathematics & Statistics 
Indian Institute of Technology Kanpur 

Lecture No. 54  
Central Limit Theorem  

Hello friends welcome to the course Essentials of Data Science with R Software - 1 in which 

we are trying to understand the basic fundamentals of probability theory and statistical 

inference. So, now, you can see, we have now understood about the role of probability in 

computing different types of tools for the statistical inference. 

So, now, I ask you a very simple question. In case if somehow it is becoming difficult to 

compute the probability from a given PDF or PMF what do you do? Can you recall that when 

we had discussed the normal distribution, then we had computed different types of 

probabilities, how? Just by taking the random variable - its mean divided by standard 

deviation. And we have seen that, that was a good approach to find out different types of 

approximations for the probabilities, which are coming from different distribution either 

discrete or continuous, but they can be very well approximated by that normal distribution.  

So, now, in this class today, in the lecture today I will be working on this concept, and we are 

going to talk about a very important result this is Central Limit Theorem. Well, if you come 

to the pure statistics, there are several forms of the central limit theorem, which are defined 

for different types of conditions. Here in this case, I am going to discuss the most simple 

form of the central limit theorem, and I will try to illustrate that how ch it is useful in real 

data applications where you are trying to find out the value of approximate probabilities using 

the normal distribution. So, let us begin our lecture. 
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So, what is this central limit theorem? In a very simple language, I can say that the central 

limit theorem tells that the sum of a large number of independent random variables has 

approximately a normal distribution. And it gives us a very simple method for computing 

approximate probabilities for the sums of independent random variables. You can recall that 

at couple of places I had shown you that, if two random variables are independent, then their 

sum also has got a probability mass function or probability density function with some 

specific parameters.  

And then, in case if you want to find out the probabilities of their sum, that means, you have 

to first compute their joint probability density function of the random variable X1 + X2 and 

then you have to find out the probabilities from there, which is many times difficult. So, the 

central limit theorem helps us and explain the fact that the empirical frequencies of so many 

natural populations exhibit a bell shaped normal curve. That is a very useful information for 

those who are working in real data applications. So, there are various forms of the central 

limit theorem and we consider here a very simple form.  
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So, this theorem says that, let X1, X2,…, Xn be a sequence of independent and identically 

distributed random variables. And each of this variable is having a mean  and variance 2, I 

am not assuming any distribution, or even I am not saying that whether X1, X2,…, Xn are the 

say discrete or say continuous.  

Now, for large n, the distribution of X1 + X2 + Xn is approximately N(n n2). Then it 

follows from the central limit theorem that , this will approximately follow a 

normal distribution with mean 0 and variance 1 that is your standard normal distribution.  

And now, you can see here if you can just write down this thing as (X1 + X2 + … Xn)/n - , 

then what will happen, this result will be converted into a sample mean  nX . So, now, both 

the options are there, and I will try to explain you. 
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So now, in case if you want to find the probability that  this is less than some 

quantity say X, then finding out this probability might be difficult, but you can very well 

approximate it by the N(0, 1) .So, this can be approximated by probability that Z is smaller 

than X, where your Z is a standard normal variant following N(0, 1). 

So, this can also be expressed as the distribution of say here Zn, which is X  and -  divided 

by  by root n approaches to N(0, 1) as n approaches infinity. So, now, you can see here in 

this result, nowhere I have assumed that X1, X2,…, Xn are continuous or discrete, but we are 

saying that this result is valid for actually both. So, this  or say , their 

distribution is always going to be continuous, which is N(0, 1) and N(0, 1) is a continuous 

distribution. 
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And beside this thing, if you have observed it, nowhere I am saying that X1, X2,…, Xn they 

are coming from binomial or Poisson or exponential or geometric, we have not talked about 

it. So, nothing is said about the form of the original density function. The only thing what we 

are trying to assume that we are assuming that the variance is finite.  

So, whatever the distribution function be provided that provided only that it has a finite 

variance. The sample mean will have approximately the normal distribution for large 

samples. That is the condition that for finite sample, the approximation may not be good, but 

as you try to increase the value of your sample size or n, this approximation will become 

better.  

Now, in case if you ask me that you are assuming here that the random variable should have 

finite variant do you think that is it a very difficult assumption? Whatever distributions you 

have done up to now, means, you have seen that they had finite variance. And similarly, if 

you try to look for other probability distributions, then most of them have finite variance. 

