
Advanced Partial Differential Equations 

Professor Doctor Kaushik Bal 

Department of Mathematics and Statistics 

Indian Institute of Technology Kanpur 

Lecture 6 

Laplace Equation 

(Refer Slide Time: 00:14) 

 

 

Today let us talk about Laplace Equation. Now, in the first few lectures we have talked about 

first order equation. So, ut plus ux equals to that sort of equation, transport equation, work dot 

equation that sort of thing. But now, we are transitioning into the second order equation. Why 

Laplace Equation? Let us understand this thing first why Laplace Equation. See, the point is this 



is the most basic second order equation of elliptic type. If you remember from earlier PDE 

courses, what happens is most of the, if given a general linear PDE of the form so second order 

how does it look like? 

If you remember, it will look like this a uxx plus b, I am not writing all of this, but a depends on 

xy, so, I am talking two dimensions and b u of xy plus c u of yy plus d u of x plus e u of y plus fu 

plus let us say g equals to 0, that is a expression. So, all of these, here all of these coefficients a, 

b, c, these are all as in the, I am not writing all that. So, let us just do that all of these coefficients 

g these are all continuous, let us say these are smooth coefficients in R2. So, that depends on x 

and y where a, b and all of these is in say infinity R2. 

Now the point is this, if you remember the canonical form, so the canonical form of this 

particular general equation, canonical form. I hope you understand so what I meant by this is see 

any second order linear PDE can be written in this form. Canonical form let us say that is your 1, 

let us say that is your star, it is 0 so let us call it star. So canonical form what it does is actually if 

you in a different in a more suitable coordinate system, so, what it does is under a suitable 

coordinate system, under the suitable coordinate system star gets.  

So, under the suitable coordinate system star gets reduced to either of the following. So what it 

is, it is either Wxx plus Wyy plus some lower order terms, lower order terms containing Wx, Wy 

and Wx and y that is equal to 0 or Wx minus Wyy plus lower order terms containing Wx, Wy, 

Wxy equals to 0. Or you can have this form number 3, Wxx minus Wyy plus some lower order 

containing Wx, Wy, Wx and y. 

What this canonical form does is, it does not change the nature of the equation. If you remember 

if you look at the discriminant of this equation and depending on the sign of the discriminant if it 

is negativity (()) (4:39), if it the positive, it is that the hyperbolic problem and if it is 0 it is a 

parabolic problem. Depending on that nature, if you do one suitable coordinate change, 

coordinate change then what happens is you can reduce this to something like this. This 

particular equation is an example elliptic equation. This equation is an example of a heat 

equation or a parabolic equation. And this equation is an example of a hyperbolic equation. 

Let us understand what I meant by this. So, let me recall what I am doing, see, essentially we 

have a linear second order PDE which looks like this, all the coefficients are smooth this is what 



we are assuming. What canonical form does is? See, this is in some coordinate system x and y, 

you can change the coordinate system to uv. So, here you can change xy to uv but it does not 

matter, these are all variables. You can right xy you can right uv. So essentially, under the new 

coordinate system, you can actually change a star to one of the following expression. 

So let us say if this star is a elliptic equation to begin with, there is a change of coordinate, which 

will actually carried from this to this, this is much easier to solve this expression. So essentially, 

we are only interested in the higher order terms, lower order terms, I mean, those we can handle, 

higher order terms. So it will look like Wxx plus Wyy, that is elliptic problem. Again, if the 

original problem is a parabolic problem, under the change of variable, it will look much simpler, 

it will look like Wxx minus Wyy plus lower order term. 

So, essentially, this is also a lower order term, but I am just writing it in this way just to make it 

look special, so, familiar just is like a heat equation, so that is parabolic form. Otherwise, you can 

just take this Wx over here also it is not a problem. And Wxx minus Wyy plus L of this is equals 

to 0 that is a hyperbolic form. So essentially this is like a whole equation form, two second order 

terms plus lower order terms like this. So, where let me put it like this, where L of are the lower 

order terms. 

Now, so, let me make a small remark. I am assuming here that this is an advanced speaking 

course I am assuming that you guys know all of this, if you do not know please chose a suitable 

textbook. Whatever you want because most textbook contains this thing. Yes, please choose a 

suitable textbook for example, Myint and Debnath to review it. 

See, this all thing, which I said if you guys are familiar with this thing, there is absolutely no 

issue is there. If you are not, then obviously you can just choose any textbook you want, I mean, 

this is just an example, Myint and Debnath, Partial Differential Equation this book, you can just 

look at that book and just review this whatever I said is not very difficult thing to do. Now, what 

is the point of all of this, the point of all of this is, see if we want to study most linear equations, 

you do not need to know, you understand you do not need to know how to solve a general 

equation like this. All you need to know is how to solve this three prototype equation. 

