Advanced Partial Differential Equations Professor Doctor Kaushik Bal Department of Mathematics and Statistics Indian Institute of Technology Kanpur Lecture 26 Wave Equation for n = 3

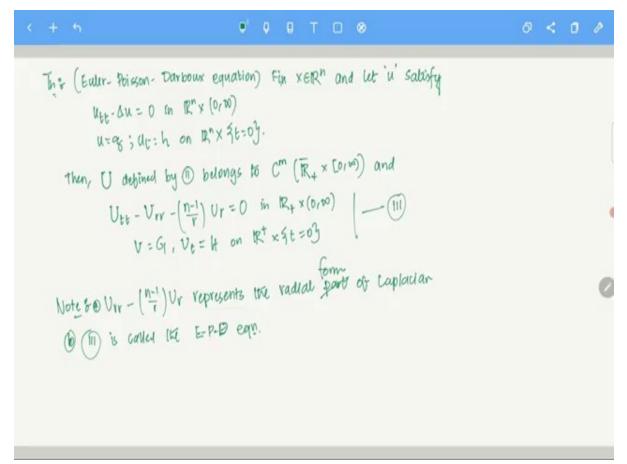
(Refer Slide Time: 0:18)

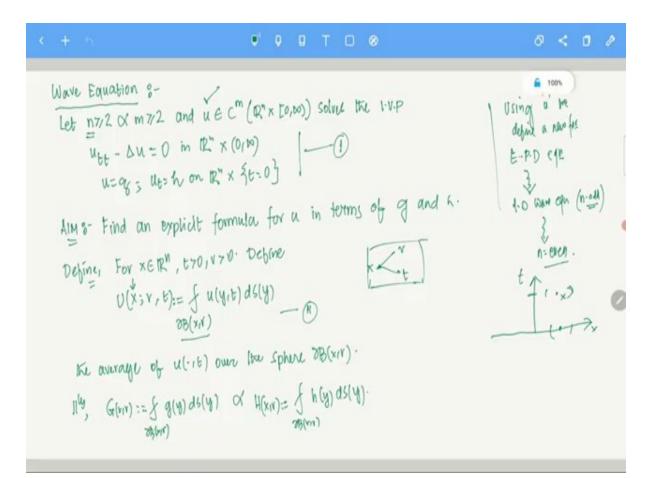
$$(+ n) = 0 = 1 = 0$$

$$(Unve Equation s) = (Unve Equation s) = (Unv$$

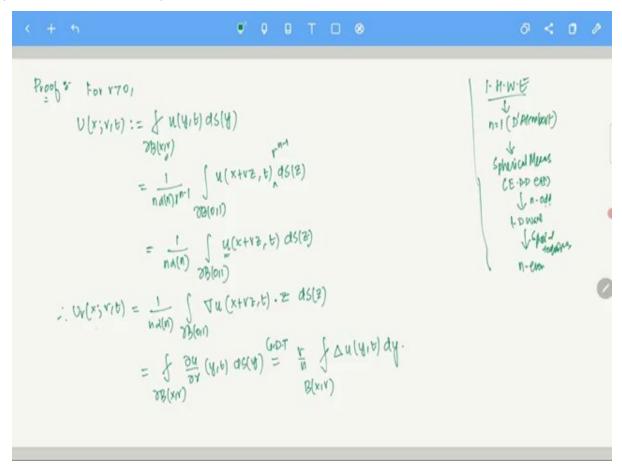
Welcome students and today's class we are going to talk about the wave equation in a higher dimension. So, wave equation, so essentially we want to find out a formula for a wave equation. So, let me write down the problem, we are supposing, so let n is greater than 2 and m is greater than 2.