There is only one distribution, Cauchy distribution, which has this problem that it does not 

has the finite variance, but for all other things, there should not be any problem.  

Because the condition that the variance be finite is not a very critical restriction so far as we 

are concerning the Applied Statistics. Because in almost any practical situation, the range of 

the random variable will always be finite. And in that case, the variance  st necessarily be 

finite. So, this is not a very difficult condition. So, it is not a very stringent condition that 
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cannot be satisfied in real life. So, we need not to worry that ch and it will give us a good 

result.  

(Refer Slide Time: 08:07) 

 

So now, let me try to demonstrate that how this result will look like by taking an example of 

exponential distribution. Now, you know what is exponential distribution. So, let X1, X2,…, 

Xn be a sequence of IID random variables from exponential distribution whose PDF is this as 

n is having a parameter . So, each of this Xi has mean 1/ and variance 1/2.  

So, now, I can say that if I try to consider here this quantity here , then for large 

n, this will have approximately a N(0, 1) distribution.  

(Refer Slide Time: 08:54) 
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So, now, I will try to demonstrate this result using the R software, so that I can show you that 

how it look like. So, what I am going to do here that I will try to generate the sample from 

this exponential distribution with say  equal to 2 and then I will try to compute the sum X1 + 

X2 +… Xn and I will try to compute this quantity also that .  

And now, I will try to repeat this experiment and every time I will compute these two 

quantities for a given sample. And then after that, I will try to create a density plot of both the 

values which are obtained for this and this and we also try to find out their mean and 

variance.  

(Refer Slide Time: 09:40) 
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So, it is not difficult I am now giving you here the entire program, you have the slides also. 

So, you can simply copy and paste this program and you can just do it. So, you can see here 

this program is pretty simple. We have only here the number of observations and the number 

of times you want to repeat it. And then I am trying to generate the observation from this 

exponential distribution using the command n that you know, and then I am trying to 

compute the sum and then sum - n , and then the square root of n divided by . And then 

whatever is the outcome I'm trying to use here in plotting the density curve. 

(Refer Slide Time: 10:17) 

 

And this is the screenshot right? So, well, my basic objective is to make you convinced and to 

show you that how these things are happening. So, now, we try to generate the number of 

observation as a 10, 100, 1000, 10000 from exponential with  equal to 2, and then we 

change them up to n observation + rep, rep means repetition. So, this n is going to be 

increasing.  

So, we start with n and then continuously the n is going to be increased and every time these 

two quantities, their sum and then this quantity combined is n  divided by square root of n . 

This is going to be calculated. And then, means, I have plotted all this curve clearly here.  

(Refer Slide Time: 11:07) 
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So now, you see that is the outcome. So, when I try to take out here this ken observation, then 

the plot of the sum that means X1 + X2 +… Xn this looks like this one, you can see here the 

curve. And if I try to plot the central limit theorem, that sum - its mean divided by standard 

deviation it looks like this. But now, in case if I try to increase the sample size. I tried to 

increase your samples from 10 to 100. You can see here now try to compare this curve and 

try to compare discuss what is really happening?  

This is becoming a smoother, but this is now becoming more symmetric. And in both the 

cases if you try to see here that means and variants are obtained here like this and here even 

you can see that the mean is coming out to be saved - 0.22 which is say means quite close to 

0, but still that is not actually 0 and variance is not actually here 1, but if you try to increase 

the sample size, the mean and variance are going closer to 0 and 1 respectively.  

(Refer Slide Time: 12:13) 
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Now, in case if you try to increase the sample size to 1000 and then to 10,000 then the 

density plot of the sum will look like this or this, but in case if you try to plot the sum - its 

mean divided by standard deviation that is CLT it will look like this. And you can see here 

that as n going to infinity, this curve is becoming more symmetric and more similar to the 

normal density curve, and even the mean and variance they are approaching towards 0 and 1 

respectively. So, this is the basic idea of the central limit theorem. 

(Refer Slide Time: 12:49) 

 

And you can see here these are the results, which are you have reported you here. 