If you know how to work with this three prototypes you are done, because ultimately any linear 

equation can be reduced to something like the second order. Any linear second order equation 



can be reduced to one of these three forms. So, if you can just study these three forms, these are 

the fundamental forms, if you can just study these forms. So basically, we call these an operator 

L of W is Wxx plus Wyy. How these operators behave? Then we are done. So then we can 

actually work out our problems. 
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So, let us start by first of all, with a example. So, we define L of u, so, this is what I mean by an 

operator. Define L of u to be Uxx plus Uyy. Before I move on doing anything, I just want you to 

take 15 seconds, take 15 seconds and think about if what is L? So L is supposed to as you can 

understand, it is kind of a function right is taking something and putting it into something, which 

is taking a function and giving back another function which looks like this. So can you tell me 

where is L defined from, just take 10 to 15 seconds and just think about it. 

So let me just tell you where it is. See, L is an operator what I mean by operator here. So, L is a 

linear operator, what do I mean by a linear operator, what I meant by this is essentially see it is 

taking value from some vector space u. See if I am taking a u Uxx and Uyy has to be satisfied. 

So, u have to be accessed twice differentiable. So, it is C2 or whatever domain it is yeah, I do not 

care some domain let us say omega, I am starting out with an omega which is a subset of R2. 

So, L is from C2 R2 I mean you are choosing an element of twice differentiable element and it is 

giving back Uxx plus Uyy, if u is twice differentiable Uxx is continuous and Uyy is continuous 

the sum of two continuous function is continuous. So, it is giving you back something like this. 



So, L from is a linear of second order operator. This is what I mean by operator. So, see this is 

also a function, but in a special way. What is so special about it, that is not taking element from 

any ordinary set, but a vector space of functions, it is taking element from vector space of 

functions. 

Now, let us look at where all of this comes from. So, let us look at some physical motivation. So, 

before I do this let us do put some name to this particular operator. So, Laplace Equation, 

Laplace Equation, if you are looking at equation which looks like this Laplacian of u that is 

given by divergence of gradient u. If you remember gradient u is let us just start with two 

dimensions do not worry about anything, it is exactly the same.  

Let us just start with two dimensions. So, in two dimension gradient of u is Ux and Uy. So 

divergence of gradient of u that is Uxx plus Uyy. So this is the Uxx plus Uyy. That is your 

Laplacian. Now, there is something this equation, this is not an equation anymore, I mean this is 

just an operator, now this if it is 0 equals to 2 then it is called the Laplacian equation. 

Now, we also talk about a similar equation which is called the Poisson Equation. So, the name is 

Poisson Equation, this is I mean most probably I am not 100 percent sure, but Poisson is just is 

like a fish in French. So, the equation looks like this minus Laplacian of u minus there is nothing 

special about minus you can write it, may not write it, this is just in front mentioned minus 

Laplacian of u equals to f that is called a Poisson equation.  

Here we will assume x is in from omega which is subset of Rn. So, what I meant by x is an nxx, 

x1, x2, xn. I have used a something. So, let me change this thing. So, maybe, let me do it for, 

from now on I will do it for Rn itself. Actually, this is the problem, see I should write it like this. 

Let me change this part. So in two dimension it will look like this, x1x1, x2x2, so essentially 

your, I mean, x1 x2, so I am just writing a tuple in R2 as x1 x2.  

You can write it as xy also, but in that case, you cannot, I mean, I just want to I mean, reserve x 

for a element in Rn. So x is x1x2, so essentially, when I am saying it is a element of Rn, what I 

meant is, so let me put it here to the Rn. So this is uxnxn, n equal to 2 is just this I mean, here I 

just want to write x is in omega subset of Rn means x, so essentially x is x1x2xn. I mean, you do 

not have to worry about xn, the end component just two component, whatever, it does end 

component same sort of thing.  
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Now, Poisson equation is minus Laplacian of u equals to f, this f will be given to you, u from 

omega bar to R is the unknown function which you need to find unknown function. And f is any 

given function on the open subset of Rn, so, just think about it what I am saying, what I have 

said is you are looking at u which is from omega bar, omega bar omega is a open set. As I told 

you, if I am not specifying what exactly omega is most of, all the time in this course, just assume 

omega to be an open set in Rn. So, omega bar is a closed set the closure of omega to R that is an 

unknown function and f is any given function on a open subset of Rn. Now the question is you 

just have to find what u is that is the question. 
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So, we start with a small definition here, definition. So, let us say C2 function u is called a 

harmonic function if it satisfies the Laplace Equation. So, if we are looking at a u such that 

Laplacian of u equals to 0 then that is, that sort of function is called a harmonic function. Now, 

example, take 5 seconds, just think about an example of a harmonic function. Let me tell you 

what is very easy example, let us say if your, let us say omega to be Rn and u of x1xn to be 

identically equals to a constant.  