(Refer Slide Time: 11:14)





(Refer Slide Time: 19:06)



(Refer Slide Time: 25:05)

$$Aqain, U_{rr}(x;y_{r};t) = 0.$$

$$Aqain, U_{rr}(x;y_{r};t) = 0.$$

$$U_{r+0}$$

$$Aqain, U_{rr}(x;y_{r};t) = ?$$

$$U_{r} = \frac{1}{nd(n)} \int \Delta u(y_{r};t) dy$$

$$E = r^{h+1}U_{r} = \frac{1}{nd(n)} \int \Delta u(y_{r};t) dy - A = B$$

$$B(xr)$$

$$A = r^{h+1}U_{r}$$

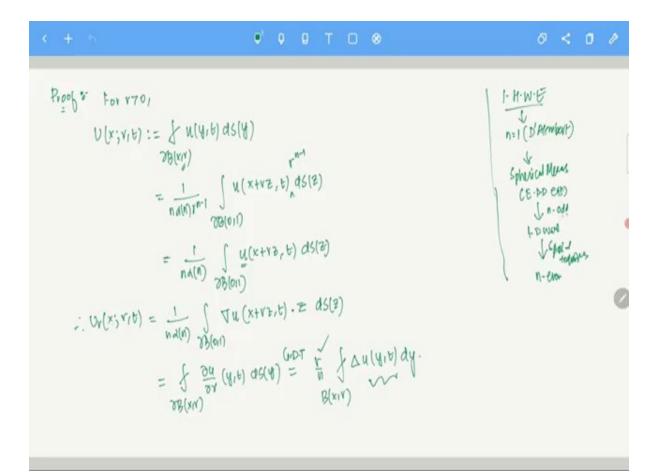
$$A = r^{h+1}U_{r}$$

$$A = r^{h+1}U_{r}$$

$$= r^{h+1}U_{rr} + (1-\frac{1}{n}) \frac{1}{nd(n)r} \int \Delta u(y_{r};t) dy$$

$$B := \frac{1}{nd(n)} \int \Delta u(y_{r};t) dy$$

$$C \cdot avea formula (Polar - coordinative formula)$$



(Refer Slide Time: 31:28)

(Refer Slide Time: 35:03)

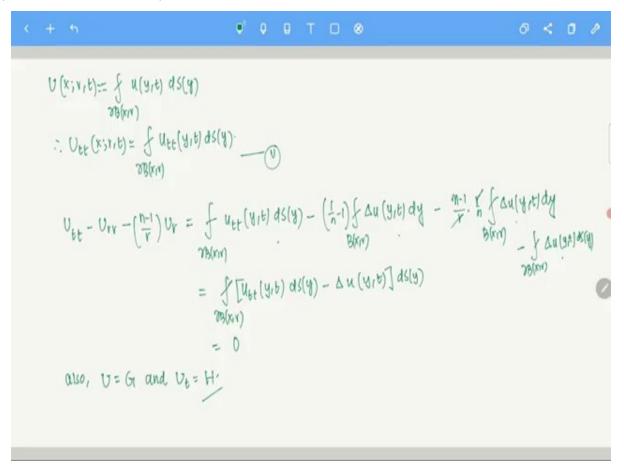
< + h	0 ' 0	0 T			0	<	٥	1
$B := \frac{1}{nd(n)} \int \Delta u(y/t) dy$ $B_{r} = \frac{1}{nd(n)} \int \Delta u(y/t) dy$ $B_{r} = \frac{1}{nd(n)} \int \Delta u(y/t) dy$								
$\therefore U_{nr}(x;r,t) = \int \Delta u.d$	s + (¹ n-1) f B(x	- ∆u dy ″)	, 170	- (2)				•
and $\lim_{Y \to 0^+} U_{YY}(X;Y,t) = \frac{L}{h} t$ Now, using (V) one car $\therefore V \in C^m(\overline{IR} + X [0, m])$	calculate 0	w						0

* How to convert n.d integrate to integral our opheres" • How to convert n.d integrate to integral our opheres" • $f:\mathbb{R}^n \to \mathbb{R}$ is continuous and summable then $\int f dy = \int_0^\infty \left(\int f ds\right) dY$ for each pt $x \in \mathbb{R}^n$. • $\int f dx = \int_0^\infty \int f h dS(t) ds$ for $x \neq 0$. • $\int f dx = \int_0^\infty \int f h dS(t) ds$ for $x \neq 0$. • $\int f dx = \int_0^\infty \int f h dS(t) ds$ for $x \neq 0$. • $\int f dx = \int_0^\infty \int f dS$ • $\int f dx = \int f dS$

