Advanced Partial Differential Equations Professor Doctor Kaushik Bal Department of Mathematics and Statistics Indian Institute of Technology Kanpur Lecture: 29 Wave Equation in Even Dimensions and Speed of Propogatiom

(Refer Slide Time: 00:12)

Welcome students in this class, we are going to talk about the wave equation but in even dimension so higher even dimension.

(Refer Slide Time: 12:15)

$$
4 + 5
$$

\n
$$
\frac{1}{2} \oint d35 = \frac{1}{(h^{+1})\lambda(h^{0})^{4/5}} \int_{\frac{\pi}{2}} \frac{d^{45}}{f^{0.15}} - \frac{1}{(h^{10})^2} \int_{\frac{\pi}{2}} \frac
$$

(Refer Slide Time: 24:08)

$$
4 + 9
$$

\nFor each in,
\n
$$
\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \, dx = \frac{1}{\pi} \frac{1}{2} \ln(1) \int_{-\frac{\pi
$$

(Refer Slide Time: 31:43)

You can solve the inhomogeneous problem. How do you solve it? You just use Duhamel's principle using this. Now, we move on to something called so let me do it in a new page.

(Refer Slide Time: 41:53)

 σ \Box O°. Wave Equation admits finite speed of propogation = (Evolution Equation) Define to exhibits finite propogation speed if the initial data consists of compact support.
We get of the speed of propogation is less than equale to 'c', provided that if
the get of the initial functions is in $B(a_1r)$ for every every t70, the get of us
will be contained in $B(a_2$ x+ct). Remarks of Heat Eqn has infinite speed of propogation. $u_{tt}-\frac{Au=0}{v}$
 $u_{xx} = 0$
 $u_{xx} = 0$
 $u_{xx} = 0$
 $u_{xx} = 0$ o Ware has first spad of propogation.

We move on to something which we did in the heat equation also, here we are going to do something called speed of propagation. So, we are going to show that wave equation, in our setting, wave equation admits finite speed of propagation. Let me explain to you what all of this means, what finite speed of propagation means? First of all, in the mathematical sense of course.

(Refer Slide Time: 51:47)

(Refer Slide Time: 58:45)

 Q^* Q Q T Q Q $\begin{aligned} \therefore |\nabla W_{\delta\gamma} u_{\delta}| &\leq |u_{\delta}| |\nabla u_{\delta} u| \leq \frac{1}{2} |u_{\delta}^2 + \frac{1}{2} |u_{\delta} u|^{2} \end{aligned}$ $\therefore E'(t) \leq 0$ $E(t) = 0$
= $E(t) = E(0) = 0$ y 0 st sto =IE W = E(c) 0
: 0 S E(c) 5 0
=1 E(c) = 0 V o S C s Lo $U_r = 0$ of $\nabla U = 0$
 $U_r = 0$ of $\nabla U = 0$
 $\nabla U_r = 0$ within $|\nabla U_r|$ come $K(\kappa e_1 e_0)$.

$\mathbb{Q}^{\dagger} \quad \mathbb{Q} \quad \mathbb{Q} \quad \mathbb{T} \quad \mathbb{C} \quad \otimes$