Now, if that is the case, what do you think Laplacian of u should be any derivative of this is 0. 

So, Laplacian equals to 0. So that is a trivial harmonic function. And, of course, one special thing 

about harmonic functions are 0 is always included. So 0, so ux equals to since constants always 

hold 0, therefore ux equals to 0 is always harmonic. And this is harmonic in any domain. I mean, 

it does not matter whenever you can take any omega you want omega is any open set, and u of x 

is always going to be a harmonic function. So that is one example. 

Can you give think of another example? So let us assume that omega is an open set, and u of x1 

maybe, I do not know, maybe x1, x2, xn let us just call it I am writing it for xn you can just think 

of two dimension also no issues. So let us say that is xi, whatever i is, i can be 1, 2, whatever, n. 

Now if that is the case, let us look at what Laplacian of u is, Laplacian of u in this case is ux1x1 

plus u of xnxn. Now I do not have to calculate this thing, you guys can understand that this is 



going to be 0. So any coordinate function, this sort of function is called a coordinate function. 

Any coordinate function is harmonic. 
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Let us take another non-trivial function here. So in two dimension, let us just think two 

dimension x1, x2, to be x1 square minus x2 square. Let us see if this is harmonic or not. It may 

be, it may not be, let us just look at it. Laplacian of u is Uxx, x1x1 minus Uy1y1 plus Uy1. Now, 

Ux1x1 as you can see, the first derivative is 2x1 second derivative is x2. So that is 2y1 sorry this 

is not y1 along, it is x2x2 plus 2 x2x2 is minus 2 that will give you 0. So Laplacian of u is 0. So, 

hence, this is an example therefore Ux1x2 given by x1 square minus x2 square is also harmonic.  

So, I mean there are going to be other examples also, but these are more or less the basic 

examples of harmonic function. Before we move on let us look at what is so special about 

harmonic function. So, first of all properties, we define H to be the set of all C2 omega bar 

functions such that Laplacian of u equals to 0. So, this is the set of harmonic functions, set of 

harmonic functions. H is a set of all C2 omega bar functions such that Laplacian u equals 0. So, 

that is a set of harmonic function. 
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Now, I want to see what are some special properties of this set. Let us say that let f and g are in 

H, let us see what happen and define f plus g acting at x to be f of x plus g of x. If I define it like 

this clearly see if this is the case then Laplacian of f plus g, this is going to be Laplacian of f plus 

Laplacian of g, how is this true because of linearity. If you are not convinced about this thing, I 

am not proving all of this here, it is going to be time consuming I mean, it is not, it is just two 

lines, but please check this part here it is not very difficult. 

Moreover, you see for a c in R, if you define c times f acting at x to be c times f of x and f is in 

H, you start with a f in H and c in R and you define cf like this, then Laplacian of cf let us see 

what happens, it is definitely c times Laplacian of f this also you can check, please check this 

part, check this. 

Now, think about this. If you consider this property that given two functions f and g the sum is 

linear and constant times f is also in H. So, this definitely belongs to H, it means that cf belongs 

to H. What does that say, it says therefore H is a vector space, H is a vector space. So, this is 

very special about H. All of this happening because the operator is a linear operator. Since delta, 

so this is called a delta, this symbol is called delta is a linear operator. Now, what we are going to 

do is we are going to look at some physical interpretations how, where do we use this sort of 

operator. 
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See this is the most widely used operator in all of partial differential equation and probably one 

of the most important objects in all of mathematics Laplacian. So, it is very important that we 

know understand and I mean appreciate what, how beautiful this operator is. So, let us look at 

some physical interpretation. So, first of all, let us assume that u is the density of some chemical 

concentration in equilibrium.  

Let us assume u is some function, so this represents the density of some chemical composition. I 

mean some substance is given you are looking at a chemical composition of that thing in 

equilibrium, equilibrium means when it is stable. Now, let us say that the chemical is contained 

in some I mean region which we will call as omega.  

So, the region where the chemical is contained. So, that is your omega, omega is our domain. So, 

let us see what happen. See, let us say that is your omega. Now, let us assume that v is some. So, 

let v be a smooth region contained in omega. So, that is your v let us say any smooth region 

which is contained in omega. If that is the case, there seems to be some problem with the 

software.  
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Let us just take another page. So, if that is the case then, so basically what I am saying is if v is a 

smooth so containing u smooth, is smooth. So, what am I doing that is your u and this is where 

the chemical, so the chemical is and u is the density of the chemical and that chemical is in 

equilibrium and you are just looking at another small sub-region, which is v, sorry this is not u 

only is in omega. v something in omega. 