(Refer Slide Time: 12:54) 
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Now, do you remember that when we did the normal distribution, then we also had discussed 

this aspect continuity correction? And there I had explained you that when we are trying to 

approximate a discrete distribution by a continuous distribution, then there is a need of 

continuity correction. And I had explained you what is this how it is obtained. So, now, I will 

not explain it again, but I will try to use it here, because in the central limit theorem also 

when you are trying to approximate the probabilities for a discrete random variable, then you 

need to apply the continuity correction also. 

So, and we approximate the probabilities for discrete distribution, we incorporate the 

continuity correction also. So, let X1, X2,…, Xn be a sequence of IID, but discrete random 

variables and each having a mean  and some variance 2. Suppose, we want to find out this 

probability that X1 + X2 + Xn they are lying between two numbers X1 and X2. So, now, I have 

to do the same thing that we have discussed earlier that I have to subtract 1/2 in X1 and I have 

to add 1/2 in X2 and then I will try to compute the probability after standardization. 

(Refer Slide Time: 14:10) 
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What we try to do we try to simply write down here  and the same thing I try to 

do on the both sides and this probability can we obtain the probability of here this quantity - 

probability of this quantity very straightforward algebra that now, you know and this is 

nothing but this can be obtained by the CDF of normal 0, 1, and this is also the CDF of N(0, 

1) . 

So, both these probabilities can be obtained at these two point  and . 

(Refer Slide Time: 14:52) 

 

So, now, let me try to give you here one more example from the Poisson distribution where 

we try to apply this continuity correction. So, let X1, X2,…, Xn be a sequence of IID random 
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variables from Poisson distribution each having a mean say  is equal to 0.125 and variance 

is equal to 0.125. Because in the case of Poisson distribution, the mean and variance both are 

the same, and its probability mass function is given by this quantity.  

So, for example, if I try to see here, therefore, n equal to 65. Suppose, we want to know the 

probability that some of these Xi is equal to 10 is equal to 0.099 that we can obtain the R. 

Now we try to approximate the same probabilities using the central limit theorem.  

(Refer Slide Time: 15:40) 

 

So, what I try to do here that, I try to write down here  and this can be obtained 

by applying the continuity condition that will try to say subtract 1/2 and add 1/2 on the left 

and writer limits and then you try to standardize it that just mean summation Xi - its mean 

divided by standard deviation and you get here this expression and this probability can be can 

be written. 

Because now, this is here you are here is Z that is the standard normal variant following a 

N(0, 1) distribution, and this probability can be written in the form of CDF as CDF at this 

point and the CDF at this point. And if you try to compute this probability from the R 

software, this will come out to 0.108 this is not difficult at all.  

(Refer Slide Time: 16:32) 
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So, now, in case if you try to take here, suppose here n is equal to 96 and you try to compute 

the probability that  this will come out to be 0.105. But, if you try to use it on the 

basis of the central limit theorem, this will come out to be here 0.101. So, you can see here, 

this is more closer to 0.105 than the case when we had n is equal to only 64. 

(Refer Slide Time: 17:04) 

 

So, you can see that as you are trying to increase the sample size, the probabilities are 

becoming more clear. So, now, we try to come to one more result, where I am trying to give 

you the approximate distribution of the sample mean, because, now, in the last lecture, we 

have seen that sample mean is playing a very important role, when we are trying to draw 

different types of statistical inferences.  
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So, like this X1, X2,…, Xn be a sample from a population having a mean  and variance  2. 

Now, the central limit theorem can be used to approximate the probability distribution of the 

sample mean say . Now, we know we already have actually proved that 

expected value of nX  is equal to  and variance of nX  is 2 /n which depends on this here n.  

And we also know that this nX  this is based on a linear combination of the normally 

distributed random variable. So, when sample size is larger than , this will has this will 

also have an approximately normal distribution with mean 0 and variance 1 that is the 

standard normal distribution N(0, 1) . 

(Refer Slide Time: 18:19) 

 

So, now, let me try to give you an example of this result, suppose the height of university 

student was measured and it was found that it has got a mean of 167 centimeter, and a 

standard deviation of 27 centimeter. Now, a sample of 36 workers is chosen from that 

population. And we want to find the approximate probability that the sample mean of the 

height lies between 163 and 170. That is what we want to find out.  