0 < 0

$$\begin{aligned} \lim_{Y_{1} \to 0} U_{Y}(x; y_{1}t) &= 0. \\ Again, & U_{YY}(x; y_{1}t) &= ? \\ U_{Y} &= \frac{1}{n d(t)Y^{n_{1}}} \int \Delta u(y_{1}t) dy \\ &= r^{n+1} U_{Y} &= \frac{1}{n d(t)} \int \Delta u(y_{1}t) dy - A = B \\ B(xr) \\ A_{x} &= r^{n+1} U_{Y} \\ &= r^{n+1} U_{Y} + (n-1)r^{n+2} U_{Y} + r^{n+1} U_{YY} \\ &= r^{n+1} U_{YY} + (1-\frac{1}{n}) \frac{1}{n d(t)Y} \int \Delta u(y_{1}t) dy \\ B &:= \frac{1}{n d(t)} \int \Delta u(y_{1}t) dy \\ B &:= r^{n+1} U_{Y} + (1-\frac{1}{n}) \frac{1}{n d(t)Y} \\ &= g(xr) \end{aligned}$$

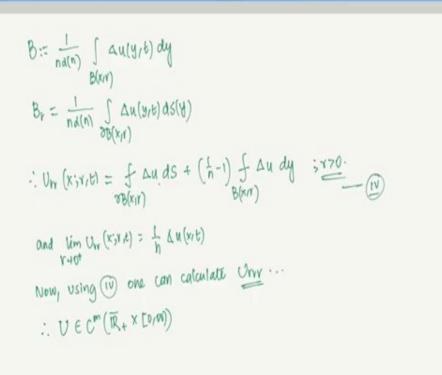
(Refer Slide Time: 40:47)



< + %

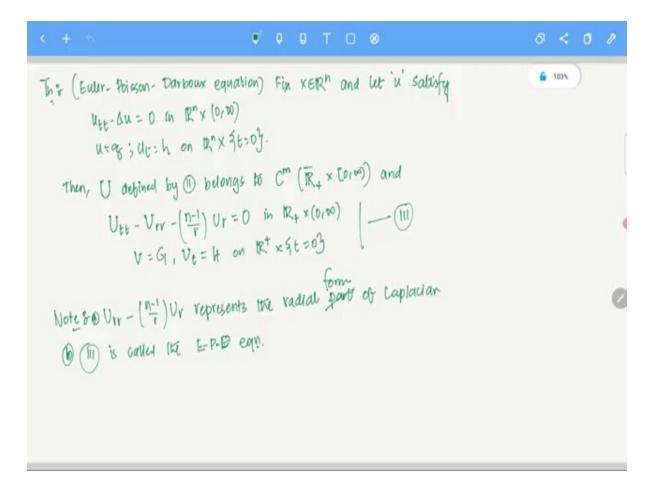
• • • T O •

0 < 0 .



(Refer Slide Time: 45:58)

Solution. for
$$n=3$$
:- Suppose $u \in ({}^{2}(\mathbb{R}^{3} \times [o_{1} \infty]) \text{ solves } (0)$. Let $U_{1}(b)$ and H are defined as
() and (?) $u \notin p$. set
 $\widetilde{U} = v U$, $\widetilde{U} = v \notin a$ and $\widetilde{H} = v H$
Aut:: $\widetilde{U}_{tt} - \widetilde{U}_{tv} = 0$ in $\mathbb{R}_{t} \times (0(\infty))$
 $\widetilde{U} = \widetilde{U}$ and $\widetilde{U}_{t} = \widetilde{U}$ on $\mathbb{R}_{t} \times 5t=0$
 $\widetilde{U} = 0$ on $\{v = 0\} \times (0(\infty))$
Note, $\widetilde{U}_{tt} = v U_{tt} = v \left[U_{vv} + \frac{2}{v} U_{v} \right] (: U \text{ solvely } E \cdot P \cdot D \cdot eqn)$
 $= v U_{vv} + 2Uv$
 $= (U + v U_{v})_{v} = \widetilde{U}_{vv}$
Alton $\widetilde{U}_{tv}(0) = 0$ $(D \cdot V)$