Now, since the I mean the chemical, the concentration that is in equilibrium, the chemical is in 

equilibrium. So, therefore, the net flux, so net flux means whatever is going in or coming out of u 

through the boundary of v, del v is 0, this is quite easy. And if that is proved what does that say 



del v if F dot gamma ds is 0. So, basically there is no flow of, the flux density is not changing in 

the unit direction. So, let us say gamma is this, gamma is the unit outward direction. So, where F 

is the flux density and gamma is the unit outward direction. 

So, what I meant by this is, see the whole liquid or whatever the chemical is it is in equilibrium. 

So, if you look at a small region wherever on the omega, small smooth region the net flow of the 

chemical, the density, the change in the density basically the net flux of u, through this boundary 

of the v that is going to be 0. So, if F denote the flux density then I mean in that direction in any 

direction I mean whatever the gamma is here, in any given direction gamma, the flux density if 

you take the integral of that that is going to be 0. 

Now, if that is the case from Gauss theorem actually, from Gauss divergence if you remember 

when you looked at I mean integration by parts, I said that it is going to be one of the most 

important how do I put it most things important thing you can learn integration by parts. We are 

going to use that integration by parts over here. 

So, let us say that integral del v F dot gamma ds is 0, then use Gauss divergence and say that you 

see integral over v divergence of F d of x that is equals to integral of del v F dot gamma ds and 

that is going to be 0, yes. So, how are you getting, this is Gauss divergence theorem. So, 

basically GD Gauss divergence theorem, Gauss divergence theorem says this and from here we 

get this flux is 0. 

Now see this v is arbitrary, this v can be anything. So, you are saying that a object when you 

integrate that object over any sub-regions, move sub-region that is going to be 0, what does that 

say that the divergence of F is going to be 0 in v, v is arbitrary of course, in omega, arbitrary, in 

omega, I have to say it is in omega. Why it is in omega, see v is contained in omega, v is 

arbitrary. So, you are saying that you are taking the divergence, you are taking some object and 

integrating it in any smooth sub-region of omega and that integration is 0, so definitely the object 

in question that is going to be 0. 

If you are not convinced here please check this part. So, check this, check that let us say u is in C 

let us say 2 of omega be such that integral over let us say u, and ds over v this is 0 for any 

smooth v containing omega, then u has to be 0 in omega. See one thing is this why am I talking 

about smooth v in omega. If you remember Gauss divergence theorem says that you have to have 



this region where you are integrating, that region has to be a smooth region at least C1. So that is 

why I am just assuming it to be smooth. 
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Now, you see there is something called, since we are talking about chemical concentration, there 

is something called a Fick’s Law of diffusion this is from your physics, Fick’s Law of diffusion 

that says that the flux density F is proportional to the gradient of u. So, basically what it is saying 

is minus some constant times gradient of u. So, why minus because the flow, the flux density the 

flow, is from the region of higher to lower concentration. 

See, if there is a flow in the system here it is none, if there is a flaw in the system that is always 

going to be from a region of higher concentration to the lower concentration. So, that is why this 

negative sign is there, you just say that the flow is somehow in a negative way. And this C, of 

course, is a constant or proportionality, I mean, we are just saying that it is proportional to 

gradient of u, and gradient of u is just the change of the flux. So, basically it is the change in the 

density. 

And this C is positive we are assuming because otherwise there is minus C we will get it. So, if f 

is minus C times gradient u, let us just put it here therefore divergence of minus C times gradient 

of u that will give you minus C times divergence of gradient of u that will be 0, because 

divergence of f is 0, f look like this. So, divergence of gradient u is 0. So, that will give us that 



Laplacian of u is 0 because C is positive. Since C is positive, that will give you our minus 

Laplacian, I do not care. 

Now, see, the very important thing is this is from Fick’s Law, we got that Laplacian of u is 

equals to 0 now you just if you want to, so this is the Laplace Equation, that is the Laplace 

Equation. The whole idea of this is see here, if it is chemical concentration, you are talking about 

Fick’s Law. Fick’s Law will give us the Laplace Equation. Actually, if it is a Fourier law of heat 

conduction that is also similar to this, if the Fourier law of heat conduction, then that also will 

give you a Laplace Equation.  

In that case, u will consider so let us say for heat conduction, u will be your temperature, the 

function u. And if it is a Ohm’s Law, electricity conduction then u will be the electrostatic 

potential. So this is a very, very important thing to understand. So with this what we are going to 

do is in the next lecture set of lectures, we are going to talk about how to work with Laplace 

Equation, yeah. So with this we are going to end this particular video. 