So, now, using the standard notations let Z be a N(0, 1)  random variable and it follows using 

the central limit theorem, that  X is approximately normal with mean 167 and a standard 

deviation 27 divided by the square root of 36, which is the value of here n equal to 36, and 

this will come out to be here 4.5.  
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Now, in case if you want to compute this probability that X  is lying between 163 and 170, 

you can just standardize the sample mean by writing a sample mean by - its mean divided by 

standard deviation and you try to do the same operation on both the sides. And you can 

simply solve it after this this will become a standard normal variant. And this probability will 

be equal into finding out the probability between - 0.8889 and + 0.8889.  

So, you have done a result that probability that is lying between - a and + a. then this can be 

written an as a twice for probability that less a - 1. So, I can use that result to directly here 

and can find out the value of the CDF at this point from the R software, so that you know 

how to find out the value of the CDF in the standard normal distribution. So, this value comes 

out to be here 0.625 and so on. 

(Refer Slide Time: 20:12) 
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So, you can see here it is not difficult to obtain such complicated probabilities without any 

problem. Now, let me try to address the last topic of this lecture. At many times in real life, 

we always have a question that, what should we the sample size? Means, how many 

observations should we draw, so that we can take a reasonable conclusion? 

So, now, the question I am trying to phrase here is that how large the sample sizes needs to be 

for the normal approximation be valid for example. In all these cases, we are trying to 

approximate the probabilities using the normal distribution and we are saying at least 

theoretically that as n goes to infinity this will work, but, in practice, somebody will always 

like to know, what is this n for which it is really going to work?  

So, this answer depends on the population distribution of the sample data that is there that 

you have seen means, I was always trying to do an experiment and I was trying to show you 

the results after every probability density function and probability mass function that I will 

try to generate the observation from that distribution and then try to compute its mean and 

variance. And then, I was trying to show you that as n is increasing the estimated value of 

mean and variants are converging towards the theoretical mean and variance. 

So, now, for example, if I say the population distribution is supposed normal, then the sample 

mean will also be normal regardless of that sample size then there is no issue. A general rule 

of thumb is that one can be confident of the normal approximation when the sample size is n 

is greater than 30. Now, you know what is the reason.  

(Refer Slide Time: 22:00) 
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Means, this reason will become more clear as we move forward, but do you remember the 

discussion in the t distribution lecture try to think about it. So, in such a case, even if the 

underlying population distribution is not necessarily normal, the sample mean of a sample of 

size at least 30 will be an approximately normal. And the normal approximation is valid for 

ch smaller sample size in most of the cases, but it depends on say different types of 

parameters, which you are going to involve or what is the probability density function 

probability mass function and so on. 

So, now, let me come to an end to this lecture that was a very short and simple result. But 

what I am trying to address here that is very important, because in data science, you are 

dealing with complicated distributions. And sometimes there can be a combination of discrete 

as well as continuous random variables also and you are always interested in computing 

different types of probabilities.  

Well, without probabilities, you cannot do the statistical modeling that we have understood. 

So, now, whenever you are trapped, whenever you want to find out the value of the 

probability. Yes, you cannot find out the exact probability, but, if you try to use this central 

limit theorem possible, you will get a very good approximation, and this is going to work 

very well in practice. 

Now, regarding the sample size issue, my experience says that the sample size required 

depends on many things. For example, even if you are trying to take the N( 2), in case if 

the 2 value is very, very low possibly, you will need a smaller sample size. But in case if 

your 2 is very high, then you will need a ch larger size. 
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So, the same thing can happen in other type of probability density functions also. Also in real 

life, whenever you are trying to deal with the real data, it will be difficult many times to know 

exactly what is the probability density function of probability mass function so you are 

simply trying to approximate or assume that this is the distribution, which is going to 

represent that true data up to a great extent. So, that is a sort of approximation. 

So, under those type of situation this CLT is going to help you a lot. So, now, I would stop 

here and I will request you that you please try to think, try to look into books and you will 

find different versions of the central limit theorem under different types of condition. For 

example, here we have assumed that the random variables are identically and independently 

distributed. Supposed they are not independent then these things are not going to be valid.  

So, for that you have to look into the books and find out the correct version. But now I am 

sure that after so ch of training, it should not be a very difficult task for you to learn and 

understand those things. So, you try to revise, have a look and I will see you in the next 

lecture with more topics. Till then, goodbye. 

 