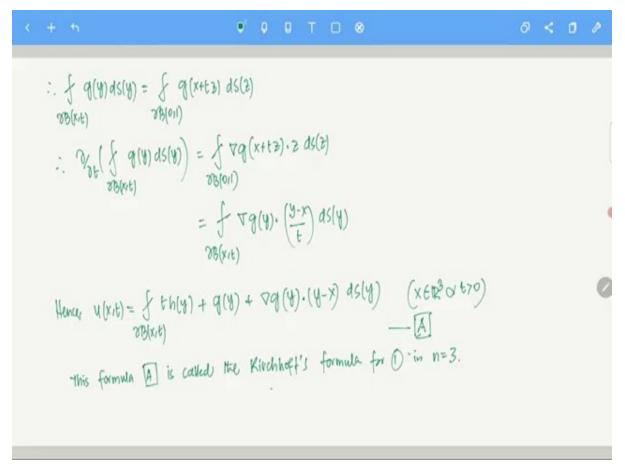
(Refer Slide Time: 53:22)

For,
$$0 \le y \le t$$
,
 $\widetilde{U}(x_{s}y_{r}t) = \frac{1}{2} \left[\widetilde{G}(y_{t}t) - \widetilde{G}(t_{s}y_{r}) \right] + \frac{1}{2} \int_{t-Y}^{t+Y} \widetilde{H}(y) dy$
now, $u(x_{r}t) = \lim_{Y \to 0^{+}} \frac{\widetilde{U}(x_{r}y_{r}t)}{Y^{-}} \cdot \left(u(x_{r}t) = \lim_{Y \to 0^{+}} U(x_{s}y_{r}t) \right)$
 $= \lim_{Y \to 0^{+}} \int_{0}^{\infty} \frac{\widetilde{G}(t+y) - \widetilde{G}(t_{s}y)}{2y} + \frac{1}{2y} \int_{t+Y}^{t+Y} \widetilde{H}(y) dy \right]$
 $= \widetilde{G}'(t) + \widetilde{H}(t)$
 $\widetilde{U}(x_{r}t) = \frac{0}{2t} \left(b \oint_{0} g ds \right) + b \oint_{0} h ds$
 $YB(x_{r}t)$

< + *

• • • T O •

Solution for n=3: Suppose $ut({}^{2}(\mathbb{R}^{3}\times[0,\infty]) \text{ solves } ()$. Let U, bi and H are du () = 1000)() and (i) rusp. set $\widetilde{U} = vU$, $\widetilde{U} = r G \text{ and } \widetilde{H} = r H$ Aut: $\widetilde{U}_{tt} - \widetilde{U}_{rv} = 0$ in $\mathbb{R}_{t} \times (0,00)$ is [] $\widetilde{U} = \widetilde{U} \text{ and } \widetilde{U}_{t} = \widetilde{H} \text{ on } \mathbb{R}_{t} \times (5t=0)$ $\widetilde{U} = 0$ on $(r=0) \times (0,00)$ Note, $\widetilde{U}_{tt} = v U_{tt} = r [U_{rr} + \frac{2}{r} U_{r}] (: U \text{ sodustry } E \cdot P \cdot D \text{ eqn})$ $= r U_{rr} + 2Ur$ $= (U + r U_{r})_{r} = \widetilde{U}_{rr}$ Also $(\widetilde{U}_{tn}(0) = 0 (D \cdot Y)$ (Refer Slide Time: 58:50)



• • • • • • •

For,
$$0 \leq v \leq t$$
,
 $\widetilde{v}(x;v_{t}v) = \frac{1}{2} \left[\widetilde{q}(v+t) - \widetilde{q}(t-v) \right] + \frac{1}{2} \int_{t-v}^{t+v} \widetilde{H}(y) dy$
now, $u(x_{t}t) = \lim_{V \to 0^{t}} \frac{\widetilde{v}(v_{t}v_{t}t)}{V} \cdot \left(u(x_{t}t) = \lim_{V \to 0^{t}} \frac{v(x;v_{t}t)}{V(x;v_{t}t)} \right)$
 $= \lim_{V \to 0^{t}} \int_{t}^{\infty} \frac{\widetilde{u}(t+v) - \widetilde{u}(t-v)}{av} + \frac{1}{av} \int_{t+v}^{t+v} \widetilde{H}(y) dy \int_{t+v}^{t+v}$
 $= \widetilde{G}'(t) + \widetilde{H}(t)$
 $\widetilde{v}(v,t) = \frac{\Im}{\Im t} \left(t + q ds \right) + t f h ds$
 $\Im(v,t) = \frac{\Im}{\Im t} \left(t + q ds \right) + t f h ds$